A NOTE ON UPCROSSINGS OF SEMIMARTINGALES¹

BY LESTER E. DUBINS

University of California, Berkeley

Let β be the number of upcrossings of an interval [r, s] by an expectation-decreasing semimartingale X_1, \dots, X_n .

THEOREM 1. For each $k = 0, 1, 2, \cdots$

(1)
$$P(\beta > k) \leq (s - r)^{-1} \int_{\beta = k} (X_n - r)^{-1}.$$

PROOF. Assume without real loss in generality that r = 0. Let E be the event that there is a $j \leq n$ and an i < j such that X_1, \dots, X_i upcrosses [0, s] at least k times and $X_j \leq 0$, and let τ be the least such j. On the complement of E, let $\tau = n$. Plainly, τ is a stop rule. Next let t = n unless, for some $j \leq n, X_1, \dots, X_j$ experiences k + 1 upcrossings, in which event let t be the least such j.

The inequalities in (2) below are easily checked once these three facts are verified:

- (i) the event $\{\beta > k\}$ is a subevent of $F = E \cap \{X_t > s\}$;
- (ii) $0 \ge \int_E X_\tau \ge \int_E X_t$;
- (iii) the event $G = E \cap \{X_t \leq 0\}$ is a subevent of $\{\beta = k\}$.

$$(2) sP(\beta > k) \le \int_{\mathcal{E}} X_t^+ \le \int_{\mathcal{E}} X_t^- = \int_{\mathcal{G}} X_t^- \le \int_{\mathcal{G}} X_n^- \le \int_{\beta = k} X_n^-.$$

This completes the proof.

Plainly, summing over k the inequality in (1) yields Doob's result: the expected value of β is bounded from above by $\int (X_n - r)^-/(s - r)$.

Theorem 1 obviously also implies for nonnegative X_n and all k:

(3)
$$P(\beta > k) \leq [r/(s-r)]P(\beta = k),$$

which is equivalent to

$$(4) P(\beta > k) \le (r/s)P(\beta \ge k).$$

Of course, (4) states that for nonnegative, expectation-decreasing semimartingales, the conditional probability that $\beta > k$ given that $\beta \ge k$ is bounded by r/s.

Theorem 1 and its proof can be discerned in the proof of Doob's result as presented for example in [1], p. 135.

REFERENCE

 NEVEU, JACQUES (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.

Received 19 January 1966.

728

¹ Supported in part by National Science Foundation Grant GP-5059.