ON A THEOREM OF CRAMER AND LEADBETTER!

By N. DoNaLp YLVISAKER

University of Washington

1. Introduction. In a recent paper [1], Cramér and Leadbetter have given an
integral formula for the kth factorial moment of the number of upcrossings of
the zero level by a stationary Gaussian process in unit time. More specifically,
suppose X (- ) is such a process and that X'(-) exists and has continuous sample
paths. If N is the number of upcrossings of zero by X (- ), there is a positive func-
tion f defined on the unit cube © in k-space and dependent on the joint densities of
X(-) and X'(-) for which EN(N — 1) --- (N — k + 1) = [of du, p Lebesgue
measure. From this result, one may also give expression to the kth factorial
moment of the number of zeros of X(-).

A second fact is established in [1], viz., [ofdu S EN(N — 1) --- (N —k+ 1)
even if X'(-) has discontinuous sample paths. Consequently, the formula still
holds provided f is not integrable. At present, the relationship between (a) f in-
tegrable and (b) X’(-) has continuous sample paths is not known.

In this paper we find for quite general processes, a particular submartingale
(relative to the Lebesgue measure space) sequence {f,} of functions on @ for
which fn lim inff, du £ EN(N — 1) --- (N — k + 1). Under suitable con-
ditions, f, —a.s.fand [ofdu = EN(N — 1) --- (N — k + 1). As a special case,
this is shown to hold for the processes of [1] without the continuity restriction on
X'(-) (to achieve this, X(-) is subjected to a nondegeneracy requirement also
required in [1]).

2. Moments of upcrossings. Let X(-) be a separable stochastic process on the
unit interval. We assume throughout that X (¢) has a continuous distribution for
each ¢ ¢ [0, 1] and that X(-) has continuous sample paths with probability 1.

The number N of upcrossings of zero by the process X () is approximated by
counting those of a polygonal process tied to X(-) at points of the form ¢/ 2",
Specifically, let U,: be the indicator of the event {X[(7 — 1)/2"] < 0 < X (¢/2")}.
Under the above assumptions, ), Uniy -+ Uniyy T N(N — 1) -+ (N — k+ 1)
a.s., where Y’ denotes summation over all appropriatei = (41, - -+ , %) having
distinet entries (cf [1]). Then, according to the monotone convergence theorem,

(1) EN(N —1) -+ (N — k+ 1) = limpe 2. P{X[(s1 — 1)/2]
<0< X3i/2"), -+, Xl(% — 1)/2"] < 0 < X(i/2")}.

We will subsequently consider as an auxiliary probability space the unit cube
Q in k-space, together with the Lebesgue measurable subsets and Lebesgue meas-
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ure . In this context, let f, be a function defined a.s. on by
fa(t) = 2"P{X[(s — 1)/2"] < 0 < X(a1/2"), -+ , X[(4 — 1)/2"]
<0< X(w/2")} if t=(t,---,%) and
(2) (7 — 1)/2" < t; < /2", t; distinet, j=1,---,k,
fa®) =0 if t= (ts,---,8%) and (3 — 1)/2" < t; < 1;/2",
Jj=1,---,k i; not all distinct.
In particular, f,(t) = 0if 4; = 4. + 1 for some 7 and m. (1) and (2) together
imply
22 P{X[(i — 1)/2"] .
(3) <0< X(1/2%), -+, X[(% — 1)/2"] < 0 < X(3:/2")}
= fofadu TEN(N — 1) -« (N — k + 1).
Furthermore, if f denotes lim inf f, , we have
(4) fafdu S EN(N — 1) - (N — & + 1).

By making suitable assumptions, f will be the a.s. limit of the f, . Indeed, it will
be seen that {f,} forms a submartingale and the a.s. existence of the limit will
follow from the martingale convergence theorem if EN(N — 1) --- (N —k + 1)
is assumed finite. More to the point, a dominated assumption placed on the
fa will ensure that f, —...f and that equality holds in (4) whether
EN(N—1):+- (N — k+ 1) is finite or not.

LeMMA. Let C = {t = (1, -+ , &) l (G, —1)/2" <t <4;/2"5=1,2,--- , k}
for some choice of 51, -+ , 4 , then [cfudu < [¢for1 dp.

Proor. From the definition of f, and the remark immediately below it, the
only case to be checked has |i; — 7.| > 1 for j # m. Clearly,

[cfadp = P{X[(5 — 1)/27
<0 < X(i/2"), -+, Xl(G — 1)/2] < 0 < X(ia/2"))
= P(Unil e Uni'], = 1)’

Returning to the definition of U, , it can be seen generally that U,: = 1 implies
Unir,2i1 + Uny,0: = 1 a.s. and that Uny1,20-1° Unya,2s = 0. Therefore,

P[Uno'l M Unik = 1] é P[( Un+l,2€1—l + Un+l,2€1) e (Un+l,20'k—l + Un+1,29‘k) = 1]
= P[E* Un+1,rl e Un+1.r],, = 1]
= E* P[Un+l,rl e Un+1,rk = 1]

where Y * denotes summation over all terms obtained by settirg r; = 2¢; — 1 or
ri= 2,5 =1,k Now PlUni1s, *** Unis = 1] = [ fasr du with
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Cc=f{t= (b, -, )| (;—0/2"" < t; <r/2" j=1,---,k so
Z* P[Un-(-l.r; ce Un+1.rk = 1] = Z* fcrfn+1 dl-‘ = J‘U*Crfn+l dl‘ = fon+l dlu'
and the lemma is proved.

We have established then that {f.} forms a submartingale. To account for
those situations in which EN(N — 1) --- (N — k + 1) is infinite and equality
still holds in (4), the following appears to be most useful.

TraEOREM. If foreach e > 0,f, S geomA.={t = (i, -+, 4) ||t — 4] = ¢,
t # j} with g integrable, then f, —,... fand EN(N — 1) --- (N —k + 1) =
fn f du, finite or not.

Proor. Let B, = {t = (4, -+, &) | (4 — 1)/2" < ¢; < 7;/2" for some
i= (41, ,%),|t; — im| > 1,7 5 m}. The sequence {f,+.I5,} is a submartingale
sequence in r = O for each fixed n and I, T 1 a.s. as'n — «. For each fixed n,
the sequence {f.ir[5,} is dominated by an integrable function (B, C As-») and
hence there is a function f on Q@ for which f, —... f and f 8y frar du — an fdu
as r — . Using the submartingale property,

Jafudu = [o,fudp < [n,farrdu — [5,fdp < fof dp
so that

and the conclusion follows.

Before turning to normal processes, suppose for the moment that the random
variables X[(4y — 1)/27], - -+, X[(4 — 1)/2"], 2*{X(21/2") — X[(a — 1)/27]},
cee M X (4/27) — X[(4r — 1)/2"]} have a 2k-dimensional continuous density
function for each choice of n, 41, «++ , @, [t; — @m| > 1,7 5 m.If p,, denotes
this density for t = (&, ---, &), (4; — 1)/2" < t; < 4;/2",7 =1, ---, k, then
(ef [1]),

fn(t) = 2"" f: “ee f;o dyl coe dyk fgz—,,“ e fg2_”ﬂk
(5) D@1y o0, T, Yy v, Yi) Ay - d

= J': cee f:yl e ykpn.t(oln, "',okn,yly o ’yk)dyl e dyk,
-2 < 04 <0, =1, -+, k.

3. Gaussian processes. Let X(-) be a stationary Gaussian process with mean
function zero and a spectral distribution function having an absolutely con-
tinuous part so that (5) holds. It is assumed that X(-) has a quadratic mean
derivative X'(-) (and there is no loss of generality in assuming this, for otherwise
EN = 4+, [3]).

For fixed te B, , write =, for the covariance matrix of X[(7, — 1)/27,
ceey X[(oe — 1)/2%], 2M{X(3/2") — X[ — 1/2°1}, -+, 2M{X(4/2") —
X [ — 1/2"1}, 41, -+, % as in (2). Asn— «, 2, — Z;, the covariance
matrix of X(4), -+, X(&), X' (4), -+, X (&), also nonsingular. Pointwise,
the integrand in the last integral of (5) converges to y1 -+ yup: (0, ---, 0, 41,
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-+, yr) where p; is the 2k-dimensional normal density with mean zero and
covariance ;. Moreover, the sequence of integrand,s may be bounded above
by an integrable function of the form C-y; - - - ywe ¥ **. Thus,

(6) falt) > f(t) = [T -+ [Cyr - wape(0, -+, 0, 41, -+, ys) Ay - Ay -

(6) remains true for t having coordinates of the form m/2" when f.(t), n = r,
is given any value which is a limit point of f,(s) as s — t i.e., the corresponding
< may be chosen to be either 2""-m or 2" "m — 1.

The function f of (6) is continuous over each A, and hence is bounded there.
This in turn implies that the f, are uniformly bounded over each A. . To see this,
note that if f, = M on some C, = {t| (4; — 1)/2" <t <4/2",j=1,---,k},

then foy1 = M on some C,yy < C, of the same form. If f,,, is extended to be
continuous over the closure Crin 0f Cnym , there is a point ty = )mzo Cotm for
which faim(te) = M for all m = 0 and so f(ty) = M. Applying the theorem of the
previous section, the result of [1] is obtained under relaxed assumptions.

There is no essential use made of stationarity in the preceding argument and
a corresponding formula will hold for nonstationary Gaussian processes as long
as X'(t) exists in quadratic mean at each ¢ & [0, 1] and the covariance matrices
Z, .+ and =, are nonsingular fort = (4, --- , &) having distinct coordinates.

Finally, Leadbetter has pointed out in [2] that, for Gaussian processes which
are nondegenerate in the above sense, it is possible to reconvert the factorial
moments of the number of upcrossings to the factorial moments of the number

of zeros.
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