SOME NON-ORTHOGONAL PARTITIONS OF 4 X 4,5 X 6
AND 6 X 6 LATIN SQUARES
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1. Summary. Non-orthogonal partitions of n X m Latin squares into (n + 1)
or (n — 1) groups may be useful when further treatments are to be added to
experimental designs in Latin squares. The different methods of constructing
these partitions for n = 4, 5 or 6 are considered here. It is found that a partition
into (n 4 1) groups is always possible when the Latin square has a directrix and
a partition into (n — 1) groups is possible whether or not there is a directrix. A
complete enumeration of all possible partitions is given for the partition of
4 X 4 squares into 3 or 5 groups and that of 5 X 5 squares into 6 groups. Exam-
ples only are given for the partition of the 5 X 5 squares into 4 groups and the
partition of the 6 X 6 squares into either 5 or 7 groups.

2. Introduction. When a Latin square design has been used for an experi-
ment, it is sometimes necessary to add further treatments [6]. If the new set of
treatments is not likely to interact with the old set, the simplest way of doing
this is by means of a Graeco-Latin square, if the numbers of treatments in the
two sets are the same. Sometimes, however, a Graeco-Latin square is unavail-
able, or inappropriate for the particular circumstances. Finney [1], [2], [3] has
shown how more general orthogonal solutions can be obtained for squares of
side 4, 5 or 6, but the new treatments will then have unequal replication. Free-
man [6] has shown how the replication can be more nearly equalized, though the
design will not be orthogonal, and has given methods of analysis and examples
of designs for the addition of (n — 1) and (n + 1) treatments to ann X n Latin
square. In the present paper the various ways in which this can be done are
studied for 4 X 4, 5 X 5 and 6 X 6 squares.

If the n® cells of an n X n Latin square can be divided into r groups Si, S;,
--+, 8,, where S, has nk, members and k; + ks + - -+ + k., = n, such that S,
has k, cells on each row, column and letter, then the subdivision is said to con-
stitute a (k1 , ks, - - -, k) orthogonal partition of the square [1]. In particular, a
part for which k, = 1 is called a directriz of the square. If two directrices have
no cells in common, they are said to be parallel; if they have one cell in common,
they are orthogonal. These properties are illustrated in the 4 X 4 square shown
below, in which the letters form a Latin square and the numbers a (1, 1, 2)
partition. The 1’s and 2’s form two parallel directrices and the cells underlined
lie on a directrix orthogonal to each of these two.
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Al B2 ¢3 D3
B3 A3 D1 C2
¢c3 D3 42 B1
D2 C1 B3 43
When the n® cells are divided into groups Si, Se, -, Sr , where S, has m,

members and, in general, m, is not an integral multiple of n, the resulting parti-
tion is non-orthogonal. Two non-orthogonal partitions will be considered here,
one containing (n + 1) groups and the other (n — 1) groups. It is convenient to
change the notation so that the (n 4 1) groups are numbered from 0 to n and
the (n — 1) groups from 0 to (n — 2). Then, with (n + 1) groups S, will have n
members, one on each row, column and letter, and so will be a directrix, while
So(p # 0) will have (n — 1) members, one on each of (n — 1) rows, columns
and letters, but none on the nth. With (» — 1) groups S, will have (n + 2)
members, two on two rows, columns and letters, and one on each of the other
(n — 2), and S,(p = 0) will have (n 4+ 1) members, two on one row, column and
letter, and one on each of the other (n — 1); for all p, n of the members may
constitute a directrix, if one exists, but need not do so. Of the two squares shown
below, that on the left is partitioned into (n + 1) groups and that on the right
into (n — 1) groups. There is one directrix in the first partition, given by the
0’s, and three in the second, given by the underlined 0’s, 1’s and 2’s.

A0 B1 C2 D3 A0 Bo C1 D2
B2 A3 D4 CO Bi 42 DO ¢o
C3 DO A1 B4 C2 D1 41 BO
D1 C4 BO A2 D2 CO0 B2 41

Latin squares are enumerated in transformation sets [4]. A transformation set
contains all squares generated from one of its members by permutation of rows,
columns and letters. By permuting these categories whole sets can be changed
into other sets. When everything possible has been permuted there remain two
sets each of 4 X 4 and 5 X 5 squares and 12 basic or adjugate sets of 6 X 6
squares [4], [5]. Similarly, permutations are possible after a non-orthogonal par-
tition. With these conditions and another, simplifying one given below, every
non-orthogonal partition of the 4 X 4 squares into 3 or 5 groups and the 5 X 5
squares into 6 groups is given here, examples are given of the non-orthogonal
partitions of the 5 X 5 squares into 4 groups and the 6 X 6 squares into 7 groups
and their number given, while examples only are given for the partition of the
6 X 6 squares into 5 groups.

3. Methods of constructing non-orthogonal partitions. Where there is an
n X n Graeco-Latin square it is always possible to partition the square into
(n — 1) groups as described, and where there is another orthogonal classification
the partition into (n + 1) groups is always possible. The partition into (n — 1)
groups is achieved by taking (n — 1) parallel directrices and replacing the nth
directrix parallel to all these by two members of one group and one member of
each of the remaining (n — 2). This is even possible for the trivial case of the
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3 X 3 square, as is immediately obvious. The partition into (n 4+ 1) groups is
achieved by taking n parallel directrices and their intersections with another,
orthogonal, directrix. The partitions of 4 X 4 squares into 5 or 3 groups shown
in Section 2 are examples of these types of partition. 4 X 4 squares of Set IT and
5 X 5 squares of Set II, which both have complete orthogonal solutions, can
only be partitioned into (n + 1) groups by the method of parallel directrices. No
partition into (n + 1) groups is possible, however, where there are no directrices,
as with the first transformation set of the 4 X 4 squares and Sets VII, VIII, XI,
XIII, XIV and XVII of the 6 X 6 squares. A non-orthogonal partition into
(n + 1) groups is possible for all 4 X 4, 5 X 5 and 6 X 6 squares containing a
directrix, and any directrix may be taken as S, . It is also possible to partition all
squares of these sizes, with or without directrices, into (n — 1) groups. It may
be conjectured that such partitions are also possible for larger squares, but this
seems difficult to prove.

The simplification referred to above is as follows: Two partitions are regarded
as the same if, for some non-zero value of p, one can be obtained from the other
by interchanging all the members of S, with all but one of So. Thus, the follow-
ing two partitions of the standard 4 X 4 square of the second set into 5 groups
are the same.

A0 B1 C2 D3 A1l BO C2 D3
B2 A3 DO (4 B2 A3 DO ¢4
Cl1 D2 A4 BO Co0 D2 A4 B1
D4 CO0O B3 A1 D4 C1 B3 A0

Similarly, the following two partitions of the standard 4 X 4 square of the
first set into 3 groups are the same.

A0 BO C1 D2 A0 B1 Co0 D2
B1 A2 DO CO B0 A2 D1 C1
Co0 D1 B2 A1l Cl1 DO B2 A0
D2 C2 A0 B1 D2 C2 A1 BO

One of the partitions into 5 groups can be obtained from the other by inter-
changing all the 0’s and 1’s except the 0 on D in the second row: one of the par-
titions into 3 groups can be obtained from the other by interchanging all the 0’s
and 1’s except the 0 on A in the first row. This is always possible for the partition
into (n 4+ 1) groups by the method of parallel directrices, as used here, and must
work whenever the (n — 1) members of S, form a directrix with one member of
So . It is more valuable, however, for the partitition into (» — 1) groups, and
happens if and only if there is a member common to one of the rows, one of the
columns and one of the letters on which 0 occurs twice. This technique may be
called changeability, and partitions which can be altered in this way will be called
changeable, those which cannot be altered being called unchangeable. With a par-
tition into (n — 1) groups, no unchangeable partition can have n 0’s forming a
directrix, because the two extra 0’s would occur in such positions as to make the
partition changeable.
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4. 4 X 4 Latin squares. The first transformation set has no directrices, so no
partition into 5 groups is possible. The only partition of the second transforma-
tion set into 5 groups is by the method of parallel directrices, as shown in the
last section.

The only partition of the first transformation set into 3 groups is as shown in
the last section, this being a changeable partition. Two different partitions of the
second set into three groups are possible, one by the method of parallel direc-
trices and another, quite different, unchangeable one. The two partitions are as
follows:

A0 Bw C1 D2 A0 BO C1 D2
Bl A2 DO Cz=z Bl 42 DO CO
C2 D1 Ay BO ¢c2 D1 A1 BO
Dz CO0O B2 41 DO C2 B2 A1

In the first of these partitions w, z, y, 2z represent 0, 0, 1, 2 in any order, but
any of these 12 partitions can be derived from any other by permutation of
rows, columns and letters. In the second partition two parallel directrices each
contain four 1’s and four 2’s; of the other directrices parallel to these, one has
three 0’s and a 1 and the other three 0’s and a 2.

6. 5 X 5 Latin squares—partition into six groups. These partitions have
been fully investigated by means of an electronic computer. Taking the first
standard square of Fisher and Yates [5] for both Set I and Set II all possible
orthogonal partitions having the standard first row A0 B1 C2 D3 E4 have been
determined; there are 60 of them for Set I and 36 for Set II.

There are three different partitions for Set I, as follows. It will be seen that
they can all be derived from each other by permutations of the first column.

A0 B1 C2 D3 E¢4 A0 B1 C2 D3 E¢+4
B3 A2 EO0O C1 D5 B4 A2 EO C1 D65
C4 DO A1 ES5 B2 C3 D0 A1 E5 B2
D2 E3 B5 A4 CO D2 E3 B5 A4 CO
E1l C5 D4 BO A3 El C5 D4 BO A43

A0 B1 C2 D3 E#4

B3 A2 EO0O C1 D5

C4 DO A1 E5 B2

D1 E3 B5 A4 CO

E2 C5 D4 BO A3

There are only three directrices of the 5 X 5 square of Set I [2], and they all
go through the cell in the first row and column of the first standard square of
Fisher and Yates. Thus, S, has to have this cell as a member, and the three par-
titions given can be changed into another three by interchanging all the 0’s and
5’s except this 0. Of the 60 standard partitions, 36 are derivable from the first
given here after various permutations and changes, 18 from the second and 6
from the third.
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For the second set of 5 X 5 squares the 36 standard partitions can all be de-
rived from each other, being obtained by the method of parallel directrices. A
typical partition is as follows:

A0 B1 C2 D3 E4
B2 C0 E3 Al D5
C3 E5 DO B4 A2
D4 A3 B5 EO0 C1
E1 D2 A4 C5 BO

Here, the partitions S,(p # 0) are on parallel directrices cut across by So,
a directrix orthogonal to the others.

6. 5 X b5 Latin squares—partition into four groups. These partitions can be
enumerated in two ways, by whether they are changeable or unchangeable
and by the number of directrices. Table I gives the full number of partitions of
each type for both sets of squares, the number in parentheses referring to the
examples given below.

TABLE I
Numbers of partitions into four groups of each type for the 5 X 5 squares

Directrices Changeable Unchangeable
Set I 0 10 (6a) 30 (6b)
1 5 (6c) 15 (6d)
Set II 1 —_ 2 (6e)
2 1 (6f) 4 (6g)
3 — 6 (6h)
4 1 (6i) —

Examples of partitions (6a)-(6d) are as follows. It will be seen that (6a) and
(6b) are the same apart from the numbers on C and A in the last column: simi-
larly (6¢) and (6d) are the same apart from the numbers on E and A in the
fourth row. In (6¢) and (6d) there are five 1’s on a directrix.

(6a) (6b)
A0 BO C1 D2 E3 A0 BO C1 D2 E3
Bl A2 E2 CO D3 Bl A2 E2 CO0 D3
C3 D1 A3 EO0O B2 ¢c3 D1 A3 EO B2
D2 E3 BO A1 CO D2 E3 BO A1 C1
El1 C2 DO B3 A1l El C2 DO B3 A0
(6c) (6d)
A1 BO CO0O D2 ES3 A1 BO CO D2 E3
B0 A2 E1 C3 D2 B0 A2 E1 C3 D2
cC2 D1 A3 EO B3 c2 D1 A3 EO0O B3
D3 EO0O B2 A1 C1 D3 E1 B2 A0 C1
E2 C3 DO B1 A0 E2 C3 DO B1l A0



NON-ORTHOGONAL PARTITIONS OF LATIN SQUARES 671

An example of partition (6e) is as follows; it has five 2’s on a directrix.

(6e)
A0 BO C1 D2 E3
B3 C2 E1 A3 DO
C2 EO D3 B1 A2
D1 A1 B2 EO0 C3
E2 D3 A0 CO0 B1

The only partition (6f) and one example of partition (6g) are as follows; these
being the same apart from the numbers on A and C in the last column; there are
five 2’s and five 3’s on directrices in each example.

(6f) (62)
A0 BO C1 D2 E3 A0 BO C1 D2 E3
B0 C3 E2 Al D1 B0 C3 E2 A1 D1
C2 E1 DO B3 40 C2 E1 DO B3 A2
D3 A2 Bl EO0 C2 D3 A2 B1 EO0 CO
E1l D3 A3 CO B2 E1 D3 A3 CO0 B2

The six possible partitions (6h) can all be represented by the following ex-
ample, in which z, y and 2z represent 1, 2 and 3 in some order; there are five 1’s,
five 2’s and five 3’s on directrices.

(6h)
A0 BO C1 D2 E3
Bl1 C3 E2 A0 Dz
C2 EO0O DO B3 Al
D3 A2 By E1 CO
Ez D1 A3 CO0O B2

The partition (6i) is that obtained by the method of parallel directrices, and
is as follows, where v, w, «, y, 2 represent 0, 0, 1, 2, 3 in some order.

(61)
Av BO C1 D2 E3
B2 Cw EO A3 D1
C3 E2 Dz B1 A0
DO A1 B3 Ey C2
El D3 A2 CO B:

7. 6 X 6 Latin squares—directrix properties. There are far too many parti-
tions of 6 X 6 Latin squares for a complete enumeration to be attempted, and
so examples only are given, these being related to properties of the directrices.
The relevant directrix properties are given in this section, all being either stated
in Finney’s paper [3] or derived directly from it. There are no directrices for
squares of Sets VII, VIII, XTI, XIII, XIV or XVII, so only Sets I, III, IV, V,
X and XV are considered.
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There are 8 directrices of Set I, these being numbered by Finney as follows:

PN oo
MmN Aw
OhwQQb~
QO
SASESENICRCR R
RrObaQamEEAQ
HwQUrbbrh

The square is assumed to be the standard one of Fisher and Yates, and the num-
bering is by rows, i.e., the rth element in the directrix is that in the rth row of
the square. The directrices may be divided into two groups of four, directrices
1, 2, 5 and 8 forming the first group and 3, 4, 6 and 7 the second. The members
of the first group each have three parallel directrices and the members of the
second group each have four. It is not possible to find three mutually parallel
directrices but there are pairs of parallel directrices in three ways, within the
first group, such as 1 and 8, within the second group, such as 3 and 6, and with
one member from each group, such as 1 and 6.

For Set III there are again 8 directrices. These can be grouped into four
parallel pairs, there being no groups of three mutually parallel directrices.

The 8 directrices of Set IV may be divided into two groups of four mutually
parallel directrices. Further, each directrix is also parallel to one directrix from
the other group.

The 8 directrices of Set V may also be divided into two groups of four mu-
tually parallel directrices, but here no two directrices from different groups are
parallel.

Set X has 32 directrices which give rise to many groups of two, three or four
mutually parallel directrices. They are numbered by Finney as follows; as with
the directrices of Set I the standard square of Fisher and Yates is assumed and
the numbering is by rows.

1. A ¢ E F B D 7. D B F E C A
2.4 ¢ D E F B 8. D ¢ B F E A
3.4 F E C D B 9. D ¢ A E B F
4. A F D B C E 2. D E B A C F
5. A D F E B C 2. E ¢ B D F A
6. A D B C F E 2. E ¢ D B A F
7.4 E F B C D 2. E F ¢ B D 4
8. A E B F D ¢C 24. E A B C D F
9. B F E D C A 2. F B E A C D
0. B A D E C F 6. F B A E D C
1. B D ¢ E F A 27. F C E D A B
2. B D E C A F 2. F C A B E D
3. ¢ B E F D A 29. F A C E D B
4. C D F B E A 3. F A B D (C E
5. ¢ D E A B F 3. ¥ D C B A E
6. ¢ E A B D F 32. F D B A E ¢C
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All the directrices have three members on one or the other of the two leading
diagonals of the standard square and three members amongst the other 24 cells
of the square. The directrices are divided by Finney into two sets, Set I contain-
ing 8 directrices and Set II 24; the distinction between the sets is that the three
members of a directrix of Set I on the leading diagonals are all on the same
diagonal while the three members of Set II on the leading diagonals are two on
one diagonal, one on the other. The parallelism properties of the directrices can
best be illustrated by displaying them as in Table II, using Finney’s numbering.

TABLE II
Relationship between the directrices of Set X
32 19 13 7 4 27 24 11
17 8 28 15 12 23 2 30
16 25 5 18 21 10 31 3
1 14 20 26 29 6 9 22

The 8 directrices of Set I are in the middle two columns of Table II and the
24 of Set IT in the outer six columns. There are 16 groups of four mutually parallel
directrices amongst the 8 of Set I, formed by taking either directrix from each of
the four rows; the two directrices of Set I in the same row have the same ele-
ments on the leading diagonal of the Latin square. There are 24 groups of four
mutually parallel directrices amongst the 24 of Set II, 6 formed by taking the
columns of Table IT and the rest obtained by taking two directrices from one
column and two from one of the columns on the opposite side in such a way that
one directrix is taken from each row; for example, 1, 10, 23, 32 and 1, 16, 11, 30
and 1, 17, 24, 31 are all groups of four mutually parallel directrices. There are 16
groups of four mutually parallel directrices with three from Set IT and one from
Set I obtained by taking the three directrices of Set II in one row at one side
and either directrix of Set I in the same row, e.g., 1, 14, 20, 26 or 1, 14, 20, 29.
There are also 72 groups of three mutually parallel directrices of Set II that do
not give rise to four parallel directrices; two of the directrices are in the same
row and the same side and the third in a different row on the other side, e.g.,
1, 14, 10, or 1, 14, 24. The final directrix property that is useful is that in either
half of Table II the same elements occur in the four directrices of a row and
column with a common directrix, e.g., 1, 16, 17, 32 and 1, 14, 20, 26 and 7, 15,
18, 26 all contain the same elements.

Set XV has 24 directrices giving rise to 30 groups of four mutually parallel
directrices with each directrix occurring in 5 of these groups. With respect to
any one directrix there are 10 parallel directrices, 5 of which occur in two differ-
ent groups of four mutually parallel directrices and 5 in only one group. There
are also 40 groups of three mutually parallel directrices not giving rise to a group
of four parallel directrices, any one directrix occurring in 5 of these groups.

8. 6 X 6 Latin squares—partition into seven groups. These partitions have
been fully investigated by means of an electronic computer. The partition
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is always possible where the Latin square has a directrix and further, for Sets I
and X, where it is important which directrix is used, any directrix may be taken
as So . Table III gives the full number of partitions, changeable and unchange-
able, the numbers in parentheses referring to the examples below. Defining
pseudo-directrix x asagroup containing 5 members of directrix z, it is convenient to
make a further subdivision of the partitions using a given directrix as Sy by means
of pseudo-directrices. Even so, for reasons of space examples cannot be given
for some squares using each pseudo-directrix.

TABLE III
Numbers of partitions into seven groups of each type for the 6 X 6 squares
Set Directrix as So Changeable Unchangeable
1 1 — 30 (8a, 8b, 8c)
I 3 — 24 (8d, 8e)
III Any 12 (8f) 27 (8g, 8h)
v Any — 9 (81, 8j)
A% Any —_ 24 (8k, 81, 8m)
X 4 — 2 (8n, 80)
X 1 — 1 (8p)
XV Any 2 (8q, 8r) _

For Set I using directrix 1 as Sy there are 10 partitions with no pseudo-directrices
8 with pseudo-directrix no. 6, 8 with no. 7, 2 with no. 8 and 2 with nos. 6 and 8,
Three examples are given: in (8a) there are no pseudo-directrices, in (8b) pseudo-
directrix no. 7 is underlined and in (8¢) nos. 6 and 8 are underlined.

(8a) . (8b)
A1 BO C2 D3 E4 F5 A1 BO C2 D3 E4 F5
B2 C5 FO0O A4 D1 EG6 B3 C4 FO0O A6 D1 E2
¢C3 F1 B4 EO0O A6 D2 C5 F1 B6 EO0O A2 D4
Do E2 A5 B6 F3 C4 Do E5 A4 B2 F3 C6
E5 A3 D6 F2 CO0 B1 Ee A3 D5 F4 Cco0 B1
F6 D4 E3 C1 B5 A0 F2 D6 E3 C1 B5 40
(8c)

A1 BO C2 D3 E4 F5b

B5 ¢3 Fo 42 D6 F1

C6 F1 B4 EO0 A5 D2

Do E5 43 B6 F2 (C4

E2 A6 D1 F4 CO B3

F3 D4 E6 C5 B1 40

For Set I using directrix 3 as So 6 partitions have pseudo-directrix no. 6, 2
have no. 7, 8 have no. 8, 4 have nos. 5 and 8, and 4 have nos. 6 and 8. In the
examples the pseudo-directrices are underlined, no. 7 in (8d) and nos. 6 and 8
in (8e).
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(8d) (8e)
A1 B2 €3 Do E4 F5 Al B2 C3 DO E4 F5
B4 Co0 F1 A5 D6 ES3 B5 ¢co0o F1 A2 D6 E3
C5 F3 BO E6 A2 D4 €6 Fa4 BO E1 A5 D2
D3 E5 46 B1 FoO C2 D3 ES5 A4 B6 Fo C1
E0o A4 D5 F2 C1 Bé Eo A6 D5 F3 (02 B4
F6 D1 E2 C4 B3 A0 F2 D1 E6 (¢4 B3 Ao

For Set III the 12 changeable partitions are in three groups. Using directrix 1
as So, 4 have pseudo-directrix no. 2, 4 have no. 6 and 4 have no. 7; directrices 2,
6 and 7 are all orthogonal to directrix 1. Of the unchangeable partitions 21 have
no pseudo-directrices and 6 have no. 4, directrix 4 being parallel to directrix 1.
In example (8g) there are no pseudo-directrices, while in (8f) and (8h) nos. 2
and 4 respectively are underlined.

(8f) (8g)
A0 B1 C2 D3 E4 F5 A0 B1 C2 D3 E4 F5
B2 A4 FO E1 C3 D6 B2 A3 F0 E5 C6 D1
¢c1 F6 B3 A5 DO E2 C3 F4 B6 A1 DO E2
D4 C5 E6 BOo F1 A3 D4 C5 E3 BO F1 A6
Es5 D2 A1 F4 B6 (Co E1l D6 A4 F2 B5 CO
F3 E0O D5 C6 A2 B4 F6 EO0O D5 C4 A2 B3
(8h)

A0 Bl (¢2 D3 E4 F5

B4 A2 FO0O E6 3 D1

C6 F4 B3 A5 DO E2

D2 C¢c5 E1 Bo F6 A3

E5 D6 A4 F1 B2 (o

F3 E0O D5 C4 Al B

For Set IV, 6 of the partitions have no pseudo-directrices. Using directrix 1 as
So, one partition has pseudo-directrices nos. 4 and 5, one has nos. 4 and 8 and
one has nos. 5 and 8. Directrices 1, 4, 5 and 8 are mutually parallel. In the
examples there are no pseudo-directrices in (8i), and in (8j) nos. 4 and 5 are under-
lined.

(8) (8j)
Al B2 C0 D3 E4 F5 A1 B2 co D3 E4 Fs5
B3 A4 E2 F1 (C6 DO B4 A5 E2 F6 C3 po
C5 FO B4 A6 D2 E1 C6 Fo B3 44 D2 E1
D4 E6 A5 BO F3 C2 D5 E3 A6 Bo F1 C2
E0O D5 F6 C4 B1 A3 Eo D6 F4 Cc1 B5 A3
F2 C3 D1 E5 A0 B6 F2 C4 D1 E5 A0 BS6

|

For Set V, 12 of the partitions have no pseudo-directrices. Using directrix 1
as So there is one partition with pseudo-directrix no. 3, one with no. 6, 6 with
no. 8, 2 with nos. 3 and 8, and 2 with nos. 6 and 8. Directrices 1, 3, 6 and 8 are
mutually parallel. In the examples there are no pseudo-directrices in (8k), no. 6
is underlined in (81) and nos. 3 and 8 in (8m).
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(8k) (81
A1 B2 CO0 D3 E4 F5 A1 B2 CO0 D3 E4 F5
B3 A4 E1 C2 F6 DO B3 A4 E1 C6 F2 Do
C6 FO B4 A5 D2 ES3 C4 FO B6 A5 D1 E3
D4 E5 F3 BO C1 A6 D2 E5 F4 BO (C3 46
EO D6 A2 F1 B5 C¢4 Eo D6 A3 F1 B5 C2
F2 C3 D5 E6 A0 B1 F6 Cc1 D5 E2 A0 B4
(8m)

A1 B2 co D3 E4 F5

B4 A6 E5 Cc2 F1 DO

C3 F0o B1 A4 D2 EG6

D5 E3 F4 BO C6 A2

Eo D1 A3 Fe6 BS5 (4

F2 Cb5 D6 E1 Ao ‘B3

|

All the partitions of Set X have three pseudo-directrices parallel to the direc-
trix forming So , this directrix and the pseudo-directrices being all of the same set.
Of the two distinct partitions using a directrix of Set I, one has all its pseudo-
directrices in the other column of the scheme in Table II, while the other has
one pseudo-directrix in the same column and two in the other column. In the
examples directrix 4 is taken as So ; in (8n) pseudo-directrices nos. 15, 18 and 26
are underlined and in (80) nos. 15, 21 and 26 are underlined.

(8n) (80)
A0 B1 Cc2 D3 E4 F35 A0 B1 C2 p3 E4 F5
B4 C3 Fo A1 D6 E2 B3 C4 Fo A1 D2 E¢
C1 F4 B3 E6 A5 Do c6 F3 B4 E2 A5 Do
D2 A6 E5 Bo F1 C¢4 D4 A6 E5 BO F1 C3
E3 D5 A4 F2 CO B6 El1 D5 A3 F6 Cco0 B2
F6 Eo D1 C5 B2 43 F2 Eo D1 C5 Be 44

In the partition using a directrix of Set II as S, the directrix and the parallel
pseudo-directrices are two from one column of Table II and two from a column
on the opposite side. In example (8p) directrix 1 is taken as S, and pseudo-
directrices nos. 10, 23 and 32 are underlined.

(8p)
A0 Bl ¢c2 D3 E4 F5
B2 Cco0 F3 A1 D5 Eé
C4 F6 BS5 E0O A3 D2
D6 A2 E1 B4 FO0 C3
E5 D4 A6 F2 C1 BO
F1 E3 Do C5 B¢ A4

|
|
|

For Set XV both the partitions have six pseudo-directrices, the maximum
possible. In one, 5 of the pseudo-directrices are those occurring in two different
groups of four mutually parallel directrices with the directrix forming So, while
in the other, 5 of the pseudo-directrices are those occurring in only one group of
mutually parallel directrices with So. In both partitions the sixth pseudo-
directrix is orthogonal to Sp, thus permitting changeability. In the examples
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(8q) has the pseudo-directrices from two parallel groups, (8r) those from one
only.

(8q) (8r)
A0 B1 C2 D3 E4 F5 A0 B1 C2 D3 E4 F5
B3 A4 FO E2 D6 C1 B5 A2 FO0O E6 D1 C3
C4 D2 A5 BO F3 E6 Cl D4 A3 BO F6 E2
D5 F6 E3 A1 CO B4 D2 F3 E5 A4 CO B6
E1 C5 B6 F4 A2 DO E3 C6 B4 F1 A5 DO
F2 EO D1 C6 B5 A3 F4 EO0O D6 C5 B2 A1

9. 6 X 6 Latin squares—partition into five groups. These partitions have not
been enumerated completely but are very numerous. In Table IV the existence
of partitions only is shown, not the full number, the numbers in parentheses refer-
ring to the examples below; a plus sign shows that there are some partitions, a
minus sign that there are none. The partitions are classified by whether or not
they are changeable, and by the number of directrices. For Set X with four
directrices it matters which directrices are used, but in all other cases it does not.
Where there are both changeable and unchangeable partitions, the examples
given are of unchangeable partitions from which changeable ones can be derived
by the interchange of the two elements underlined. If there are n directrices the
example has 61’s, - - - , 6 n’s on directrices.

TABLE IV
Ezistence of partitions into five groups of each type for the 6 X 6 squares
Set Directrices Changeable Unchangeable
I 0,1,2 + + (9a, 9b, 9¢)
III 0,1,2 + 4 (9d, 9e, 9f)
v 0,1,2,3 + + (9g, 9h, 9i, 9j)
v 4 + (9k) -
A% 0,1,2,3 + + (91, 9m, 9n, 90)
A4 4 + 9p) -
VII 0 + + (9q)
VIII 0 + + ©r)
X 0,1,2,3 + + (9s, 9t, 9u, 9v)
X 4: directrices 7, 15, 18, 29 + + Ow)
or 1,14, 20, 29
X 4: directrices 4, 12, 18, 26 + (9x) —
or 1,16, 30, 11
X 4: directrices 7, 15, 18, 26 - -
or 1,16, 17, 32
or 1, 14, 20, 26
XI 0 + + y)
XIII 0 + + (92)
XIV 0 + + (9A)
XV 0,1,2,3 + + (9B, 9C, 9D, 9E)
XV 4 + (9F) -
XVII 0 + + (9G)
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In the examples of Set I, (9a) has no directrices, (9b) has directrix 1 from the

first group and (9¢) has directrices 3 and 7 from the second group.
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In the examples of Set III, (9d) has no directrices, (9¢) has one directrix and

(9f) has two directrices.
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In the examples of Set IV, (9g) has no directrices, (9h) has one directrix, (9i)
has two directrices, (9]) has three and (9k), which is essentially changeable, has

four.
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In the examples of Set V, (91) has no directrices, (9m) has one directrix, (9n)
has two directrices, (90) has three and (9p), which is essentially changeable,

has four.
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Sets VII, VIII, XI, XIII, XIV and XVII have no directrices; examples of

the partitions are (9q), (9r), (9y), (92), (9A) and (9G) respectively.
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In the examples of Set X (9s) has no directrices, (9t) has directrix 4 from Set
I, (9u) has directrix 1 from Set II and directrix 26 from Set I, and (9v) has
directrices 1, 10 and 31 from Set II; directrices 1, 10 and 31 do not have a fourth

mutually parallel directrix. (9w) has directrices 1 and 14 from Set II and direc-

trices 20 and 29 from Set I, and (9x), which is essentially changeable, has di-

rectrices 4, 12, 18 and 26 from Set I.
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In the examples of Set XV, (9B) has no directrices, (9C) has one directrix,
(9D) has two directrices, (9E) has three and (9F), which is essentially change-

able, has four.
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(9D) (9E)
A1 B2 C0 D2 E3 F+4 A1 B2 C0 DO E4 F3
B0 A4 F1 E3 D2 C1 B0 A0 F1 E3 D4 C2
C2 DO A3 B1 F4 EO C4 D1 A3 B1 F2 EO
D4 FO E2 A0 C1 B3 D3 F4 EO A2 C1 B2
E4 C3 B4 F2 A0 D1 E2 C3 B4 F3 A0 D1
F3 E1 D3 C4 BO A2 FO E1 D2 C4 B3 A4
’ (9F)

Al B2 C0 DO E3 F 4

Bl A0 F1 E4 D2 C3

C2 D3 A4 B1 FO E2

D4 F3 E2 A3 C1 BO

E0O C4 B3 F2 A4 D1

F3 E1 DO CO B4 A2
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