SOME RENEWAL THEOREMS WITH APPLICATION TO A FIRST PASSAGE PROBLEM¹

By C. C. HEYDE

Michigan State University

1. Introduction. Let X_i , $i=1, 2, 3, \cdots$ be a sequence of independent and identically distributed random variables with $E|X_i| < \infty$, $EX_i = \mu > 0$. Write $X_i^- = -\min(0, X_i)$, $S_n = \sum_{i=1}^n X_i$ and $M_n = \max_{1 \le k \le n} S_k$. In this paper we shall discuss the asymptotic behaviour as $x \to \infty$ of the sums $\sum_{n=1}^\infty a_n \Pr(S_n \le x)$ and $\sum_{n=1}^\infty a_n \Pr(M_n \le x)$ for certain classes of positive coefficient sequences $\{a_n\}$ and use the results on the latter sums to investigate the behaviour of the first passage time out of the interval $(-\infty, x]$ for the process S_n as $x \to \infty$.

The analysis that we shall use in obtaining the theorems on asymptotic behaviour follows closely on that of Smith [6] who discussed sums $\sum_{n=1}^{\infty} a_n \Pr\left(S_n \leq x\right)$ for a class of coefficient sequences that we shall also discuss and for non-identically distributed random variables. In fact, our Theorem 1 follows directly from a specialization of the analysis of Smith. One of the particularly interesting characteristics of this technique is that it enables us to study the asymptotic behaviour of the sums $\sum_{n=1}^{\infty} a_n \Pr\left(S_n \leq x\right)$ and $\sum_{n=1}^{\infty} a_n \Pr\left(M_n \leq x\right)$ in the one operation in spite of essential differences in their behaviour.

2. Renewal theorems. For the first set of positive term coefficient sequences $\{a_n\}$ that we consider we shall suppose (as in [6]) that there exist real numbers $\alpha > 0$, $\gamma \ge 0$ and some non-negative function of slow growth L(x) such that

(1)
$$\sum_{n=1}^{\infty} a_n x^n \sim [\alpha/(1-x)^{\gamma}] L(1-x)^{-1}, \quad \text{as} \quad x \to 1^{-1}$$

This is satisfied, for example, if

$$a_n \sim [\alpha/\Gamma(\gamma)]n^{\gamma-1}L(n)$$
 as $n \to \infty$

using an Abelian theorem of Doetsch [3], 460.

In the subsequent work we shall need the following definition:

DEFINITION. The index k of the sequence $\{a_n\}$ is the least real k such that $a_n = O(n^k)$.

Consideration will be restricted to cases where $\sum a_n$ diverges.

THEOREM 1. Suppose $E|X| < \infty$, $EX = \mu > 0$. Let k be the index of the sequence $\{a_n\}$ and m be non-negative. In order that

$$\sum_{n=1}^{\infty} a_n \Pr(S_n \leq x) \sim [\alpha L(x)/\Gamma(1+\gamma)](x/\mu)^{\gamma} \quad \text{as} \quad x \to \infty$$

for each sequence $\{a_n\}$ such that $k \leq m$ it is necessary and sufficient that $E|X^-|^{m+2} < \infty$.

Received 2 June 1965; revised 6 January 1966.

¹ Research supported in part by the National Institutes of Health.

THEOREM 2. Suppose $E|X| < \infty$, $EX = \mu > 0$. Let k be the index of the sequence $\{a_n\}$ and m be non-negative. In order that

$$\sum_{n=1}^{\infty} a_n \Pr\left(M_n \leq x\right) \sim \left[\alpha L(x)/\Gamma(1+\gamma)\right] \left(x/\mu\right)^{\gamma} \quad \text{as} \quad x \to \infty$$

for each sequence $\{a_n\}$ such that $k \leq m$ it is necessary that $E|X^-|^{m+1} < \infty$ and sufficient that $E|X^-|^{m+2} < \infty$.

I conjecture that the condition $E|X^-|^{m+1} < \infty$ is both necessary and sufficient in Theorem 2. It is certainly known that in the particular case where $a_n = 1$ for all n so that k = 0 we only need $E|X^-| < \infty$ (see for example Chow and Robbins [2]).

The proof of the two theorems shall be deferred until we have given four lemmas. The first of these is given in a form which is more general than we shall need subsequently as it has some independent interest.

LEMMA 1. Suppose the random variables X_i , $i=1, 2, 3, \cdots$ are independent and identically distributed. Write $S_n = \sum_{i=1}^n X_i$, $M_n = \max_{1 \le k \le n} S_k$, and, in the case where $E|X_i| < \infty$, $EX_i = \mu$. If $E|X_i|^r < \infty$ with $1 \le r < 2$ and $\mu \ge 0$, then

$$n^{-1/r}(M_n-n\mu)\to_{n,n}0.$$

If $E|X_i|^r < \infty$ with 0 < r < 1 or $E|X_i|^r < \infty$ with $1 \le r < 2$ and $\mu < 0$, then $n^{-1/r}M_n \rightarrow_{\bullet, \bullet} 0.$

("a.s." denotes almost sure convergence).

The corresponding almost sure convergence versions for the sums S_n have been given by Kolmogorov (r = 1) and Marcinkiewicz $(r \neq 1)$ (see for example Loève [5] 242, 243).

PROOF. Suppose $E|X_i|^r < \infty$. Let $c_r = \mu$ if $1 \le r < 2$; $c_r = 0$ if 0 < r < 1. If $c_r \ge 0$, we have

$$M_n - nc_r = \max_{1 \le j \le n} S_j - nc_r$$

 $\le \max_{1 \le j \le n} (S_j - jc_r)$
 $\le \max_{1 \le j \le n} j^{1/r} a_j$,

where $a_j = j^{-1/r}|S_j - jc_r|$. Therefore, if $M_n \ge nc_r$, $0 \le M_n - nc_r \le \max_{1 \le j \le n} j^{1/r}a_j$, and if $M_n < nc_r$, $0 > M_n - nc_r \ge S_n - nc_r = -n^{1/r}a_n \ge -\max_{1 \le j \le n} a_j$, so that $0 \le n^{-1/r}|M_n - nc_r| \le \max_{1 \le j \le n} n^{-1/r}j^{1/r}a_j$. In order to obtain the desired result in this case it suffices to show that for arbitrary $\epsilon > 0$,

$$\Pr \; (\; \textbf{\textsf{U}}_{k \, \geqq \, n} \; \{ \max\nolimits_{1 \, \leqq \, i \, \leqq \, k} j^{1/r} k^{-1/r} a_j \; \geqq \; \epsilon \} \,) \; \rightarrow \; 0 \quad \text{as} \quad n \, \rightarrow \; \infty \, .$$

Now the strong laws of Kolmogorov and Marcinkiewicz ([5], 242, 243) imply that for arbitrary $\epsilon > 0$,

$$\Pr\left(\max_{j\geq n} a_j \geq \epsilon\right) \to 0 \quad \text{as} \quad n \to \infty$$

Therefore, given $\eta > 0$ arbitrarily small we can choose an N so large that

(2)
$$\Pr\left(\max_{j>N} a_j \ge \frac{1}{2}\epsilon\right) \le \frac{1}{2}\eta$$

and then select an $n_0(>N)$ so large that for $n \ge n_0$,

(3)
$$\Pr\left(N^{1/r}n^{-1/r}\max_{1\leq j\leq N}a_{j}\geq \frac{1}{2}\epsilon\right)\leq \frac{1}{2}\eta.$$

Then, for $n \geq n_0$,

$$\Pr \left(\mathbf{U}_{k \geq n} \left\{ \max_{1 \leq j \leq k} j^{1/r} k^{-1/r} a_{j} \geq \epsilon \right\} \right) \\
= \Pr \left(\mathbf{U}_{k \geq n} \left\{ \max_{1 \leq j \leq N} j^{1/r} k^{-1/r} a_{j} + \max_{N < j \leq k} j^{1/r} k^{-1/r} a_{j} \geq \epsilon \right\} \right) \\
\leq \Pr \left(\mathbf{U}_{k \geq n} \left\{ \max_{1 \leq j \leq N} j^{1/r} k^{-1/r} a_{j} + \max_{N < j \leq k} a_{j} \geq \epsilon \right\} \right) \\
\leq \Pr \left(N^{1/r} n^{-1/r} \max_{1 \leq j \leq N} a_{j} + \max_{j > N} a_{j} \geq \epsilon \right) \\
\leq \Pr \left(N^{1/r} n^{-1/r} \max_{1 \leq j \leq N} a_{j} \geq \frac{1}{2} \epsilon \right) + \Pr \left(\max_{j > N} a_{j} \geq \frac{1}{2} \epsilon \right) \\
\leq n,$$

using (2) and (3). This completes the proof of this part of the lemma. It remains to consider the case $c_r < 0$.

In the case $c_r < 0$, $M_n^+ = \max(0, M_n)$ actually has a proper limiting distribution (finite with probability one), $M_n^+ = \lim_{n\to\infty} M_n^+$.

We have

$$\Pr (\mathbf{U}_{k \geq n} \{ k^{-1/r} | M_k | \geq \epsilon \})
= \Pr (\mathbf{U}_{k \geq n} \{ k^{-1/r} M_k \geq \epsilon \} \cup \mathbf{U}_{k \geq n} \{ k^{-1/r} M_k \leq -\epsilon \})
\leq \Pr (\mathbf{U}_{k \geq n} \{ k^{-1/r} M_k \geq \epsilon \}) + \Pr (\mathbf{U}_{k \geq n} \{ k^{-1/r} M_k \leq -\epsilon \})
\leq \Pr (\mathbf{U}_{k \geq n} \{ M^+ \geq k^{1/r} \epsilon \}) + \Pr (\mathbf{U}_{k \geq n} \{ X_1 \leq -k^{1/r} \epsilon \})
= \Pr (M^+ \geq n^{1/r} \epsilon) + \Pr (X_1 \leq -n^{1/r} \epsilon)$$

and both these terms approach zero as $n \to \infty$. Therefore, $n^{-1/r}M_n \to_{a.s.} 0$ as required. This completes the proof of the lemma.

In the subsequent work we shall write $F_n(x) = \Pr(S_n \leq x)$, $G_n(x) = \Pr(M_n \leq x)$ and $H_n(x)$ to mean either $F_n(x)$ or $G_n(x)$ (so that if a property holds for both $F_n(x)$ and $G_n(x)$ it holds for $H_n(x)$ and conversely).

LEMMA 2.
$$\int_{\mu}^{\infty} \{1 - H_n(nx)\} dx \to 0 \text{ as } n \to \infty.$$

PROOF. Introduce the new random variables $Y_i = \max(0, X_i), i = 1, 2, 3, \cdots$. Suppose $EY_i = \alpha$. If $M_n > x$ then $\sum_{i=1}^n Y_i > x$ so that $\Pr\left(\sum_{i=1}^n Y_i > x\right) \ge \Pr\left(M_n > x\right) \ge \Pr\left(S_n > x\right)$ and hence

(4)
$$1 - F_n(x) \leq 1 - G_n(x) \leq 1 - K_n(x),$$

where we have written $K_n(x) = \Pr\left(\sum_{i=1}^n Y_i \leq x\right)$.

We show firstly that $\int_{\alpha}^{\infty} \{1 - K_n(nx)\} dx \to 0$ as $n \to \infty$. We have, by a simple integration by parts,

$$\alpha = \int_0^\infty \{1 - K_n(nx)\} dx$$

= $\int_0^\alpha \{1 - K_n(nx)\} dx + \int_\alpha^\infty \{1 - K_n(nx)\} dx.$

Further, by the law of large numbers, $K_n(nx) \to 0$ as $n \to \infty$ for $x < \alpha$. It follows

from the mean value theorem that $\int_0^\alpha \{1 - K_n(nx)\} dx \to \alpha$ as $n \to \infty$ and hence that $\int_\alpha^\infty \{1 - K_n(nx)\} dx \to 0$ as $n \to \infty$.

Then, making use of (4),

$$0 \leq \int_{\mu}^{\infty} \{1 - F_n(nx)\} dx \leq \int_{\mu}^{\infty} \{1 - G_n(nx)\} dx$$
$$\leq \int_{\mu}^{\alpha} \{1 - G_n(nx)\} dx + \int_{\alpha}^{\infty} \{1 - K_n(nx)\} dx.$$

Now, in view of Lemma 1 (case $r=1, \mu>0$), $G_n(nx)\to 1$ as $n\to\infty$ for $x>\mu$ so that by the mean value theorem $\int_{\mu}^{\alpha} \{1-G_n(nx)\} dx\to 0$ as $n\to\infty$. We have shown that $\int_{\alpha}^{\infty} \{1-K_n(nx)\} dx\to 0$ as $n\to\infty$ so the proof is complete.

LEMMA 3. (Smith [6]). If the non-negative constants $\{a_n\}$ satisfy (1) then as $s \to 0+$,

$$\sum_{n=1}^{\infty} a_n e^{-\mu s n} \sim \alpha(\mu s)^{-\gamma} L(s^{-1}).$$

LEMMA 4. If the non-negative constants $\{a_n\}$ satisfy (1) then as $s \to 0+$,

$$\sum_{n=1}^{\infty} n a_n e^{-\mu s n} \sim \alpha(\mu s)^{-\gamma - 1} L(s^{-1}) \quad \text{if} \quad \gamma > 0$$

$$\lim \sup_{s \to 0+} s [L(s^{-1})]^{-1} \sum_{n=1}^{\infty} n a_n e^{-\mu s n} < \alpha \mu^{-1} \quad \text{if} \quad \gamma = 0.$$

Smith [6] has established the former result, ignoring the possibility of the case $\gamma = 0$. The result given above for $\gamma = 0$ can be readily extracted from Smith's proof and is adequate in the present context.

PROOF OF THEOREMS 1 AND 2. We follow the methods of [6] but work the proof in terms of $H_n(x)$.

Suppose firstly that $E|X^-|^{m+2} < \infty$. Take β arbitrary with $0 < \beta < \mu$. Consider

$$0 \le K_n = \int_{n\beta}^{n\mu} e^{-sx} H_n(x) dx \qquad (s \ge 0)$$
$$= n \int_{\beta}^{\mu} e^{-nsx} H_n(nx) dx$$
$$\le n e^{-n\beta s} \int_{\beta}^{\mu} H_n(nx) dx.$$

Now using the law of large numbers and the inequality $H_n(y) \leq F_n(y)$ (or alternatively referring to Lemma 1 as well), we see that $H_n(nx) \to 0$ as $n \to \infty$ for all $x < \mu$. Hence, using the mean value theorem, we may write

$$(5) K_n = ne^{-n\beta s} \delta_n',$$

where $\delta_n' \to 0$ as $n \to \infty$, uniformly in $s \ge 0$.

Now consider

$$0 \le L_n = \int_{n\mu}^{\infty} e^{-sx} \{1 - H_n(x)\} dx$$

$$= n \int_{\mu}^{\infty} e^{-nsx} \{1 - H_n(nx)\} dx$$

$$\le n e^{-ns\beta} \int_{\mu}^{\infty} \{1 - H_n(nx)\} dx.$$
(s \geq 0)

In view of Lemma 2, we may write

$$(6) L_n = ne^{-n\beta s} \delta_n''$$

where $\delta_n^{"} \to 0$ as $n \to \infty$, uniformly in $s \ge 0$.

Combining (5) and (6) and putting $\delta_n = \delta_n' - \delta_n''$, we obtain

(7)
$$\sum_{n=1}^{\infty} a_n (L_n - K_n) = -\sum_{n=1}^{\infty} n a_n \delta_n e^{-n\beta_n}.$$

Now given arbitrary $\epsilon > 0$ we can choose an integer $n_0(\epsilon)$ so large that $|\delta_n| < \epsilon$ for all $n > n_0$. Then,

$$|\sum_{n=1}^{\infty} na_n \delta_n e^{-n\beta s}| < \sum_{n=1}^{n_0} na_n |\delta_n| e^{-n\beta s} + \epsilon \sum_{n=1}^{\infty} na_n e^{-n\beta s},$$

so that by Lemma 4,

$$\lim \sup_{s\to 0+} \left[(\mu s)^{\gamma+1} / L(s^{-1}) \right] \left| \sum_{n=1}^{\infty} n a_n \delta_n e^{-n\beta s} \right| \leq \epsilon \gamma \alpha \text{ if } \gamma > 0$$

$$\leq \epsilon \alpha \text{ if } \gamma = 0$$

and hence

(8)
$$[(\mu s)^{\gamma+1}/L(s^{-1})] \sum_{n=1}^{\infty} a_n(L_n - K_n) \to 0 \text{ as } s \to 0+.$$

Next write

(9)
$$\Phi_{\beta}(x) = \sum_{n=1}^{\infty} a_n H_n(x) U(x - n\beta)$$

$$= \sum_{n=1}^{\infty} a_n U(x - n\mu) - \sum_{n=1}^{\infty} a_n \{U(x - n\mu) - H_n(x)\} U(x - n\beta)$$

where

$$U(x) = 1, x \ge 0,$$

= 0, x < 0.

If we denote the Laplace transform of a function A(x) by $A^0(s) = \int_0^\infty e^{-sx} A(x) \ dx$ we have

(10)
$$\Phi_{\beta}^{0}(s) = s^{-1} \sum_{n=1}^{\infty} a_{n} e^{-n\mu s} - \sum_{n=1}^{\infty} a_{n} (L_{n} - K_{n});$$

the term by term integration being justified by monotone convergence. From (8), (10) and Lemma 3 it follows that

(11)
$$[(\mu s)^{\gamma+1}/L(s^{-1})]\Phi_{\theta}^{0}(s) \to \alpha \mu \quad \text{as} \quad s \to 0+.$$

Appealing to a Tauberian theorem of Doetsch [3], 511, we then obtain

(12)
$$[1/t^{\gamma+1}L(t)] \int_0^t \Phi_{\beta}(x) \ dx \to \alpha/\mu^{\gamma} \Gamma(\gamma+2).$$

Now for t > 0 and $0 < \theta < 1$,

$$\Phi_{\beta}(\theta t)(t-\theta t) \leq \int_{\theta t}^{t} \Phi_{\beta}(x) dx \leq \Phi_{\beta}(t)(t-\theta t)$$

so that

$$[1/t^{\gamma}L(t)]\Phi_{\beta}(\theta t) \leq [1/(1-\theta)]\{[1/t^{\gamma+1}L(t)]\int_{0}^{t}\Phi_{\beta}(x) dx - [1/t^{\gamma+1}L(t)]\int_{0}^{\theta t}\Phi_{\beta}(x) dx\} \leq [1/t^{\gamma}L(t)]\Phi_{\beta}(t).$$

Then, for fixed
$$\theta$$
 and $t \to \infty$, $[1/t^{\gamma+1}L(t)] \int_0^t \Phi_{\beta}(x) dx \to \alpha/\mu^{\gamma}\Gamma(\gamma+2)$, $[1/(\theta t)^{\gamma+1}L(t)] \int_0^{\theta t} \Phi_{\beta}(x) dx \to [1/(\theta t)^{\gamma+1}L(\theta t)] \int_0^{\theta t} \Phi_{\beta}(x) dx \to \alpha/\mu^{\gamma}\Gamma(\gamma+2)$ by

(12) so that

(13)
$$\limsup_{t\to\infty} \left[1/t^{\gamma}L(t)\right]\Phi_{\beta}(\theta t) \leq \left[\alpha/\mu^{\gamma}\Gamma(\gamma+2)\right](1-\theta^{\gamma+1})/(1-\theta)$$
$$\leq \lim\inf_{t\to\infty} \left[1/t^{\gamma}L(t)\right]\Phi_{\beta}(t).$$

Taking $\theta \to 1$ in the right hand part of inequality (13) gives

(14)
$$\lim \inf_{t\to\infty} \left[1/t^{\gamma} L(t)\right] \Phi_{\beta}(t) \ge \alpha/\mu^{\gamma} \Gamma(\gamma+1).$$

Further, the left hand part of the inequality (13) can be written

$$\lim\sup\nolimits_{t\to\infty}\left[1/(\theta t)^{\gamma}L(\theta t)\right]\!\Phi_{\!\beta}(\theta t) \ \leqq \ [-\theta\alpha/\mu^{\gamma}\Gamma(\gamma \ + \ 2)](1 \ - \ \theta^{-(\gamma+1)})/(1 \ - \ \theta)$$

and the left hand side of this is equal to $\limsup_{t\to\infty} [1/t^{\gamma}L(t)]\Phi_{\beta}(t)$ for θ fixed. Then, taking $\theta\to 1$ in the right hand side, we obtain

(15)
$$\lim \sup_{t \to \infty} \left[1/t^{\gamma} L(t) \right] \Phi_{\beta}(t) \leq \alpha/\mu^{\gamma} \Gamma(\gamma + 1),$$

so that combining (14) and (15),

(16)
$$\lim_{t\to\infty} \left[1/t^{\gamma}L(t)\right]\Phi_{\beta}(t) = \alpha/\mu^{\gamma}\Gamma(\gamma+1).$$

Now under the condition $E|X^-|^{m+2} < \infty$ we certainly have for all $x, -\infty < x < \infty$, $\sum n^m H_n(x) < \infty$ in view of Theorem A of Heyde [4] and the inequality $H_n(x) \leq F_n(x)$. Hence, $\sum a_n H_n(x) < \infty$, since the sequence $\{a_n\}$ has index $k \leq m$. Write

(17)
$$\sum_{n=1}^{\infty} a_n H_n(x) = \Phi_{\beta}(x) + \Psi_{\beta}(x),$$

where

(18)
$$\Psi_{\beta}(x) = \sum_{n=1}^{\infty} a_n H_n(x) \{1 - U(x - n\beta)\}.$$

We shall go on to show that $\Psi_{\beta}(x)/x^{\gamma}L(x) \to 0$ as $x \to \infty$.

Define a new sequence of random variables Y_i , $i = 1, 2, 3, \cdots$ by

$$Y_i = X_i - \beta$$
.

Then, EY > 0 and $E|Y^{-}|^{m+2} < \infty$ since $E|X^{-}|^{m+2} < \infty$. It follows from Theorem A of [4] applied to the Y's that for $k \leq m$, $\sum n^k F_n(n\beta) < \infty$, and since $H_n(n\beta) \leq F_n(n\beta)$,

(19)
$$\sum n^k H_n(n\beta) < \infty.$$

Also, it is clear from (18) that $\Psi_{\beta}(x) \leq \sum_{n=1}^{\infty} a_n H_n(n\beta)$ and (19) ensures that this upper bound is finite since k is the index of the sequence $\{a_n\}$. We therefore have $\Psi_{\beta}(x)/x^{\gamma}L(x) \to 0$ as $x \to \infty$ and hence, using (16) and (17),

$$\sum_{n=1}^{\infty} a_n H_n(x) \sim [\alpha L(x)/\Gamma(1+\gamma)](x/\mu)^{\gamma} \quad \text{as} \quad x \to \infty.$$

This result is true for all sequences $\{a_n\}$ with index $k \leq m$ and hence establishes the sufficiency parts of both Theorems 1 and 2.

The necessity parts of both the theorems are easy to establish. It suffices to

note that in particular $\sum n^m H_n(x) < \infty$ for all $x, -\infty < x < \infty$, and hence by Theorem A of [4] in the case $H_n(x) = F_n(x)$ we obtain $E|X^-|^{m+2} < \infty$ and by Theorem A of [4] together with the well known inequality $G_n(0) = \Pr(M_n \le 0) \ge n^{-1} \Pr(S_n \le 0)$ in the case $H_n(x) = G_n(x)$ we obtain $E|X^-|^{m+1} < \infty$. This completes the proof of both Theorems 1 and 2.

Some remarks on the possibility that the condition $E|X^-|^{m+1} < \infty$ might be both necessary and sufficient in Theorem 2 would seem in order. To establish that this is the case, it would be adequate to show that if $EX = \mu > 0$ and $E|X^-|^{k+1} < \infty$, then for $0 < \beta < \mu$,

$$\sum n^k G_n(n\beta) = \sum n^k \Pr(M_n \le n\beta) < \infty.$$

The nearest approach to this that I have obtained is summarized in the following theorem:

THEOREM 3. Suppose $E|X| < \infty$, EX > 0, Pr(X < 0) > 0, and let k be a non-negative integer. A necessary and sufficient condition for the convergence of the series

$$\sum_{n=1}^{\infty} n^k \Pr (M_n \leq x), \quad -\infty < x < \infty,$$

is that $E|X^-|^{k+1} < \infty$.

PROOF. It follows from the work of Heyde [4] that a necessary and sufficient condition for the convergence of the series $\sum n^k \Pr\left(M_n \leq 0\right)$ is that $E|X^-|^{k+1} < \infty$. Therefore, in order to complete the proof it is only necessary to show that the convergence of $\sum n^k \Pr\left(M_n \leq 0\right)$ implies that of $\sum n^k \Pr\left(M_n \leq x\right)$, $0 < x < \infty$.

To accomplish this we define a new sequence of random variables:

$$N_0=S_0=0,$$

$$N_1 = \max(S_0, S_1) = X_1^+,$$

$$N_2 = \max(S_0, S_1, S_2) = (X_1 + X_2^+)^+,$$

$$N_n = \max(S_0, S_1, S_2, \dots, S_n) = (X_1 + (X_2 + \dots + (X_{n-1} + X_n^+)^+ \dots)^+$$

Since the X_i are independent and identically distributed we may write $N_0 = 0$, $N_{n+1} \sim (X + N_n)^+$, $n \ge 1$, where for two random variables X and Y, we write $X \sim Y$ if they have the same distribution. Clearly, $N_n = M_n^+ = \max(0, M_n)$, so that

$$Pr(N_n \le x) = Pr(M_n \le x), \quad x > 0,$$

$$Pr(N_n = 0) = Pr(M_n \le 0).$$

Now for A > 0, $n \ge 1$, we have

$$Pr(M_{n+1} \le A) = \int_{-\infty}^{A} Pr(M_n \le A - y) d Pr(X \le y)$$

so that for arbitrary B > 0,

$$\sum_{n=1}^{N} n^{\alpha} \Pr (M_{n+1} \leq A) = \int_{-\infty}^{A} \left\{ \sum_{n=1}^{N} n^{\alpha} \Pr (M_{n} \leq A - y) \right\} d \Pr (X \leq y)$$

$$\geq \int_{-\infty}^{-B} \left\{ \sum_{n=1}^{N} n^{\alpha} \Pr (M_{n} \leq A - y) \right\} d \Pr (X \leq y)$$

$$\geq \left\{ \sum_{n=1}^{N} n^{\alpha} \Pr (M_{n} \leq A + B) \right\} \Pr (X \leq -B).$$

Then, choosing B so that $\Pr(X \leq -B) > 0$, we see that if $\sum n^{\alpha} \Pr(M_n \leq A)$ converges then $\sum n^{\alpha} \Pr(M_n \leq A + B)$ converges. Let $A \to 0+$; we see that the convergence of $\sum n^{\alpha} \Pr(M_n \leq 0)$ implies that of $\sum n^{\alpha} \Pr(M_n \leq rB)$ for all positive integral r and hence that of $\sum n^{\alpha} \Pr(M_n \leq rB)$ for all x, $0 < x < \infty$. This completes the proof of the theorem.

The restriction to non-negative integral k in Theorem 3 is unfortunate. This comes about from the use of the derivatives of the generating function

$$\sum_{n=0}^{\infty} \Pr(M_n \leq 0) t^n = \exp \{ \sum_{n=1}^{\infty} n^{-1} t^n \Pr(S_n \leq 0) \}$$

in [4].

We now go on to consider coefficient sequences of the form $a_n = e^{rn}$, r > 0, and shall establish the following two theorems:

THEOREM 4. Suppose $E|X| < \infty$, $EX = \mu > 0$. In order that

$$\sum_{n=1}^{\infty} e^{rn} \Pr (S_n \leq x) \sim r^{-1} e^{xr\mu^{-1}} \quad as \quad x \to \infty$$

for any r in some interval 0 < r < R, it is necessary and sufficient that X^- should have an analytic characteristic function.

(The term "analytic characteristic function" is used for a characteristic function which is analytic in a strip containing the origin as an interior point.)

THEOREM 5. Suppose $E|X| < \infty$, $EX = \mu > 0$. In order that

$$\sum_{n=1}^{\infty} e^{rn} \Pr (M_n \leq x) \sim r^{-1} e^{xr\mu^{-1}} \quad as \quad x \to \infty$$

for any r in some interval 0 < r < R, it is necessary and sufficient that X^- should have an analytic characteristic function.

The proofs of these theorems, of course, follow markedly similar lines to the proofs of Theorems 1 and 2. A generalized coefficient sequence form along the lines of Theorems 1 and 2 is not, however, convenient in this case.

PROOF OF THEOREMS 4 AND 5. We construct the proofs in parallel fashion as we did with Theorems 1 and 2.

Suppose X has an analytic characteristic function. Take β arbitrary with $0 < \beta < \mu$. We consider to begin with

$$K_n = \int_{n\beta}^{n\mu} e^{-sx} H_n(x) dx \qquad (s > 0)$$

$$\leq n e^{-n\beta s} \int_{\beta}^{\mu} H_n(nx) dx$$

$$= n e^{-n\beta s} (\mu - \beta) H_n(n\xi)$$

for some $\xi = \xi(n)$ in $\beta < \xi < \mu$. $(X - \xi)^-$ has an analytic characteristic function and $E(X - \xi) > 0$. It follows from Theorem B of [4] and the inequality

 $H_m \leq F_m$ that for any r in some interval 0 < r < R,

$$\sum e^{rm} H_m(m\xi) < \infty,$$

and hence, considering the totality of series (20) as n varies,

(21)
$$H_n(n\xi) = o(e^{-rn}) \quad \text{as} \quad n \to \infty.$$

Therefore,

$$\sum_{n=1}^{\infty} e^{rn} K_n \leq (\mu - \beta) \sum_{n=1}^{\infty} n e^{-n\beta s} H_n(n\xi) e^{rn}$$

$$< \infty \quad \text{as} \quad s \to \mu^{-1} r +$$

in view of (21) and so

(22)
$$\lim_{s\to\mu^{-1}r+} (s-\mu^{-1}r) \sum_{n=1}^{\infty} e^{rn} K_n = 0.$$

Next consider

$$L_n = \int_{n\mu}^{\infty} e^{-sx} \{1 - H_n(x)\} dx \qquad (s > 0).$$

Using the mean value theorem and the fact that $H_n(nx) \to 1$ as $n \to \infty$ for $x > \mu$, we may write

$$L_n = \delta_n \int_{n\mu}^{\infty} e^{-sx} dx = \delta_n s^{-1} e^{-n\mu s},$$

where $\delta_n > 0$ and $\delta_n \to 0$ as $n \to \infty$ uniformly in s > 0. Now given arbitrary $\epsilon > 0$ we can choose an integer $n_0(\epsilon)$ so large that $\delta_n < \epsilon$ for all $n > n_0$. Then, for $s > \mu^{-1}r$,

$$\sum_{n=1}^{\infty} e^{rn} L_n = s^{-1} \sum_{n=1}^{\infty} \delta_n e^{-n\mu(s-\mu^{-1}r)}$$

$$< s^{-1} \sum_{n=1}^{n_0} \delta_n e^{-n\mu(s-\mu^{-1}r)} + \epsilon s^{-1} \sum_{n=1}^{\infty} e^{-n\mu(s-\mu^{-1}r)},$$

and since for $s > \mu^{-1}r$,

$$\sum_{n=1}^{\infty} e^{-n\mu(s-\mu^{-1}r)} = e^{-\mu(s-\mu^{-1}r)}/(1 - e^{-\mu(s-\mu^{-1}r)}) \sim 1/\mu(s-\mu^{-1}r) \quad \text{as} \quad s \to \mu^{-1}r+,$$
 it follows that

(23)
$$\lim_{s\to\mu^{-1}r+} (s-\mu^{-1}r) \sum_{n=1}^{\infty} e^{rn} L_n = 0,$$

so that combining (22) and (23),

(24)
$$\lim_{s\to\mu^{-1}r_{+}} (s-\mu^{-1}r) \sum_{n=1}^{\infty} e^{rn} (L_{n}-K_{n}) = 0.$$

Now consider the function

$$\Phi_{\beta}(x) = \sum_{n=1}^{\infty} e^{rn} H_n(x) U(x - n\beta)
= \sum_{n=1}^{\infty} e^{rn} U(x - n\mu) - \sum_{n=1}^{\infty} e^{rn} \{ U(x - n\mu) - H_n(x) \} U(x - n\beta).$$

Taking Laplace transforms, we have

$$\Phi_{\beta}^{0}(s) = s^{-1} \sum_{n=1}^{\infty} e^{-n\mu(s-\mu^{-1}r)} - \sum_{n=1}^{\infty} e^{rn} (L_{n} - K_{n}),$$

from which it follows, using (24), that $(s - \mu^{-1}r)\Phi_{\beta}^{0}(s) \to r^{-1}$ as $s \to \mu^{-1}r + .$ Now let

(25)
$$\Theta_{\beta}^{0}(s-\mu^{-1}r)=\Phi_{\beta}^{0}(s);$$

we have $w\Theta_{\beta}^{0}(w) \to r^{-1}$ as $w \to 0+$, and appealing to a Tauberian theorem of Widder [7], Theorem 4.3, 192, we obtain

(26)
$$t^{-1} \int_0^t \Theta_{\beta}(x) \ dx \to r^{-1} \quad \text{as} \quad t \to \infty.$$

Then, following through exactly the analysis that we used in the case of Theorems 1 and 2 (we are here dealing with the case $\gamma = 0$, L(t) = 1, $\alpha \mu^{-\gamma} [\Gamma(\gamma + 2)]^{-1} = r^{-1}$) we find from (26) that

(27)
$$\lim_{t\to\infty}\Theta_{\beta}(t) = r^{-1}.$$

However, using (25) and the uniqueness theorem for Laplace transformations, $\Theta_{\beta}(t) = e^{-r\mu^{-1}t}\Phi_{\beta}(t)$, so that (27) gives

(28)
$$\lim_{t\to\infty} e^{-r\mu^{-1}t} \Phi_{\beta}(t) = r^{-1}.$$

Now write

(29)
$$\sum_{n=1}^{\infty} e^{rn} H_n(x) = \Phi_{\beta}(x) + \Psi_{\beta}(x),$$

where

$$\Psi_{\beta}(x) = \sum_{n=1}^{\infty} e^{rn} H_n(x) \{ 1 - U(x - n\beta) \},$$

 $\sum e^{rn}H_n(x)$ being finite for r in 0 < r < R by (20). Also it is clear from (30) and (20) that for all x, $\Psi_{\beta}(x) \leq \sum_{n=1}^{\infty} e^{rn}H_n(n\beta) < \infty$. We therefore have $e^{-r\mu^{-1}x}\Psi_{\beta}(x) \to 0$ as $x \to \infty$, and hence by (28), $\sum_{n=1}^{\infty} e^{rn}H_n(x) \sim r^{-1}e^{r\mu^{-1}x}$ as $x \to \infty$. This establishes the sufficiency parts of Theorems 4 and 5.

The necessity parts of the theorems follow readily from Theorem B of [4]. We have $\sum e^{rn}H_n(x) < \infty$ for all $x, -\infty < x < \infty$ and Theorem B gives the result directly in the case $H_n(x) = F_n(x)$. In the case $H_n(x) = G_n(x)$, we take x > 0 and make use of the well known relations $G_n(x) = \Pr(M_n \le x) \ge \Pr(M_n \le 0)$ $\ge n^{-1}\Pr(S_n \le 0)$. It is clear that the convergence of $\sum e^{rn}\Pr(M_n \le x)$ implies the convergence of $\sum n^{-1}e^{rn}\Pr(S_n \le 0)$ and hence that of $\sum e^{sn}\Pr(S_n \le 0)$ for s < r and making use of Theorem B again we see that X must have an analytic characteristic function. This completes the proofs of both Theorems 4 and 5.

3. Application to a first passage problem. Let X_i , $i=1, 2, 3, \cdots$ be independent and identically distributed random variables with $E|X| < \infty$, $EX = \mu > 0$. Write $S_n = \sum_{i=1}^n X_i$ and $M_n = \max_{1 \le k \le n} S_k$. Consider a single boundary at $x \in [n]$ so that if

$$G_0(x) = 1,$$

 $G_n(x) = \Pr(M_n \le x), \quad n \ge 1,$

the probability p_n that the first passage time, M(x), out of the interval $(-\infty, x]$

for the process S_n is n is given by $p_n = G_{n-1}(x) - G_n(x)$, $n \ge 1$. We introduce the probability generating function $P(\lambda) = \sum_{r=1}^{\infty} \lambda^r p_r$ for the first passage time distribution $Pr(M(x) = n) = p_n$.

Formally differentiating,

$$P^{(1)}(1) = E[M(x)] = 1 + \sum_{r=1}^{\infty} G_r(x),$$

and for k > 1,

$$P^{(k)}(1) = (\alpha)_k$$
 (the kth factorial moment of $M(x)$)
= $k \sum_{r=k-1}^{\infty} (r)_k G_r(x) = \sum_{r=0}^k s(k, r) E\{[M(x)]^r\},$

where $(r)_k = r(r-1)(r-2) \cdots (r-k+1)$ and s(k, r) are the Stirling numbers of the first kind. It is thus clear that $E\{[M(x)]^r\} < \infty$ for some positive integer r if and only if $\sum n^{r-1}G_r(x) < \infty$. Also, the random variable M(x) has an analytic characteristic function if and only if the radius of convergence of $P(\lambda)$ is greater than unity or equivalently if $\sum e^{rn}G_n(x) < \infty$ for some r > 0.

As a particular case of Theorem 2 we obtain for integral $k \ge 1$,

$$kx^{-k} \sum_{n=1}^{\infty} n^{k-1} G_n(x) \to \mu^{-k}$$
 as $x \to \infty$,

so long as $E|X^{-}|^{k+1} < \infty$. Therefore, in view of the above comments, we see that as $x \to \infty$, $E\{[x^{-1}M(x)]^r\} \to \mu^{-r}$ for integral $r \ge 1$ so long as $E[X^{-1}]^{r+1} < \infty$. (The r = 1 and r = 2 cases are included in the results of [2] and [1] respectively). If $E|X^{-}|^{r} = \infty$ then Theorem 3 shows us that $\sum n^{r-1}G_{n}(x)$ diverges and hence that $E\{[x^{-1}M(x)]'\} = \infty$. If we have the condition that X possesses an analytic characteristic function, then it follows from Theorem B of [4] and the inequality, $\Pr(S_n \leq x) \geq \Pr(M_n \leq x) = G_n(x)$, that M(x) possesses an analytic characteristic function. We have, in fact, for r > 0 sufficiently small,

$$E[e^{rM(x)}] = \sum_{n=1}^{\infty} e^{rn} P_n$$

= $e^r + (e^r - 1) \sum_{n=1}^{\infty} e^{rn} G_n(x)$,

so that by Theorem 5,

$$E[e^{rM(x)}] \sim r^{-1}(e^r - 1)e^{r\mu^{-1}x}$$
 as $x \to \infty$.

The function $r^{-1}(e^r - 1)e^{r\mu^{-1}x}$ is the Laplace-Stieltjes transform of the convolution of a rectangular distribution on the interval (0, 1) and a degenerate distribution at $x\mu^{-1}$. We have therefore obtained the following theorem:

THEOREM 6. Suppose $EX = \mu > 0$. If for some integral $r \ge 1$, $E|X^{-}|^{r+1} < \infty$, then

$$E\{[x^{-1}M(x)]^r\} \rightarrow \mu^{-r} \quad as \quad x \rightarrow \infty.$$

If X⁻ possesses an analytic characteristic function then for r > 0 sufficiently small

$$E[e^{rM(x)}] \sim r^{-1}(e^r - 1)e^{r\mu^{-1}x}$$
 as $x \to \infty$.

One can further use a method due to Doob based on the strong law of large numbers to obtain the following result:

Theorem 7. Suppose $EX = \mu > 0$. Then,

$$x^{-1}M(x) \rightarrow_{a.s.} \mu^{-1}$$
 as $x \rightarrow \infty$.

PROOF. According to the strong law of large numbers, we have for $0 < \epsilon < \mu$ and sufficiently large n, $(\mu - \epsilon)n \leq S_n \leq (\mu + \epsilon)n$ with probability one. In particular, if n = M(x) the left hand side implies $M(x)/x \leq 1/(\mu - \epsilon)$ and if n = M(x) + 1 the right side implies $M(x) + 1 \geq x/(\mu + \epsilon)$. Thus, for large x, $1/(\mu + \epsilon) - 1/x \leq M(x)/x \leq 1/(\mu - \epsilon)$ with probability one. The result follows.

Acknowledgments. I am indebted to J. F. Hannan for a helpful discussion on the subject of Lemma 1 and to Y. S. Chow for the observation which led to Theorem 7.

REFERENCES

- CHOW, Y. S. (1966). On the moments of some one-sided stopping rules. Ann. Math. Statist. 37 382-387.
- [2] Chow, Y. S. and Robbins, H. (1963). A renewal theorem for random variables which are dependent or non-identically distributed. Ann. Math. Statist. 34 390-395.
- [3] DOETSCH, G. (1950). Handbuch der Laplace-Transformation 1. Verlag-Birkhauser, Basel.
- [4] HEYDE, C. C. (1964). Two probability theorems and their application to some first passage problems. J. Austral. Math. Soc. 4 214-222.
- [5] LOÈVE, M. (1960). Probability Theory (2nd edition). Van Nostrand, New York.
- [6] SMITH, W. L. (1964). On the elementary renewal theorem for nonidentically distributed random variables. *Pacific J. Math.* 14 673-699.
- [7] WIDDER, D. V. (1946). The Laplace Transform. Princeton Univ. Press.