SOME RENEWAL THEOREMS WITH APPLICATION TO A FIRST
PASSAGE PROBLEM'

By C. C. Heype

Michigan State University

1, Introduction. Let X;, 7=1, 2, 3, --- be a sequence of independent and
identically distributed random variables with E|X;| < «, EX; = u > 0. Write
X, = —min (0, X), S, = ZLI X: and M, = maxX;<x<» Sk . In this paper we
shall discuss the asymptotic behaviour as z — « of the sums D1 @, Pr (S, < z)
and D m— @, Pr (M, = z) for certain classes of positive coefficient sequences
{a.} and use the results on the latter sums to investigate the behaviour of the
first passage time out of the interval (— «, z] for the process S, as z — .

The analysis that we shall use in obtaining the theorems on asymptotic behav-
iour follows closely on that of Smith [6] who discussed sums Y ney @, Pr (S, =< )
for a class of coefficient sequences that we shall also discuss and for non-identically
distributed random variables. In fact, our Theorem 1 follows directly from a
specialization of the analysis of Smith. One of the particularly interesting charac-
teristics of this technique is that it enables us to study the asymptotic behaviour
of the sums Y n @, Pr (S, = z) and D _nm @, Pr (M, £ ) in the one opera-

tion in spite of essential differences in their behaviour.

2. Renewal theorems. For the first set of positive term coefficient sequences
{a,} that we consider we shall suppose (as in [6]) that there exist real numbers
a > 0, ¥ = 0 and some non-negative function of slow growth L(z) such that

(1) 21" ~ /(1= 2)IL(1 —2)7, as a1
This is satisfied, for example, if
an ~ [a/T(v)In""L(n) as  n— ©

using an Abelian theorem of Doetsch {3], 460.

In the subsequent work we shall need the following definition:

DEFINIEI[“ION. The index k of the sequence {a.} is the least real k such that
a, = 0(n").

Consideration will be restricted to cases where _ a, diverges.

TrEOREM 1. Suppose E|X| < «, EX = p > 0. Let k be the index of the se-
quence {a,} and m be non-negative. In order that

Y20 Pr(Sy < 7) ~ [aL(@)/T(L + v)(@/u)’ a5z @
for each sequence {a.} such that k < m 14t is necessary and sufficient that
ElX—|m+2 < .
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700 C. C. HEYDE

THEOREM 2. Suppose E|X| < o, EX = u > 0. Let k be the index of the se-
quence {a,} and m be non-negative. In order that

> o1, Pr (M, £ 2) ~ [aL(z)/T(1 + v)](z/p)? a5 z— o

for each sequence {a,} such that k < m it is necessary that E|X |™"' < « and
sufficient that E| X |"" < .

I conjecture that the condition E|X|**' < = is both necessary and sufficient
in Theorem 2. It is certainly known that in the particular case where a, = 1
for all n so that k¥ = 0 we only need E|X | < « (see for example Chow and
Robbins [2]).

The proof of the two theorems shall be deferred until we have given four
lemmas. The first of these is given in a form which is'more general than we shall
need subsequently as it has some independent interest.

LemMma 1. Suppose the random variables X;, ¢ = 1, 2, 3, --- are independent
and identically distributed. Write S, = D> i1 X:, M, = maxi<k<n Sk, ond, in
the case where E|Xi| < o, EX; = p. IfE|Xi|" < o with1 S r < 2and u = 0,
then

n—llr(Mn - nﬂ) —a.s. 0.

IfEIXi|" < o with0 < r <1orE|Xy|" < wwithl £r < 2and p <0, then
0 M, —5ps. 0.

(“a.s.” denotes almost sure convergence).

The corresponding almost sure convergence versions for the sums S, have
been given by Kolmogorov (r = 1) and Marcinkiewicz (r % 1) (see for ex-
ample Logve [5] 242, 243).

Proor. Suppose E|Xi|" < o.Letce, = pif 1l £ 7 < 2;¢, =0if0<r < 1.
If ¢, = 0, we have

M, — nc,

MaX1<j<n S; — NC;

= maXi<j<n (Sj - er)

1
< maXi<j<n ] /’a,-,
where a; = 7S, — jc|. Therefore, if M, = nc,, 0 < M, — nc, <
5 . 1
max;<;<nj"a;, and if M, < ne., 0 > M, — ne, = Sp — ne, = —n'a, =

—max;<j<n @ , 80 that 0 < 07| M, — ne| < maxicj<nn 5"a; . In order to
obtain the desired result in this case it suffices to show that for arbitrary ¢ > 0,
Pr (Uis, {maxic; <76 a; = ¢§) >0 as n — o.

Now the strong laws of Kolmogorov and Marcinkiewicz ([5], 242, 243) imply
that for arbitrary ¢ > 0,

Pr (maxjz, a; = €) — 0 as n— o,
Therefore, given n > 0 arbitrarily small we can choose an N so large that

(2) Pr (max;>ya; Z 3¢) < 37
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and then select an no(>N) so large that for n = n,,
(3) Pr (N ™" maxigi<w a; Z $¢) < .
Then, for n = n,,
Pr (Uiz. {maxicj<i ey =€)
= Pr (Uizn {maxig;<n "% a; + maxweisiska; 2 ¢})

1/r

é Pr (ngn {ma,x1§,-§le”k" a; + maxwy<j<k @j % e}

1 —1,
é Pr (N /"n a4 maxXigj<n @j + maXx;>y aj g e)

IIA

Pr (NYrptr maxici<n @ = ¥€) + Pr (maxpwa; = %e)

IIA

uB

using (2) and (3). This completes the proof of this part of the lemma. It remains
to consider the case ¢, < 0.

In the case ¢, < 0, M,,* ='max (0, M,) actually has a proper limiting distribu-
tion (finite with probability one), MT ='lim,., M,".

We have

Pr (Uszn (K710 2 ¢})
=Pr (Ui ("M, = ¢ u Upsn (KM < —¢})
= Pr (Uszn (57M3 2 &) + Pr (Uiza (57M, < —})
< Pr (Uizn (M 2 K74) + Pr (U (Xo S —1"4)
= Pr(M* = n'"e) + Pr (X; £ —n'"e)

and both these terms approach zero as n — o. Therefore, n /"M, —,.,. 0 as
required. This completes the proof of the lemma.

In the subsequent work we shall write F.(z) = Pr (S, £ z), G.(z) =
Pr (M, = z) and H,(z) to mean either F,(x) or G.(z) (so that if a property
holds for both F,(z) and G,(z) it holds for H,(x) and conversely).

Lemma 2. [7 {1 — Hu(nz)} dx — 0asn — .

Proor. Introduce the newrandom variablesY; = max (0, X:),7=1,2,3, ---.
Suppose EY; = a. If M, > x then D 1 ¥ > 50 that Pr (D27 Vi > 2) 2
Pr (M, > z) = Pr (S, > z) and hence

(4) 1—Fo(z) 21— Gu(x) £1— Kau(z),

where we have written K,(z) = Pr (214 Y: < x).
We show firstly that [% {1 — K.(n2)} dv — 0 asn — «. We have, by a simple
integration by parts,

a= [¢ {1 — Ku(nz)} dx
= [§{1 — Ku(nz)} dz + [% {1 — Ku(nz)} da.

Further, by the law of large numbers, K,(nz) — 0 asn — « forz < a. It follows
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from the mean value theorem that [§ {1 — K,(nx)} dz — a asn — « and hence
that [ {1 — Ka(nz)} dx — 0 asn — o.
Then, making use of (4),

0= [P {1l — Fa(na)}dz = [ {1 — Gu(nz)} dae

S [l = Gu(na)} dee + [2 {1 — Kn(nz)} dz.

Now, in view of Lemma 1 (caser = 1, > 0), Go(nx) - 1lasn— o forz > p
so that by the mean value theorem [ {1 — G,(nz)} de — 0 asn — «. We have
shown that f: {1 — K,(nz)} de — 0 asn — o so the proof is complete.

Lemma 3. (Smith [6]). If the non-negative constants {a,} satisfy (1) then as
s — 0+,

Dot G M~ a(us)_“’L(s”“).
LemMma 4. If the non-negative constants {a,} satisfy (1) then as s — 0+,
>t e " ~ a(ps) "'L(s™) if y> 0
lim sups.or S[L(sT)] 7D e 10,6 *" < ap™ if v = 0.

Smith [6] has established the former result, ignoring the possibility of the case
v = 0. The result given above for v = 0 can be readily extracted from Smith’s
proof and is adequate in the present context.

Proor or THEOREMS 1 AND 2. We follow the methods of [6] but work the

proof in terms of H,(x).
Suppose firstly that E|X|""* < «. Take 8 arbitrary with 0 < 8 < p. Con-

sider
0 < K, = [rhe Ha(z) do (s=0)

=n [§ 6" H,(nz) de
< ne ™ [§ Hu(nx) d.

Now using the law of large numbers and the inequality H.(y) = F.(y) (or
alternatively referring to Lemma 1 as well), we see that H,.(nz) — 0 asn — o
for all z < u. Hence, using the mean value theorem, we may write

(5) K. = ne5,/,

where 3, — 0 as n — o, uniformly in s = 0.

Now consider
0= L, = [mue {1 — Hu(x)} dx (s=0)

=n [} ™1 — Hy(nz)} dx
< ne ™ [7 {1 — Hu(nx)} do.
In view of Lemma 2, we may write
(6) L. = ne ™%,

where §,” — 0 asn — oo, uniformly in s = 0.
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Combining (5) and (6) and putting 8, = 8," — 8. , we obtain
(7) Z:=l an(Ln - Kn) = — Z:=1 nw,,&,,e_"ﬂs.

Now given arbitrary e > 0 we can choose an integer no(e) so large that |6, < e
for all » > no . Then,

| Dot Mndne ™| < D omly na|0al6T™ 4 €D mey naE ™,

so that by Lemma 4,

1im supeos [(us) ™ /L(s™)]| 2ont n0nbae ™| < eyaif v > 0
S eify=0
and hence
(8) [(r8)™/L(s ™)X mmt tn(Ln — K,) =0 as s— 0-+.
Next write

(9) @(z) = X no1auHa(z)U(z — nB)
= Y0 Uz — mp) — Yo 6u{U(z — np) — Ha(2)} Uz — nB)
where
U(z) = 1, z =0,
= 0, z < 0.

If we denote the Laplace transform of a function 4 (z) by A°(s) = [7 ¢ “A(x) da
we have

(10) Qﬂo(s) = s_IZ:=1 ane_m“ - Z:=1 an(Ln - Kn);

the term by term integration being justified by monotone convergence.
From (8), (10) and Lemma 3 it follows that

(11) [(#s)wl/L(s_l)]‘I’po(s) —au as §s— 04.
Appealing to a Tauberian theorem of Doetsch [3], 511, we then obtain
(12) [1/07L(1)] [e®s(x) dw — o/wT(y + 2).

Now fort > 0and 0 < 0 < 1,
Bs(0t) (t — 0t) < [5.Bp(x) dx < Bp(2) (¢ — 61)
so that
[1/£L(8)12s(0t) < [1/(1 — ON[L/L(2)] [1%p(x) da
— [/07L(8)] 3 () da} < [1/£L(2)10a(t).

Then, for fixed 6 and ¢ — o, [L/{"L(t)] [(®8s(2) dz — o/u'T(y + 2),
[1/(68)™L(0)] [o* ®a(x) dz — [1/(08)™ L (6t)] [§'Bp(z) dx — o/u'T(y + 2) by
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(12) so that
(1) lim supeo [1/8'L(8)}26(68) < [o/w'T (v + 2)I(1 — 6™)/(1 — 6)
< lim inf,,e [1/0"L(t)]1®s(¢).
Taking 8 — 1 in the right hand part of inequality (13) gives
(14) lim inf,,, [1/¢"L(t)]®s(t) = a/w'T(y + 1).
Further, the left hand part of the inequality (13) can be written
lim supe. [1/(68)"L(60)185(6) < [—6a/w'T(v + 2)I(1 — 6 7)/(1 — 6)

and the left hand side of this is equal to lim sup... [1/2"L()}®s(t) for 6 fixed.
Then, taking § — 1 in the right hand side, we obtain

(15) lim Supe.e [1/8"L(¢)185(t) < o/wW'T(y + 1),
s0 that combining (14) and (15),
(16) lime,e [1/¢7L(2)18s(t) = a/w'T(y + 1).

Now under the condition E|X |"** < « we certainly have for all z, — o <
< o,y n"H,(z) < « in view of Theorem A of Heyde [4] and the inequality
H,(z) £ F.(z). Hence, ) a,H,(z) < o, since the sequence {a,} has index
k = m. Write

(17) Z::=l aan<x) = q>ﬁ<x) + \I,ﬂ(x)y
where
(18) Vp(x) = D _am1 @uHa(z){1 — U(z — nB)}.

We shall go on to show that ¥s(z)/2"L(z) > 0asxz — .
Define a new sequence of random variables Y:,7 = 1,2, 3, --- by
Y.' = Xi - ﬁ.
Then, EY > 0 and E|Y|"** < = since E|X|""* < o. It follows from Theorem
A of [4] applied to the Y’s that for k < m, D n*F,(n8) < o, and since H,(n8) <
Fn(nB),
(19) 2 n*Ha(nB) < .
Also, it is clear from (18) that Ws(z) < D_n-1 @.H.(nB8) and (19) ensures that
this upper bound is finite since k is the index of the sequence {a.}. We therefore
have ¥g(x)/2"L(x) — 0 as x —  and hence, using (16) and (17),
2 n-1 G, Ho(2) ~ [aL(z)/T(1 + v))(z/u)” a8 z— o.

This result is true for all sequences {a,} with index ¥ < m and hence establishes
the sufficiency parts of both Theorems 1 and 2.
The necessity parts of both the theorems are easy to establish. It suffices to



RENEWAL THEOREMS AND FIRST PASSAGE 705

note that in particular D> n"H,(z) < « forallz, —» < 2 < «, and hence by
Theorem A of [4] in the case H,(z) = F,(z) we obtain E|X |"** < « and by
Theorem A of [4] together with the well known inequality G.(0) = Pr (M, < 0)
> 7" Pr (S, £ 0) in the case H,(z) = G.(z) we obtain E|X |"" < . This
completes the proof of both Theorems 1 and 2.

Some remarks on the possibility that the condition E|X~|""' < o might be
both necessary and sufficient in Theorem 2 would seem in order. To establish
that this is the case, it would be adequate to show that if EX = p > 0 and
E|X " < o, thenfor0 < 8 < u,

2 nfGu(nB) = D2 n"Pr (M, £ nB) < .

The nearest approach to this that I have obtained is summarized in the following

theorem:

TueorEM 3. Suppose E|X| < o, EX > 0,Pr(X < 0) > 0, and let k be a
non-negative integer. A mecessary and sufficient condition for the convergence of
the series

Saan*Pr(M,£z2), —o <z< o,
isthat B| X~ " < .

Proor. It follows from the work of Heyde [4] that a necessary and sufficient
condition for the convergence of theseries D, n*Pr (M, = 0) is that
E|X "™ < «. Therefore, in order to complete the proof it is only necessary to
show that the convergence of Y n* Pr (M, < 0) implies that of ), n* Pr (M, < z),

0<z< .
To accomplish this we define a new sequence of random variables:

No = So = 0,
N: = max (S, 81) = X1,
N: = max (S, 81, 8) = (X1 + X:5),

ma‘x(SO’SI,S2,"';S'n) = (X1+(X2+ +(Xn..1+X,.+)+---)+

N.
Since the X; are independent and identically distributed we may write No = 0,
Npp~ (X 4+ N,)*, n = 1, where for two random variables X and Y, we write

X ~ Y if they have the same distribution. Clearly, N, = M," = max (0, M,),
so that

Pr(N, £ z) = Pr (M, £ z), z >0,
Pr (N, =0) = Pr (M, =0).
Now for A > 0, n = 1, we have

Pr(Mppn £ A) = [2.Pr (M, < A — y)dPr(X £ y)
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so that for arbitrary B > 0,
S¥ 0 Pr (Mpn £ A) = [2a (D Nan Pr(M, = A — y)}dPr (X £ y)
SN n*Pr(M, £ A — y)}dPr(X £y)
= {Dan“Pr(M, £ A + B)}Pr(X £ —B).

Then, choosing B so that Pr (X < —B) > 0, we see that if > n*Pr (M, < A)
converges then Y, n*Pr (M, < A + B) converges. Let A — 0+-; we see that
the convergence of Y, n*Pr (M, =< 0) implies that of > n*Pr (M, < rB)
for all positive integral r and hence that of > n*Pr (M, £ z) for all z,
0 < z < . This completes the proof of the theorem._

The restriction to non-negative integral k in Theorem 3 is unfortunate. This
comes about from the use of the derivatives of the generating function

SaoPr (M, < 0)" = exp {Dnan " Pr(S. = 0)}

(\%

in [4].

We now go on to consider coefficient sequences of the form a, = €™, r > 0,
and shall establish the following two theorems:

THEOREM 4. Suppose E|X| < «, EX = p > 0. In order that

S2 e Pr(S, £ 7) ~ 1™ a5 z— o

for any r in some interval 0 < r < R, it is necessary and sufficient that X~ should
have an analytic characteristic function.
(The term “analytic characteristic function” is used for a characteristic func-
tion which is analytic in a strip containing the origin as an interior point.)
THEOREM 5. Suppose E|X| < «, EX = p > 0. In order that

St Pr(M, S 3) ~r ™ as o

for any r in some interval 0 < r < R, it s necessary and sufficient that X should
have an analytic characteristic function.

The proofs of these theorems, of course, follow markedly similar lines to the
proofs of Theorems 1 and 2. A generalized coefficient sequence form along the
lines of Theorems 1 and 2 is not, however, convenient in this case.

Proor oF THEOREMS 4 AND 5. We construct the proofs in parallel fashion as

we did with Theorems 1 and 2.
Suppose X~ has an analytic characteristic function. Take 8 arbitrary with

0 < B < u. We consider to begin with

K., = [nhe “Ha(x) d (s>0)
ne ™ [§ H,(nz) dx
ne " (u — B)Ha(nk)

Al

Ii

for some £ = £(n) in 8 < £ < u. (X — £)” has an analytic characteristic func-
tion and E(X — &) > 0. It follows from Theorem B of [4] and the inequality
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H,, < F, that for any r in some interval 0 < r < R,

(20) 2 " Ha(mg) < oo,

and hence, considering the totality of series (20) as n varies,
(21) H.,(ng) = o(e™) as n— o.
Therefore,

ne1€"Ka < (u — B) Znaane P Ha(nE)e™
< o as §—u r+
in view of (21) and so .
(22) limgop=t1ry (8 — p77) D mm1 €K, = 0.
Next consider
Ly = [m e {1 — Hu(x)} dzx (s > 0).

Using the mean value theorem and the fact that H,(nz) — 1 as n — « for
x > u, We may write

Ly = 8, [nu€ ™ dx = 8,8 ¢ ™,
where 8, > 0 and 8§, — 0 as n — oo uniformly in s > 0. Now given arbitrary

¢ > 0 we can choose an integer no(e) so large that 6, < e for all n > no. Then,
for s > u'r,
,.=1 e"'L lZw_l 5 6 (el
Z”=1 £ —np(e—p~1r) + e IZn—— e—ms(s—u"’r),
and since for s > p'r,
:.o=1 e—nu(s—u"r) - e—n(s—ﬂ“r)/(l _ e—u(s—u“r)) ~1/p(s— ”—lr) as s— #—lr+’

it follows that

(23) limyap=try (8 = p77) D me1€™Ly = 0,
so that combining (22) and (23),
(24) limaap=try (8 — p77) Dom=1€™(Ln — K,) = 0.

Now consider the function
®p(x) = D na € Ha(z)U(z — nB)
= 2 d"U(z — np) — 2 7™ U(z — np) — Ha(2)}U(z — np).
Taking Laplace transforms, we have

B(s) = s Y e S ™ (La — Ka),
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from which it follows, using (24), that (s — u 'r)®"(s) — r ' as s — u'r+. Now
let

(25) Op'(s — u'r) = &'(s);

we have w®g’ (w) — 7 as w — 04, and appealing to a Tauberian theorem of
Widder [7], Theorem 4.3, 192, we obtain

(26) ! fé Op(x)dz— 1" as t— o,

Then, following through exactly the analysis that we used in the case of Theorems
1 and 2 (we are here dealing with the casey = 0, L(t) = 1, ap "[T'(y + 2)] 7 = +7)
we find from (26) that

(27) limy,. Op(t) = r

However, usi_r}g (25) and the uniqueness theorem for Laplace transformations,
Oa(t) = ¢ ™ ‘By(t), so that (27) gives

(28) limy,. 6™ "®(t) = v
Now write :
(29) 2n-1 € Ha(x) = ®p(z) + ¥p(2),
where
(30) Vg(z) = 2 nm1 €"Ha(z){1 — Uz — nB)},

> €™H,(x) being finite for rin 0 < r < R by (20). Also it is clear from (30) and
(20) that for all z, We(x) =< D ma€"H.(nB) < . We therefore have
¢ Wy(z) — 0 as © — », and hence by (28), D1 ¢ Ha(z) ~ ¢ ' as
x — . This establishes the sufficiency parts of Theorems 4 and 5.

The necessity parts of the theorems follow readily from Theorem B of [4]. We
have Y ¢"H,(z) < » forallz, —o < 2 < « and Theorem B gives the result
directly in the case H,(z) = F,(x). In the case H,(z) = G.(z), we takez > 0
and make use of the well known relations G,.(z) = Pr (M, < z) = Pr (M, £ 0)
= 7' Pr (S, £ 0). It is clear that the convergence of Y e¢™Pr (M, £ x)
implies the convergence of Y n '¢"Pr(S, =< 0) and hence that of
> €™ Pr (S, £ 0) for s < r and making use of Theorem B again we see that
X~ must have an analytic characteristic function. This completes the proofs of

both Theorems 4 and 5.

3. Application to a first passage problem. Let X;, ¢=1, 2, 3, - - - be inde-
pendent and identically distributed random variables with E |X| < oo,
EX = p > 0. Write S, = 2 71 X; and M,, = maxi<xz<. S . Consider a single
boundary at x (=0) so that if

Go(:l)) = 1,
G.(z) = Pr (M, £ z), nzl,
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the probability p, that the first passage time, M (z), out of the interval (— o, ]
for the process S, is n is given by p, = Gra(z) — Ga(z),n = 1.
We introduce the probability generating function P(\) > w1 N'p, for the
first passage time distribution Pr (M (z) = n) = p, .
Formally differentiating,

PP(1) = EIM(2)] = 1 + 27 Gi(2),
and for k > 1,
P(k)(l)

(a)r (the kth factorial moment of M(zx))
=k 2o (1iGr(z) = 20 s(k, 1) B{IM(2)]'},

where (r)y = r(r — 1)(r — 2) «-- (r — k + 1) and s(k, r) are the Stirling

numbers of the first kind. It is thus clear that E{{M (z)]"} < o« for some positive

integer  if and only if D n"'G,(z) < «. Also, the random variable M (z) has

an analytic characteristic function if and only if the radius of convergence of

P(\) is greater than unity or equivalently if Y ¢™Gn(z) < o« for some r > 0.
As a particular case of Theorem 2 we obtain for integral &k = 1,

k™ > aa n"—lG,.(x) N as T— o,

so long as E | X |**' < o. Therefore, in view of the above comments, we see
that as z — o, E{[x "M (x)]"} — p " for integral » = 1 solongas E |[X | < .
(Ther = 1 and r = 2 cases are included in the results of [2] and [1] respectively).
If E|X|" = » then Theorem 3 shows us that Y n"G,(z) diverges and hence
that E{[z "M (z)]'} = . If we have the condition that X~ possesses an analytic
characteristic function, then it follows from Theorem B of [4] and the inequality,
Pr (S, £ z) = Pr (M, £ z) = G.(x), that M(z) possesses an analytic charac-
teristic function. We have, in fact, for r > 0 sufficiently small,

E[erM(x)] = Z:=1 e”‘Pn
¢ + (6' - 1) Z::-l emGn(x),

so that by Theorem 5,
E[e"®) ~ 71 (¢ — 1)e* ® a5 z— .
The function (¢’ — 1)e™ * is the Laplace-Stieltjes transform of the con-
volution of a rectangular distribution on the interval (0, 1) and a degenerate
distribution at zu~". We have therefore obtained the following theorem:
THEOREM 6. Suppose EX = u > 0. If for some integral r = 1, E | X | < o,
then

E{lz"'M ()]} = u" as T — .
If X~ possesses an analytic characteristic function then for r > 0 sufficiently small

Ele™®] ~r e — 1)é* ™  as 1 .
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One can further use a method due to Doob based on the strong law of large
numbers to obtain the following result:
TuroreM 7. Suppose EX = u > 0. Then,

T M(z) —ae. a5 T ®.

Proor. According to the strong law of large numbers, we have for 0 < e < u and
sufficiently large n, (u — €)n < S» £ (p + €)n with probability one. In particu-
lar, if » = M(xz) the left hand side implies M(z)/x = 1/(x — ¢) and if
n = M(z) + 1 the right side implies M(z) + 1 = z/(u + ¢). Thus, for large
z,1/(p 4+ € — 1/z £ M(z)/z £ 1/(p — €) with probability one. The result
follows.

Acknowledgments. I am indebted to J. F. Hannan for a helpful discussion on
the subject of Lemma 1 and to Y. S. Chow for the observation which led to
Theorem 7.
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