ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES'
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1. Introduction. The moments of stopping rules (or stopping times) have
been discussed in [1], [3], and [4], and the following results have been proved.
Let z, be independent random variables with Ex,, =0, Ex,) = 1, and
Sp =214 - +x,,.Forc>0andm—12 , define ¢, to be the first
n = m such that |8a| > en’. If ¢ = 1, then Et; = oo. If P[Ix,.] < K] = 1 for some
K< wandn=1,2, - thenE't,,,<ooforeverym1fc<1Et,,, < o for
everymif ¢ < 3 — 6*, andEt = o foralllargemif ¢ = 3 — 6.

In this note, we are interested in the following one-sided stopping rules, instead
of the above stated two-sided stopping rules. For ¢ > 0and 1 > p = 0, define

s=first n =1 suchthat S, =

One of the results states that, if z, are independent, Ez, = p > 0, and
Ex)' — =0 < o,then S’ < o and

(1) lime.e ’Es*/ (CES™) = lim pEs’/(cEs*?) = 1.

When p = 0, ES' < « implies that P[S; < ¢, --+,8a < ¢] = P[s > n] =
o(n"?) as n — o, which completes a result of Morimura [9]. Also (1) extends the
elementary renewal theorem from first moments to second moments and general-
izes some results due to Chow and Robbins [2], Hatori [6], and Heyde [7].

2. The first moment. Let (Q, &, P) be a probability space and x, be _a sequence
of integrable random variables. Let §; C §, C - - - C & be Borel fields such that
‘2, is F,-measurable and § = {&F, Q. Put Sp =1+ -+ + 22,80 = 0, m. =
E(, | Fn) and T, = D % m; . Assume that for some constant © > p > 0 and
for some null set N,

(2) limp,e Tw/n = u, uniformly on @ — N.
Forc> 0and 1 > p = 0, define
s = first n =1 suchthat S, = en”

TrEOREM 1. (i) If for some 0 < § < u/3, Plxn < ma + né] = 1 for all large
n, then Es < .
(11) If E([(Za — mn)T)%|Fas) < K < » for some a > 1 and

E(|zs — ma| | Fn) £ K < oo,
then ES < « and
(3) limese pEs/(cEs®?) = 1 = limesw ES,/(cESs").
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Proor. (i) Set ¢t = min (s, k) fork = 1,2, - -- . Then by the Wald identity

for martingales (see [5], p. 302; or [3]),
ET, = ES; = E(St-1 + z:) < cEt’ 4+ E(m, + 8t) 4+ O(1).
Let 0 < e < 6. Ask — o, by (2)
ET, =z (u — ¢)Et + O(1), Em, = 0(1) + o(Et).
Hence
(v — €)Et £ cEt" 4+ 8Et 4 0(1) + o(Et),
[e<1 sdP + kP[s > k] = Et = 0(1),

as k — . Therefore P[s < ] = 1 and Es < o.

(ii) Forany0 < & < /6, define z,” = min (. , mn + 1), m," = E(z,’ | Fu_1),

and T, = my’ 4+ -+- 4+ m.’". Let I(A) be the indicator function of the set A.
Then

0= mn — ma = E((&n — Mo — 18)I[xn > mu + 18] | Fuor)
4) S B((@ — ma)I[wn > ma + 18] | Fact)
< B ([(2n — Ma) 1 | Fnct) P (@0 — M > 18| Fart) (a4 o' = aa’)
< K(nd)™".
Therefore limpse Tn'/n = p uniformly on @ — N and Plz, < m.’ 4 2n8] = 1
for all large n. Define
t =first » =1 suchthat ' + -+ + 2. = en”.

Then s £ t. By (i), Et < «. Therefore Es < « and it follows by the Wald

identity again ([5], p. 302; or [3]) that
(5) E(cs® + z,) = ES, = ET, = cEs".
Let Z, = 2.1 [(x; — m;)T]* Then by Lemma 6 of [3],
(6) E*(z, — m)" < EZ, = E21E(((z; — my)"]"|F) = KEs.
Since (2) impliés that as ¢ — «, Em, = O(1) + o(Es) and ET, = O(1) +
(p + o(1))Es, we have
(7) Ez; = O(E"%s) + o(Es) + 0(1)
from (6); and
limes uBs/(cEs”) = lim ET,/(cEs’) = lim ES,/(cEs") = 1

from (5) and (7), since lim,», Es = . The proof is completed.

When p = 0, part (ii) of Theorem 1 reduces to an elementary renewal theorem,
which was proved in [2], in a slightly restricted form by requiring that m, = E(x,)
for each n.
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3. The second moment. Assume that Ez,” < « for each n, let
Vo = 220 E((x; — my)*| §5-1)
for n - 1,2, ---, and define s as before. For a random variable y, put ||y|| =
(By")*.
THEOREM 2. If (2) holds and E((xn — my)® | Fot) < K < o, then Es® < o,
ES < ,andasc— =,

(8) ES;} + ET.; = EV, + 2ES.T,,
(9) lim ES,’/ET. = 1,
(10) lim W’Es’/(CEs™) = 1,
(11) lim ES.’/(¢Es™) = 1,
(12) lim pEs*/(cEs™t?) = 1.

Proor. (i) First, assume that for some 0 < § < p/8and 0 < M < w,
Plz, < mn 4+ né + M] = 1foralllargen.Set { = min (s, k) fork =1,2, --. .

Then by Theorem 1 and Lemma. 6 of [3], E(S; — T.)? = EV, < KEt. Hence
by Schwarz inequality

(13) B¢ + BT < KEt 4 2(|Tdlle- (IS ,

where By = [(o<i ¥ dP and ||y|[x = (Exwy’)? for a random variable y. Assume, on
the contrary, that Es’ = . Then limy., Exf’ = « and (2) implies that

Exm = 0(1) + o(Exf®) = o(Ewf’),
as k — «. Hence
(14) [ISelle = llet® + me + 6t + Mllx + O(1) = el|#*llx + 8lltlle + o([[¢]l:)
= (8 + o(1))I[t]ls 5
and from (2),
(15) ET¢ = 0(1) + (& + o(I)Ed’ = (4* + o(1))Euf’.
By (13), (14) and (15), we have
1+ EoS¢/ETE < O([tlle™) + 20Selle/I| Telle
< O(Jltlk™) + (26 + o(1))/u = 26/u + o(1).

Since & < u/8, we have a contradiction when k is large. Therefore Es* < o
and B’ = O(1). Hence

[1Sellx < et + me + 8t + M||x + O(1)
< 0(1) + [lmfls = O(1) + o(Eit’) = O(1).
By Fatou’s lemma, ES,” < « and from (13), ET < «.
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(ii) For the general case, let 2,” = min (z,, m, + né + M) for arbitrary
constants © > M > 0and 0 < & < u/16. Define m,’, T, and ¢ as in the proof
of part (ii) of Theorem 1. Then by (4) (fora = 2),0 < m, — m,” < K(ns)™".
Hence Plz,” < m.’ + 2né + M] = 1 for all large n, and lim T,'/n = p uniformly
on @ — N. It is not too difficult to see that

E((xn - mn)z l gn—l) - E((xnl - mn,)2 I gn—l) é O.

Therefore E((z,’ — m,')? | Fa—r) < K. Since ¢ = s and from part (i) Eff < o,
we have EsS < «. By Theorem 1 and Lemma 6 of [3] again,

(16) E(S, — T, = EV, < KEs.

For ¢ > 0, (2) implies that there exists a constant « > L > 0 such that ET,” <
L + (4’ + €)Es". Hence ET,” < o and from (16), ES,” < . Thus (8) follows.
Now by (16),

|ES? — ET}| £ E|S;} — T £ |8, — T.|||IS. + T.|| < (KEs)¥|S, + T4|.
Since ES,’ = FEs™, from (3)
|1 — ET/ES?| < (KEs/ESHY1 + [T.l/ISI) = o(1) + o(|TlI/lS:)

as ¢ — . Hence (9) follows.
Since (2) implies that ET,> = 0(1) + (4* + 0(1))Es’ as ¢ — «, from (9)

(17) limee w’EBS’/ET, = 1 = lim y’Es’/ES,".
Let Z, = >_7 (z; — m;)’. Applying Lemma 6 of [3], we have

E(z, — m.)? < EZ, = E) i E((z; — m;)* | Fja) < KEs.
From (2), Em,’ = O(1) + o(Es’) = o(Es’) as ¢ — . Hence
(18) Ex} = E(z, — m, + m,)" = o(Es"), |zl = o([ls])-
Now from (18), as c.— o,
(19) sl = ISl = lles” + moll = ofls”[| + ]l = ells”| + o(lls])-

Therefore (10) follows from (17) and (19), and (11) follows from (17) and (10).
Now ET.S, = O(1) + (p 4+ 0(1))EsS, as ¢ — . By the definition of s and’

(18),as ¢ — =,
(20) cEs't® < EsS, < cEs™™? + Esx, < cEs™ + ||s||- ||| < cEs™™" + o(Es’),

Since EV, < KEs, from (8), (9), (10), and (11), lim ES,T./(4’Es’) = 1.
Hence lim EsS,/(uEs’) = 1 and then (20) implies (12).

4. Corollaries and comments. In this section we assume that 2, is a sequence
of random variables and p = 0. Define S, , m., T\, F. and s as in Section 2.
CoroLLAry 1. If (2) holds, E(x,}) < o for each n, and

(21) E((%n — ma)? | Fa1) S K < ,
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then ES’ < « and
(22) limese Es*/c* = p* for 0= a = 2.

Proor. Since (21) implies E(z, — m,)’ < K, from (2) and (21) it follows
[8] that lim S,/n = u a.e. Hence

1 £ lim infese So/¢ < lim inf ps/¢c < lim sup ps/c = lim sup u(s — 1)/¢c
= lim sup S,—i/¢c < 1.

Therefore lim s/c = u* a.e. Since p = 0, from (10) we have that E(s/c)’ <
M < o« for all large c. Hence (see [5], p. 629) for every 0 < a < 2, (s/¢)® is
uniformly integrable and

(23) limeso Elu™" —s/c|* = 0,  lim Es*/c* = p°.

Thus (22) follows from (23) and (10).

COROLLARY 2. Let x, be a sequence of independent, identically distributed
random variables such that Ex; > 0 and E(z; — Ex1)* < . Then for every ¢ > 0,
asn — o,

(24) PlSi<c¢ - ,8 <c]l=o(n?.

Proor. Since [s > n] = [S; < ¢, --+, 8n < ¢|, Bs" < o implies (24) and
thus Corollary 2 follows from Corollary 1.

(22) has been proved by Hatori [6] for every a > 0, by requiring, in addition
to the assumptions of Corollary 1, that . be independent, Plr, = 0] = 1 and
mn, = L > 0 for each n.

Under the conditions of Corollary 2, Morimura [9] proves that.

PlSi<¢ -+ ,8 <c= o(n™®)

for 0 < 6 < (1 + 5')/2 and that there exists an example such that for some
D > 0and for each e > 0, P[S; < ¢, --+, 8» < ¢] = Dn~>"* when n is large
enough. Thus (24) is the best possible. Clearly, Corollary 2 completes Morimura’s
work.

The counter example in [9] satisfies the condition Es*** = « for every ¢ > 0,
since P[s > n] # o(n~>"¢). Therefore (22) can not be extended to the cases where
a > 2, without some conditions such as Pz, = 0] = 1 imposed in [6].

COROLLARY 3. Let ., be a sequence of independent, identically distributed
random variables such that 0 < Ex; = p £ » and E(z7)? < . Then (22)
holds.

ProoF. Let 0 < « < 2. For 0 < p' < p, choose 0 < M < o so that Exz) =
D > 4/, where z,) = min (z,, M). Define S,’ = ' + -+ + . and ¢ = first
n = 1 such that S,” = ¢. By Corollary 1, lim sup Es*/c* < lim Et*/c* = D"
Since u’ is arbitrary, lim sups. Es*/c¢* < u . Hence (22) holds for p =
and E(s/c)’ £ M < o for all large c. Now assume 0 < p < . By the strong
law of large numbers, lim, S./n = u a.e. Hence for 0 < a < 2, as in the proof of
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Corollary 1, (23) holds and therefore (22) holds. For the case o = 2, by Theorem
2 of [2] lim, Es/c = u". Hence lim sup, E(s/c)” = lim, E*(s/c) = u’. Therefore
lim, E(s/c)? = u~* and the proof is completed.

Corollary 3 has been recently proved by Heyde [7] under the stronger con-
dition that E(z;")® < .
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