A NOTE ON QUANTILES IN LARGE SAMPLES!

By R. R. BAHADUR
University of Chicago
1. Introduction. Let F(x) be a probability distribution function on the real
line. Let £ be a fixed point and let
(1) F(¢) =p.

It is assumed that F has at least two derivatives in some neighborhood of £,
that F”(z) is bounded in the neighborhood, and that F'(£) = f(£) > 0. These
assumptions imply, in particular, that 0 < p < 1 and that ¢ is the unique
p-quantile of F.

Let w = (X3, Xy, -+ ad inf) be a sequence of independent random variables
X, with each X distributed according to F. For each n = 1,2, --- ,let ¥, =
Y.(w) be the sample p-quantile when the sample is (X;, ---, Xa.). Let

Z. = Z.(w) be the number of observations X; in the sample (X1, -+, Xa)
such that X; > & This note points out that, with ¢ = 1 — p,

(2) Ya(w) = £ + [(Za(w) — ng)/n-f(§)] + Ra(w)
where R, becomes negligible as n — «. It is shown here that
(3) Ru(w) = O(n™*logn) as n— o

with probability one, but the exact order of R, is not known at present.

The above representation of Y, gives new insight into the well known result
that n¥(Y, — £) is asymptotically normally distributed with mean 0 and variance
v = pg/f’(£). It gives an easy access, via the multivariate central limit theorem
for zero-one variables, to the asymptotic joint distribution of several quantiles
in samples from a multivariate distribution [2]. The representation also shows
that the law of the iterated logarithm holds for quantiles, i.e.,

(4) lim SUPnaw [H(¥Va — £)/(2log log n)Y] = o,
lim infpe [ (Y. — £)/(2log log n)}] = —ot

with probability one.

The proof in the following section may be outlined as follows. Let Fa(z, w)
be the sample distribution function when the sample is (X;, ---, Xa), ie,
F.(z, ») = (The number of X; < z in the sample)/n. It is shown that, with
I, a suitable neighborhood of £, F.(z, w) = F.(§ w) + F(x) — F(&) uniformly
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for zin I, , and that Y, is in I, for all sufficiently large n. Hence p = F,.(Y,,w) =
Fo(§w) + F(Y,) = F(§) = Fa(§, @) + (Yo — £)f(§), 80 Yo = £+ (Zn — ng)/
nf(&).

2. Proof. Let
(5) Gn(xy "’) = [Fn(x7 w) - Fn(E; "’)] - [F(x) - F(E)]

Let {a, :n = 1,2, - -} be a sequence of positive constants such that

(6) an~ (logn)/nt as n— .
Let I, = (§ — a., § + a.), and let
(7) H.(w) = sup {|Gu(z, w)|: z in [.}.
LemMA 1. With probability one, Ho,(w) = O(n™*logn) asn — .
Proor. Let {b, : n = 1,2, ---} be a sequence of positive integers such that
(8) bo~nt as n— o.

Consider a particular n. For any integer r, let #,» = & + a.b,'r, let J, . denote
the interval [, , 7r41.2), and let arn = F(9r41,2) — F(7r,). Since F, and F are
non-decreasing in z, it is plain from (5) that, forzin J, .,

Gu(z, 0) = Fo(trya1n, w) — F.(¢ w) — F(nen) + F(8)
= Gn(771'+l,n ) w) + Orn «

Similarly, for z in J, ., G.(z, ®) = Gu(Mrn, @) — arn . It follows hence from
(7) that

H.(0) £ max {|Gu(nrn, @)t —by £ 7 = ba}
©) + max {ay, : —by, S 7 < by — 1}
= Kn(w) + 67& say.

Since Mrp1,n — Mrm = b, for each 7, since [n,, — £ < a, for |r| £ b., and
since F is sufficiently smooth in a fixed neighborhood of &, it follows from (6)
and (8) that 8. = O(n **logn). In view of (9), it will therefore suffice to show
that if ¢; > 0 is sufficiently large, and if v, = e lognforn = 1,2, --- then

To establish (10) we will use the following inequality due to S. N. Bernstein.
For any » and any 2z, 0 < 2z < 1, let B(n, z) denote a random variable such that
P(B(n,z) =71) = ()2’ (1 — 2)" " forr = 0,1, - -+, n. Then

(11) P(|B(n,z) —mnezl = t) < 2exp (—h)
for all t > 0, where
(12)  h = hin, 2, t) = ££/{2ln2(1 — 2) + (¢/3) max {z, 1 — 2}]}.
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For a proof of this version of Bernstein’s inequality see [3], pp. 204-205, where a
generalization of (11)—(12) is given. See [1] for other generalizations, and for
certain closer bounds.

Choose and fix ¢; > F'(£). Let N be an integer so large that F(¢ + a,) —
F() < canand F(§) — F(§ — a.) < ca, forallm > N. We see from (5) that,
for any n and r, the probability distribution of |G,(n,, w)| is the same as that of
n"'|B(n, 2) — ne| with 2 = |F(n,.) — F(£)| = 2, .say. Consequently,
P(|Gu(n,)| = va) = 2 exp (—ha(r)) by (11), where hu(r) = h(n, 2,1, nYa)
is given by (12). Since h(n, 2, t) = */2[nz + ], and since » > N and || < b,
imply 2., < ¢-ay , it follows that

(13) P(|Ga(nr, ©)| Z ¥2) = 2 exp (—0a)

for n > N and |r| £ b, , where 8, = n’y,’/2[c;-na, + nv,]. Since 8, does not
depend on 7, it follows from (9) and (13) that P(K, = v.) < 4b,exp (—8,) = \a
say, for n > N. It follows easily from (6) and (8) by the definitions of v, ,
o , and A, that

(14) log \./log n — 1. — (&’/2¢)

as n — . The limit in (14) is less than —1 if, given ¢, , ¢ is chosen sufficiently
large; then D .\, < « and (10) holds. This completes the proof.

Let {k, :n = 1,2, - - -} be a sequence of positive integers such that 1 <k, < n
for each n and
(15) kn = np + o(n*logn) as n— .
For each nlet Uy < --+ < U,, be the sample values X1, - -+, X, arranged in
ascending order, and let
(16) Vilw) = Unk, -
In other words, V, is the k,th order statistic in the sample (X1, - -+, X.).

LeMMA 2. With probability one, V., is in I, for all sufficiently large n.

Proor. For each n, P(V, £ ¢ — a,) = P(B(n, 2z.) = k,) where
2, = F(£ — a,). An upper bound for P(V, < ¢ — a.) may therefore be obtained
by putting z = 2z, and t = ¢, = k. — nz, in (11) and (12), provided ¢, > 0.
Since 2z, = F(£) — a.f(¢) + o(a.), and f(¢) > 0, it follows from (1), (6) and
(15) that t, ~ f(£)n}logn asn — . Consequently, h, = h(n, 2. , t.) ~ cs (log n)?
by (12), where ¢; = f(£)/2pg > 0, so that > .exp (—h,) < . Thus
Zn P(V, £ £ — a,) < . A similar argument shows that Zn P(V, =t +a,)
< o, and this completes the proof.

Lemma 3. With probability one,

(A7) Va(w) = & 4+ {[ka — nFa(t, @))/nf(8)} + O log n)

asm— ©.
Proor. Choose and fix an w such that V, is in I, for all sufficiently large n.
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Let N = N(w) and c; be such that, for all n > N, V,isin I, , and F"(z) exists
and |F"(z)| < ¢ for all zin I, .

We may suppose that, for n > N, F,.(V, , @) = ka/n. It follows hence from (5)
and (7) that, forn > N,

where |6,] < 1. We observe next that, forn > N, F(V.) = F(£) + (Va — £)f(£)
+ ¢s-on(w) - @’ where |@a| < 1. It follows hence from (18) that kn/n = Fo(§ w) +
(Vo — E)f(E) + ¢ where {n(w) = O(max {a,’, Hn(w)}). It is thus plain from
(6) that (17) holds with probability one.

Let [np] be the integral part of np, and let ¥ = np — [np], 0 = ¥n < 1. For
n> 1/pletk,* = [p]and k,® = k.* + 1, and let Vi, be determined by k,
according to (16), ¢ = 1, 2. Then (17) holds for V. and k., ¢ = 1, 2. Since
Y, =(1-— ) Va® + ¥ V,® for n > 1/p, and since k. = np + O(1) for
i = 1,2, it follows that (3) holds for R, defined by (2).

As noted in Section 1, (2) and (3) imply (4). It follows from (4) that the best
choice of I, = (£ — aa , £ + a,) in the preceding proof is not given by (6) but by
an ~ c5(2n " log log n)? with ¢s > o*. By repeating the arguments of this section
for the revised I, (but omitting the now redundant Lemma 2) it is easily seen
that in fact R, = O(n~*"l,) where [, = (log n)¥(log log n)%. This however is not
a substantial improvement or clarification of (3).
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