ADMISSIBILITY OF CONFIDENCE INTERVALS
By V. M. JosHur!

University of North Carolina, Chapel Hill

1. Introduction. Hodges and Lehmann (1951) have shown that for a sample of
n independent observations from a univariate normal population the sample
mean is an admissible estimator of the parent mean. More general results have
recently been proved by Farrell (1964) regarding the admissibility of estimators
of the location parameter in a class of continuous frequency functions. The
analogous question regarding confidence intervals is considered here, and the
admissibility of a class of confidence intervals is proved for the location pa-
rameter in a wide class of continuous frequency functions which includes the
normal and some other commonly occurring ones. A practically important ap-
plication of the result is that the usual symmetrical confidence intervals for
the mean of a normal population based on the ‘¢’ statistic are seen to be admissi-
ble whether the population variance is known or not.

Again, the general result which is proved for confidence intervals whose length
may be any random variable distributed independently of the location param-
eter under estimation, also includes as a particular case the admissibility of
certain well known confidence intervals of constant length, obtained by minimiz-
ing the length for a given confidence level. For this particular case, however, the
result can be established under less restrictive assumptions, either by a direct
proof or as a deduction from Farrell’s results (1964).

2. Notation. In the following, X denotes a real random variable with a df in-
volving a parameter § which assumes values in a set Q of the real line; 2y, -+ , z,
independent observations of X; and z = (a1, @2, -+ , 2,) a point in the sample
space X; on X and © is defined the Lebesgue measure, all sets being Lebesgue
measurable; a(z), b(z), with or without subscripts denote measurable functions
defined on &, and (a(x), b(x)) denotes the set of confidence intervals
[a(z) = 0 = b(x)]. We define admissibility of confidence intervals as below:

DEerFiNtTION 2.1. A set of confidence intervals (a(z), b(z)) is said to be ad-
missible if and only if, there exists no other set of confidence intervals (ai(z),
bi(z)) satisfying

(1) bi(z) — ai(z) = b(x) — a(z) for almost all z £ X, and

(i) Pla(z) £ 60 < bi(x) |8) = Pla(z) <0 < b(x) | 6) for all 6 £ Q, the strict
inequality in (ii) holding for at least one 6 & 2. The definition of admissibility for
confidence intervals was formulated by Godambe (1961) but in his formulation,
the strict inequality in (ii) was required to hold on a non-null set of 2. We have
slightly modified his definition to make it agree with the conventional concept of
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admissibility. Godambe has also defined in his paper (1961) related Bayes
shortest confidence regions which have later been applied to x’-estimation by
Box and Tiao (1965) and Watson (1965). But the confidence intervals in the
present paper are not Bayes intervals.

3. Main result. We now prove the following

THEOREM 3.1. If 21, s, - - - , T, are independent observations from a known fre-
quency function f(z, 0) containing an unknown parameter 6, — © < 6 < + «, and
i,

(a) f(z, 0) admits a sufficient statistic T for 6, where & is a function of
Xy, Xy, -, Lo with a frequency function of the form p(& — @) i.e. the distribution
of (T — ) given 0 is independent of 0 for — o < 6 < + oo,

(b) the frequency function p(t) in (a) strictly decreases for t = 0 as t increases,
and for t £ 0 as t decreases; is continuous for all t and vs such that

I3 aulf? p(t) dt + 25 p(e) df]

converges,
(c) the frequency function f(zx, 0) of x is positive (> 0) and continuous in x for
allx = (21,22, -+ ,2,) and all 0, — o < 6 + oo,

(d) w(z), vo(x) are non-negative statistics distributed independently of £ and 0
such that for every x € X and p(t) in (a), p(—v(z)) = p(vi(x)); and further such
that v(x) = max (vi(x), vo(x)) has finite expectation and variance; then, the confi-
dence interval for 0: [T — vi(x) < 0 < T + vq(x)] are admissible according to the

Defination 2.1.
Proor. If the confidence intervals specified in the theorem are not admissible
then by Definition 2.1, there exist functions u;(x), u2(z) such that

(1) u(x) — w(z) £ n(z) + »(z) ae in X
and
(2) Plu(2) =0 < w(z) | 6] 2 Pz —va(z) 6=+ va(z) | 0]
forall 9, — © < 6 < + o, the strict inequality holding for at least one 4.
Now put,
(3) u(z) = [pu(@)u(z) + v2(2)w(2)]/[1(2) + va(2)]

provided »;(x) and v2(x) do not both vanish. If »:(2) = v(z) = 0, then noting
(1), we put

(4) w(z) = wa(z) = us(2).

Now noting (1), u(z) — wi(x) = v(z)[ua(z) — wr(2))/In(x) + va(z)] = ni(zx),
so that, u(z) — v1(x) = wi(x);Similarly,

u(2) — u(@) = va(2) () — w(2)]/Ior(z) + va(2)] = 0a(),

so that, u(z) + vx(x) = uz(x); hence from (2),
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(5) Plu(z) —o(z) 0= ulx) +v(z) | 0] = PlT — wni(x) 0= F+ v(x) | 6]

for all 6, — © < 8 < + o, the strict inequality holding for at least one 6.
We next define for given 6, sets CC as follows

Dy = [z:% — w(z) £ 0 £ T + v(2)],

Ey = [ziu(z) — n(z) =0 < u(z) + »(2)],

A¢ = Dy — Dg+E4 where Dy+ Eg denotes the intersection set of Dy
and E,.

By = Ey — Dy+Epy,

To = [z:|z] < @ — v(x)] where a is an arbitrary number >0

(6)

and v»(z) = max (n(x), vo(x)), and
T = [xt]z] > a — v(z)].

Then from (5) and (6), forall§, — o < 6 < + «, P(Es|0) = P(Ds|8) so that
P(By|8) = P(As | 6), and hence ‘

P(Be-T. | 6) = P(Aq|0) — P(Be-Ta | 0)
= P(A¢T.|8) — P(BsT.|06)
= P(DgT.|0) — P(E4T.|0),
from which by integrating w.r.t. 6 from —a to +a, we get,
(7) [2a P(BoT.|6) do = [% P(Dg+Ta|6) d6 — [0 P(EoTa|8).

Since by (a), & is sufficient for 6, the frequency function [Ji-if(zx+8) =
p(£ — 0)eL(2y, -+, x| %) = p(£ — 0)+L(x|Z). Hence in the r.h.s. of (7),
[2a P(D+T.|6) d8 = [%0 d0]f pgar, L(z | Z)+p(Z — 6) dz] which by interchanging
the order of integration w.r.t. £ = (&1, Z2, - -+ , 2,) and 6, and noting the Defi-
nitions (6) of Dy and T, , equals

(8) [z L(x|2) da [[Z213 p(z —~ 0) db) = [, L(x | &) do [[*5 p(t) di].
Similarly putting,
g2(z) = min. (4a,u(z) + v2(z)) and ¢i(x) = max. (—a,u(z) — 0 (x))
we have the second term in the r.h.s. of (7),
% P(EoTa|6) d8 = [%0d0 [[5yer, L(z | &)+p(Z — 0) da]
(9) = [r, L(z| &) da [[3:E) p(& — 6) do]
< [r, Lz | &) do [[ 4601026 p(z — ) db]
= [, Lz | %) do [[E4ETE p(o) di.
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Substituting (8) and (9),
(10) rhs.of (7) 2 [r, L(z| ) de [[A3 p(t)dt — [25550 p(0) d4).

Since by (d), p(vi(z)) = p(—v(x)) and by (b), p(¢) is strictly decreasing, in
the r.h.s. of (10), the factor,

(11) 2% p(t) dt — [BS520 p(t) df] is always  20.

The equality in (11) holding if, and only if, £ = w(z). Thus the r.h.s. of (10) is
always non-negative and as the set T, increases monotonically as a increases, the
r.h.s. of (10) is always non-decreasing as a increases. We next show that it is
bounded above.

Let M, , M.’ be the sets CX defined by

(12) M, = [x:v(:v) < g]; MS = I:x:v(:v) > g]
Since by (d) E(v(z) | 8) = E(v(x)) exists and is independent of 6, P(M,’ | 6) <
2E(v(z))/a and hence,
(13) [2 P(M.|6) d§ < 4E(v(x)).
Now, noting (6), in the Lh.s. of (7),
P(BseTs | 0) = P(ByeMaeTs" | 8) + P(Boe M To | 0)
P(M, T, |60) + P(M.|9),

A

so that,
(14) Lhs. of (7) £ [% P(M,T,|6)df + [ P(M.|6) df
= [2 P(Moe T2 | 6) dO + 4E(v(2)),
where the last inequality follows from (13). Now the sets M, and T’ being defined
(note (6)) by values of Z and v(z) only out of which v(x) is by (d) distributed

independently of Z and 6, we can use the conditional probability distribution for
given v(x) = v. Let ¢(v) denote the cumulative distribution function of v(x), i.e.

(15) o(v) = P(zx) < v)].

Then in the r.h.s. of (14) P(M,T.° | 6) = fﬁ:ﬁm de(v)+[P(T.’ | 6, v)], and hence
by interchanging the order of integration in (14) and noting (12),

(16) [ P(MaTs | 6) db = [1=5" dop(v) [[2a P(Ta | 6+v) db].
Now in (16),
(2 P(T. | 6,v) d8
(17) = [o, P(T.°|6,v)do + [3 P(TJ |6, v) dd + [ P(Ta’| 06, v)do
< [iods + 22 do + [Z5, P(TS|6,0) do.
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Further, since P(T4° | 6,v) = P(£> a — v|6,v) + P(£ < —a + v |6, v)in the
r.h.s. of (17), noting that 6] < a — v
o, P(T. | 6+0) db
= [Z3P(E>a—v|00)dd + [5, P(E < —a+v]6,0)do
which is
< L P@E>a—v]80)d0 + [Z0y, P(Z < —a + v]|00) db
= [T [[ies p(t) df] + [Zapr dO[[5 0 p(8) di

which on putting &4 = @ — v — 6 in the first integral andt = 0 — (—a 4+ v) in
the second integral reduces to fo dty [f p(t) dt] + f o dt [[Z& p(t) dt). Hence by
Condition (b) of the theorem

(18) Jodn (s pt) d + [7dul “1 p(t)df] = K < w.

Thus from (17) and (18), f2, P(T.°|6,v) dd < K + 2v, and substituting this
in the r.h.s. of (16),

(19)  [%P(MuTs) do < [355° (K + 20) daw

= i (K + 20) dg(v) = K + 2E(v(z)).
Hence from (14),
(20) Lhs. of (7) =K + 6E(v(x)).

From (20), (7) and (10) follows that the r.h.s. of (10) is bounded above and
being non-negative and non-decreasing it converges as a — « to a limit =0. We
next show that this limit must be = 0.

Let d be an arbitrary number such that 0 < d < 1, let v; and v, be non-negative
number satisfying p(—v) = p(—w.) and let v = max (v, v;). For given d and v,
let 81 = (v, d) > 0 and B, = B2(v,d) > 0 be defined by -

(21) S p(t) dt = [52% p(t) dt = (1 — d)s [, p(2) dt.

We note that as p(¢) is strictly decreasing on both sides of the origin, v, and v, are
uniquely determined given v. Next let

(22) B(v, d) = max [Bi(v, d), Ba(v, d)].
We now define sets, W4, W3, and W3, C X as follows:
Wi = [z:]& — u(2)| > B(v(2), d)]
(23) Wi, = [£:0 = (2 — u(2)) = B(v(x), d)]
Wi, = [z:—B(v(z), d) = (£ — u(z)) < 0].
Then from (21) and (23) it follows that for any point z ¢ W,
JuRyEE @, p(8) dt < (1 — d)s [29, p(t) d,
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so that,
253 p(t) dt — [R50 p(t) dt 2 d [245% p(t) dt
z [d/(1 — d)] [BR35%0 p() dt.
Hence,

vy (z)+E—u(z)

rhs. of (10) = [rpew, L(z | Z) dz [[235 p() dt — [2X255725 p(t) di]
2 [d/(1 = )] [roew, L2 | 2) da [[A5305%550% p(t) di).

Hence by (9):

(24) rhs.of (10) =[d/(1 — d)] [2a P(EseWa+Ta | 6) d8

Further in the Lh.s. of (7). BpeTs" = By Wae T’ + By W3+ T’ + BoeW5,e Tu°

and thus we have from (7), (10) and (24),

25) [ p(Bor T Wal0) db + f_ P(Bye T~ W5, 6) do

a . c . d a
+ f_ P(BoTo5 W5, [6) db 2 mf_a P(EyWa-T,|6) db.

Now by (24), (7), (10) and (20), the r.h.s. of (25) is bounded above and as it is
non-negative and non-deereasing as a increases, it converges to a limit. But this
implies that by making a sufficiently large, we can make arbitrarily small the
difference, limg e [[20 P(Ege Wae Ta | 8) d8] — [24 P(Ege W4T | 6) df, which equals
[2a P(EseWaeTo’ | 0) d8 + [ 6150 P(Eg*Wae | 8) df which is further

= (2 P(EgeWae T |0) do = [2a P(BoeWaeTa° | 6) d6, since by (6), By C Ej.
Hence:
(26) The first term in the Lh.s. of (25) —0 as a— .

For evaluating the 2nd and 3rd terms in the L.h.s. of (25) we now introduce
sets Fy , Gy defined as:

(27) Fy = [x:0 + ni(z) < % =0+ n(2) + B(v(2))],
Gy = [2:0 — vy(x) — Bw(x)) £ & < 0 — n(x)].

Consider the set Bes W3, . Denoting by Is,.) , the interval

B~ w@), 6+ n@),

it follows from (6) and (23) that for every point z £ Be W7, ,

(28) Teloow ;  w(@) elopw

and

(29) w(z) = £ — h(z) where B(v(z)) = h(z) =0
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so that, £ — h(z) £ 0 4+ vi(z) < &, and thus since by (29), h(z) = B(v(z));
z— ﬁ(v(x)) =04 wux) <z, whlch by (27) implies that x ¢ Fy . Since every
point z & By W3, also ¢ Fy, we have BeeW;, C Fy. It is similarly seen that
By Wsz C Gy . Hence

(30) P(ByT. W3, |0) < P(FeT. | 0)
P(ByeTo W3, | 0) = P(Geo T, | 6).

Now thesets Fye .’ and Go+ T\,  being defined by values only of %, »(z) and 8(v(x) ),
and as by Condition (d) of the theorem, »(z) and consequently 8(v(x)), are
distributed independently of & and 6, we can use the conditional probabilities
for given v(z). Hence by (15), P(Fo-T.’ | 8) = [1=5 P(F4+T.° | 6, v) dp(v),and
hence by interchanging the order of integration,

(31) JEP(Foe T2 | 6) do = [225 de(v)[[% P(Foe T.° | 6, v) db).

Now from the Definition (27) of Fy, P(Fy |6, v) = [2® p(2) dt < p(0)+8(v),
as p(?) is strictly decreasing by (b) of the theorem. Thus in the r.h.s. of (31)
for all 6,

(32) P(FyeTa* | 6-v) = P(Fo|0+v) = p(0)+B(v).

Now from (27), for given v, and forz ¢ Fy ,0 + v, < & < 6 + v, + 8(v), and from
(6),forzeT,’, &> a — vor & < —a + v. Therefore the intersection set Fo+ T,
is empty unless either6 £ —a 4+ v — vi0r6 = a — v — v; — B(v). Thus for the
values.of 6 in the range (—a, a) the set Fy+ T,° is empty so that p(Fy+T.°[8,v) = 0
except for values of 4 in the subranges —¢ < 0 < —a+v—vanda — v — v, —
B(v) = 0 < a. Therefore in the r.h.s. of (31) we have

[2a P(FoTa’ | 6, v) do
= [ZP TV P(FoeTa | 6,) d6 + [ oev_py P(FoeTa"|6,0)d8

which by (32) is <p(0)[J=5*""" 8(v) db + [ ,_.,_s»B(v) df] which is equal to
p(0)[B(v) (v — v1) + B()(v + v + B(v)] = p(O) (20+B(v) + B*(v)), so that
the r.h.s. of (31) is <p(0) [1=5 dé(v) (20+B(v) + B(v)) = p(0)[2E(v+B(v)) +
E(B'(v))] thus giving

(33)  [LaP(FoeT. |6, v) d8 < p(0)[2E(v+8(v)) + E(8(v))].

We next show that the expectations which occur in the r.h.s. of (33) must be
finite. Since p(¢) is strictly decreasing on both sides of the origin, we must have
p(t) > 0 for all ¢ and further since ffw p(t) dt = 1, p(t) must — 0 when ¢ — o
or t — —c. Hence as v and v, satisfy p(vn) = p(—vz), as v — -+ o, v, also
— +  and conversely. Now in the ratio r = [23.%% p(¢) dt + f_.,z p(t) dt,
put B1 = v and let v, — « so that v; also — . Then r — [, p(¢) dt +
Yep(t) dt = ¢ say, <1. Similarly, in the ratio, r, = f_‘,,ﬁ?gzp(t) dt =+
4 f_,,z p(t) dt. Putting B = v, and letting v, — oo, so that v, also — o, r, —
fo p(t) dt + [Z,p(t) dt = cs say, <1. Let ¢ = max [¢;, ¢c;]. Then choose d so
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that 1 — d > c. Then for sufficiently large v, 81 < v; and 8; < v, so that 8 =

max (Bi, B2) = v = max (v1, v2). Thus we can find a number k such that for
v >k, B(v) < v. Now for 0 < v = k, let m be the maximum value of 8(v). Then

E(v-B(v)) = [1Z5v+8(v) do(v) + [12 v+B(v) dob(v)
< m [1Z%vde(v) + [7ZF o° dé(v)
< m-E(v) + E(W).

It is similarly seen that E(8*(v)) < m® 4+ E(¢°). Thus the expectations in the
r.h.s. of (33) are finite.
Next by a calculation on similar lines, we obtain,

(34) J2a P(Ge 5| 6) d < p(0)2E(v-B(v)) + E(F(v))].
Combining (30), (33) and (34), we have, for all a,
(35) [ P(BoeT. W5, |6) do + [%, P(ByTs W5, | 6) do
< 2p(0)[2E(v-B(v)) + E(ﬁz(v))]_

Now from (21), it follows that for fixed b, B(v, d) — 0'as d — 0. From this it
follows that each of the expectations in the r.h.s. of (35) can be made arbitrarily
small. For consider E(v, B(v)) = f;Z{,” v+B(v) d¢(v). Since this integral is con-
vergent, given any arbitrarily small number ¢ > 0. we can find a number ¢
such that f’;:fv-ﬁ(v) dp = ¢/2. Then by making d sufficiently small we can
secure that for all values of » in the range 0 < v = ¢, B(v) = ¢/2+E(v), so that

E(v, B(v)) = [1=50+8(v) db(v) + [i=5 v-B(v) dé(v)

which is <[e/2:E(v)] [1Z5vedd(v) + ¢/2 < ¢/2 + ¢/2 = e Similarly E(8*(v))
can be made arbitrarily small. Thus by first making d sufficiently small, the 2nd
and 3rd terms in the L.h.s. of (25) can each be made <e¢/3 and then keeping d
fixed by making a sufficiently large, the first term in the Lh.s. of (25) can be
made =< ¢/3, so that the Lh.s. of (25) < e. But the Lh.s. of (25) is the same as the
Lh.s. of (7) which is = r.h.s. of (10). Now the r.h.s. of (10) is non-negative
and non-decreasing as a increases and since it is < every arbitrarily small num-
ber ¢, it must be = 0 for all a. But this implies that the integrand in the r.h.s.
of (10), which is everywhere non-negative, must vanish, except at most on a
null subset N, of the set of integration T, . Since by (c) of the theorem, the factor
L(z | z) > 0 for all z ¢ %, it follows that the other factor in the integrand in
the r.h.s. of (10) namely:

(36) [ p(t) dt — [2R5a45 p( ¢) dt

= 0 for all z ¢ T, , except at most for x ¢ N, .

But since p(vi(z)) = p(—ve(z)) and p(¢) is strictly decreasing on both sides of
the origin (36) implies that £ — u(z) = 0 for all zx e (T, — N,), i.e. the set
[z e Te:% 5 u(x)] = the null set N, . Hence the set, N = Uz=; N,, is also a
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null set. But N is the same as the set [x e X:& # u(x)]. Thus £ = u(z) ae.
in &. Therefore, the frequency being everywhere absolutely continuous by (c) of
the theorem, the strict inequality in (5) and hence in (2), cannot hold for any
6 and thus the confidence intervals specified in the theorem are admissible. This
completes the proof.

CoRrOLLARY 3.1. If wi(z) and ux(x) are any functions satisfying (1) and (2).
then a.e. in X, ui(x) = & — vi(z) and us(x) = T + va(x).

Proor. From (3) and (4), for all z ¢ &,

(37) u(zx) — n(zx) £ w(z) and wu(z) + vo(x) = us(x).

Hence since u(x) = % a.e., and the frequency is everywhere continuous, it
follows from (2) that

Plui(z) <0 < u(x) | 6] = Plu(z) — n(z) = 0 £ u(z) + va(z) | 6]

Hence the sets [z:u(z) — n(z) < w(2)] and [z:u(z) + v(z) = wue(x)] have
zero probability for all 6, and are therefore null sets, since the frequency is every-
where >0. From this and (37), the corollary follows.

REMARK. 3.1. The proof of the theorém does not require v(z) to have a con-
tinuous frequency function. Hence putting v1(z) = a constant A1, we obtain
the admissibility of the set of confidence intervals of constant length, [ — h; =
6 < ¥ + ho). However the admissibility of this set can be proved independently,
without the restriction of the convergence of [¢ dt[f?, + [Z& p(2) dt], by a
direct proof as shown in an unpublished paper of the author alternatively as
shown by the referee it can also be obtained as a simple deduction from the result
proved by Farrell (1964) as follows: We define the loss functoin as

L6,6) =W —0) =1if6—0>Mn
=Oif—hz§é'—0§h1.

The function W then satisfies Farrell’s conditions, his uniqueness condition (5.2)
following from the condition in (b) of Theorem 3.1 that p(t) is strictly decreasing
on both sides of ¢ = 0. Now Farrell’s result states that if E[W (¢(z) — 0) | 6] <
E[W(z — 6) | 6] for all 6 then, ¢(z) = £ a.e. in X. Now puttingin (1), v (z) = h1
ve(x) = hy,take ¢p(z) = w1(x) + hi. Thensince by (1), wi(z) + b + h2>u2(x)
EW(¢(z) —0)] =1 — Plp(z) —h =0 = ¢(z) + he| 6]
1— P[ul(x) =60 = ul(x) + h + hz[@]

I\

which by (2)

IA

1—PEF—hm=0=Z+ h|]
EW (% — 6) | 6].
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Hence by Farrell’s result, us(z) + h1 = £ a.e. in & from which the required
result immediately follows.
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