CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM
VARIABLES'

By DaLe E. VARBERG

Hamline University

0. Introduction. We shall assume throughout that X, , X», - -+ is a sequence
of independent identically distributed real random variables with E{X} =
E{X,} = 0, E{Xy"} = 1 and E{X\'} = C < . Perhaps the most important
example of such a system and the one on which we shall concentrate most of our
attention is a sequence of independent random variables each distributed N (0, 1),
i.e., normally distributed with zero means and unit variances. Let ay, j, k =
1,2, .-+, be real and set

Sn = Z;L,kgl aijij .

Unless otherwise stated we shall assume that a; = ax; . This is really no restric-
tion since we may always replace a;: by (a; + arj)/2 without changing S, .

Many papers have been written about the exact and limiting distributions of
S, under various hypotheses (e.g. [9], [14], [17]). In this paper we investigate
several modes of convergence for S, including quadratic mean in Section 1 and
almost sure in Section 2. Specializing to the normal case in Section 3, we are
able to give an “explicit’” form for the characteristic function of the limiting
distribution of S, — E{S,} in terms of certain Fredholm determinants. That
quadratic forms in normal variables and Fredholm determinants should be
related is not too surprising in view of a paper by Kac and Siegert ([12], p.
393) (see also ([3], pp. 198, 199) and ([4], pp. 19-21)), who noted such a rela-
tionship for a sum of squares. We mention also papers by Cameron and Martin
15], [6] and Woodward [18] on the Wiener integral. As a byproduct of the trans-
formation theory of that integral, they were able to calculate the characteristic
function of certain special quadratic expressions in terms of Fredholm deter-
minants. Our results of this type are quite general and come out directly and
naturally. They allow us to identify the limiting distribution of quadratic forms
with that of a (possibly infinite) weighted sum of chi squared variables for which
a great deal is known. In particular we are able to generalize a recent result of
Zolotarev [19] to quadratic forms. In Section 4 we give several examples which
serve to illustrate our ideas. Finally in Section 5 we show that the limit of S,
may be interpreted as a quadratic functional of the form ff A(s, t) dx(s) dx(t)
defined on the Wiener process. This connects our results with those of Cameron
and Martin and in particular allows us to generalize one of their results (see
Example 4).
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1. Convergence in quadratic mean. Let Ty = 0, T, = S, — E{S, } and Y, =
Tw— Toa,n=12 -

LemMma 1. Yy, Y., - - is a sequence of orthogonal random variables.

Proor. Y, = 2X, Zj_l niX; 4 @n(X' — 1) = K, + L, where K, and L,
are defined in the obvious manner. Thus if n % m, E{Y,Y,} is a sum of four
terms each of which is easily shown to be zero.

For what follows next, we note that

E{Y,}} = E{K.”} + 2E{K,L,} + E{L.}
=431 d+ 0+ (C — 1)k,

TueoreM 1. T, converges in quadratzc mean (11w Tn = T for some random
variable T) if and only if D jhe1 @ < 0.

Proor. We apply [13], Theorem A, p. 456, according to which 7, = Yy Y
converges in quadratic mean if and only if Z:,l E{Y,)} < «.But

Z:=1 E{Y : Zw—l [421—_11 af,, + (C — l)ain]
=22 24 [22°75 dny + anal + (€ — 3) X0 dna
=23 7adh + (C — 3) 2 ann
which implies the result. We note that if X;is distributed N (0, 1), then C = 3 so
that |T))* = E{T* = D aa B{Y,} = 2 D k1 a3 .
Since Sp = Thn 4+ D1 a;; , Theorem 1 has the trivial

COROLLARY 1. If D i1 Go and D e aj; both converge, then S, converges in
quadratic mean.

2. Almost sure convergence. While it is extremely difficult to give necessary
and sufficient conditions for the almost sure convergence of T, , the fortunate
fact that T', is a martingale allows us to obtain good sufficient conditions easily.

LemmA 2. Ty, Te, - - ©s a martingale.
Proor. Let Y,, Y,, -+ be as in Section 1 and let ¢(y1, -, Yn—1) be any
bounded Baire function of the indicated variables. Now if n = 2,
E{Ynd’(Yl y "ty Yn—l)} E{2X Z]—l Anj. J¢(Y1, Tty Yn—l)}
+ E{arm(X‘nZ - 1)4’( Yl y Tty Yn—l)}
= 2E{Xn}E{ ;L=_11 aanj¢( Yl y Tt Yn—l)}
+ annE{XnZ - I}E{d’(Yl) ttty Yn—l)}
=0+ 0.

By [8], p. 92, this is enough to establish that 7', is a martingale.

TueorEM 2. If ka=1 @i < o, then T, converges almost surely.

Proor. By the convergence theorem for martingales ([8], p. 319) it is sufficient
to show that E{|T.|} < K < « for some constant K. But by the Schwarz in-
equality and the proof of Theorem 1,



CONVERGENCE OF QUADRATIC FORMS 569

2= E{(Y) £ 2 E{Y
=22 Ydh + (C—3) 2imd < .

We conclude this section with a very special result. For it we drop the hypothe-
sis of symmetry of a;; and we do not need our overall assumptions that E{X,*} = 0
and E{X,"} < .

THEOREM 3. If a4 = ajby and if Y 10 = M < o, then S, and T, both
converge almost surely.

ProOF. S = (21 0;X;)( D=1 bpX4). By a well known theorem ([13], p.
236), the sequences on the right will converge almost surely provided Y a;” and

b;* converge. But these series must converge since .

M=z Zjn,kml a?k = Z;‘;l ‘112 Z/?=1 b

On the other hand, since T, = S, — 211 a;b; it follows by Cauchy’s inequality
that T, also converges almost surely.

(E{|T.I" < E(T.

3. Convergence in distribution—the normal case. From now on we assume
that X is distributed N (0, 1). Since convergence in quadratic mean of random
variables implies their convergence in distribution (laws), the condition

> aj < « implies via Theorem 1 that T, will converge in distribution. We
shall obtain a formula for the characteristic function of the limiting distribution
in terms of certain determinants which are well known in the theory of integral
equations. We remind our readers of the following definitions.

For a kernel A (s, t) defined on [0, 1] x [0, 1] we define the Fredholm and modi-
fied Fredholm determinants d(\) = d(\; A) and 6(\) = §(\; A) by

© n Al 1A(81,81)"'A(81,8n)
d(>\;A)=1+7§(_>‘) fo /0 .

ds; + - ds,
n!

A(sn, Sl) te A(Sn, sn)

and 8(\; A) = d(\; A™) where A*(s, t) = A(s, t) for s  tand 4%(s, s) = 0.
These and many other equivalent formulas will be found in [15]. We pause only to
note that d(\; A) exists for a continuous kernel or for one of bounded variation
(in the sense of Hardy-Krause [1]), that 8(\; A) exists for any square summable
kernel (ff) f}, A’(s, t) dsdt < ) and that in this case 8(\; 4) has the (possibly
infinite) product expansion

(3.0) (v 4) =TI (1 — ) exp ()

where k1, k2, - - - are the nonzero eigenvalues of A arranged in order of decreasing
absolute value and taking multiplicities into account. For this latter fact, see
([7], p. 217) but note that our «; is the reciprocal of the \; used there, i.e.,
kus(t) = [5 AL, s)u (s) ds.

Let us suppose then that Y ;x_1 a5 < . We propose to associate with the
infinite matrix [a;] a kernel A(s, t) and consequently a modified Fredholm
determinant 6(\; A). To do thislet ¢ 1(s), ¢ o(s), - - - be any complete orthonormal
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system in L*(0, 1), let
Au(s, 8) = 2 7kmr aud ()il 8)

and
A(s, t) = LiMu,e Aa(s, t).

Clearly the kernel A(s, ¢) thus determined may depend on the orthonormal
system that was selected. However, it is easy to show that the nonzero eigen-
values of A (and hence 8(\; A)) are independent of the ¢’s; they depend only on
the infinite matrix [a;]. In fact, there is no real necessity of introducing the kernel
A at all—one could define the Fredholm determinant for [a;:] directly. We have
chosen the present course because the theory of Fredholm determinants for L
kernels is so well known.

To connect these determinants up with the distribution of 7', let us note that if
k1™, k™, -+, km™ are the nonzero eigenvalues (including multiplicities) of the

matrix with elements aj , 7,k = 1,2, -- -, n, or equivalently the nonzero eigen-
values of the kernel 4.(s, ), then

¥u(§) = Elexp (itT0)}
= exp (—i 2_j- aj;)Efexp (i£S.))
exp (—1& D=1 ;") Efexp (it 21k X;")}
= exp (=4t 2 i i) 7 (1 — 260™) T8
= [II5= (1 — 268™) exp (20T
= [5(2i¢; A,)] (see (3.0)).

Now by use of the arguments in [15], p. 95, it follows that §(\; A.) = 8(X\; A) as
n — . Hence
THEOREM 4. If D Gecs ik < oo, then

Y(£) = lima.o Efexp (4T.)} = [6(23¢; A1

where A(s, 1) ~ D 5k=1 i (8)di(t).

COROLLARY 2. Assume P gi_1 0y < o and let A(s, t) have x1, kg, -+ as its
nonzero eigenvalues arranged in the usual way. Let W, = D _J—1 (;X;* — «;). Then-
T = liMeuow Th and W = Lim.,.. W, both exist and have the same distribution.

PRrOOF. 2 gm1ki = [o [0 A%(s, t)dsdt = D jum1 @i < oo, [15, p. 116]. It
follows by Theorem 1 that W and T both exist. Moreover

Efexp (W)} = [I], (1 — 2itx;) exp (2it)]
= [8(2it; I
= Elexp (¢T)}.

We remark that by Theorem 2, lim,.., T» and lim,_., W, exist almost surely
and are of course equal to 7" and W (almost surely).
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THEOREM 5. Assume D ju—1 0y < oo and let A(s, t) be as above. If D =1 aj;
and f}, A(t, t) dt both exist and are equal, then
¢(%) = limp.. Bfexp (i£8.)} = [d(2i8; A)]7

Proor. Note that by Corollary 1, we know that ¢(£) exists. Moreover using
the fact that S, = Tn + D71 a,;, we see that

&(E) = lima.oexp (68 D_j~1 a;)[6(2i; Aa)] ™
= exp (i [5 A(t, t) dt)[s(2E; A)]™
[d(23g; A)]7, (see [11, p. 4]).

THEOREM 6. Assume that D gx1 a5 and D=1 aj; both converge and that the
kernel A(s, t) s positive semidefinite (or equivalently that the maitriz [as),

5 k=1,2, ---  n,is positive semidefinite for all n). Let k1, k2, - - - be thenonzero
eigenvalues of A(s, t) arranged in the usual manner. Then
(3.1) Dok < o and D Fy a; = Dk,

(3.2) f Vo = D11 x,X7, it follows that V = liMuse Ve and S = Lima,. S,
exist and have the same distribution.

Proor. (3.1) is proved by Hille and Tamarkin ([11], pp. 29, 30). That S and V
exist follows from Corollary 1. That they have the same distribution is a conse-
quence of the identities S = T + Y i a;and V = W + D= «; and Corol-
lary 2.

Again we remark that lim,,. S, and lim,.. V. exist almost surely and equal S
and V almost surely.

Theorem 6 and a recent result of Zolotarev [19] make it possible for us to give
an asymptotic expression for P{S = z} for large z. Let A (s, t) be as above (i.e.,

positive semidefinite) and let o1, o2, - - - be its distinct nonzero eigenvalues ar-
ranged in order of decreasing size and let their respective multiplicities be
Ni,Ne, -+ .Thusk = ke = -+ = k,, = g1, ete. This allows us to state

CoROLLARY 3. Under the hypotheses of Theorem 6,
P{S z @} = [(K/T(m/2))(x/201)""™" exp (—a/201)][1 + €(2)]
where e(x) — 0 as x — o, T' s the gamma function and
K = [l — ofo))™™"™

Proor. Zolotarev states this result for V = > %1 k;X," under the assumption
that k; > 0 and Y i k; < . But according to the theorem just proved S and T~
have the same distribution.

In concluding this section we should like to mention an isomorphism which
actually underlies some of the above results. Let H be the set of real symmetric
transformations on L*(0, 1) of Hilbert-Schmidt type. Thus if A & H, there is an
essentially unique real symmetric kernel A (s, t) such that

Af(t) = [3 A(t, $)f(s) ds
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where [§ [3 A%(s, t) dsdt < . If we introduce an inner product by
(A,B) = 2 [3 [3 A(s, )B(s, t) ds dt,

then H becomes a Hilbert space.

Next let X1, X2, - - - be a sequence of independent N (0, 1) random variables
defined on some probability space Q. Let 3¢ be the Hilbert space of random
variables defined on Q of the form

G = lim.,.e [E;‘;kzl i X ;X — Z};l aj;)

where Y _ix-1 a3 < o and with the inner product (@, ®) = E{G®}.

To establish an isomorphism between H and 3C let ¢1(s), ¢2(s), - - - be a (fixed)
complete orthonormal set in L*(0, 1). Then for a given A ¢ H, determine the cor-
responding kernel A(s, ) and expand it (uniquely) in the mean convergent
double series Y aud;(s)¢i(t) thus determining an infinite matrix [a;;] and hence
the random variable @. The mapping A — @ may be shown to be one-to-one, onto
and structure preserving. In particular,

(A, B) =2 f(l) f% A(s, t)B(s, t) dsdt = 2 szal ajkbjk = E{@(B} = <&, (B).

Finally we mention that there are natural equivalence relations in H and 3¢
which correspond under this isomorphism. Let us say that A ~ B if there exists
an orthogonal transformation U on L*(0, 1) such that UAU™' = B. This cor-
responds in 3¢ to saying that @ ~ ® if @ and ® are identically distributed as
random variables.

4. Examples. Our formula for the characteristic function ¢(¢) = E{exp(i£S)}
is of some practical interest if d(2¢£; A) can be calculated explicitly. This can
easily be done if A(s, t) is a kernel of finite rank, i.e., of the form S X Fi(8)gi(t)
(see [15], pp. 36—40). To illustrate, let

f(s) ~ D1 aidi(s), Doimal < oo,
g(8) ~ 21 bidi(s), Db < oo,

where ¢1(s), ¢2(s), - - - is a complete orthonormal set in L*(0, 1).
ExampLE 1. Let A(s,t) = f(s)f(t) + g(s)g(t) or equivalently

A(s, t) ~ 3Tk (ajan + bibi)di(s)du(t).
Then

AN A4) =1 =[5 l%(s) + ¢*()] ds
+ N[[3 /() ds [3 9°(s) ds — ([2f(s)g(s) ds)’]

and hence if S = liMpae 21kt (@jax + bbr) X; Xk (which exists almost surely by
Theorem 3),

(3.3) Efexp (i8)} = [1 — 24 2_%1 (a" + b))
— 48 a b — (Ead))
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ExampLE 2. Let A(s, ¢) = f(s)g(t) + g(s)f(t), i.e.,
A(s, 1) ~ 2 Tk (abe + bjar)ds(s)e(t).
Then
d(n; A) =1 — 2x [3f(s)g(s) ds
+ NI([3 f(9)g(s) ds)® — [31%(s) ds [3 g*(s) ds]
and hence if
8 = liMpw 2jis 00 XX = liMpow 3 2jis (abe + bjar) X; X,
(34) Efexp (itS)} = [1 — 26t 2 =1 ab; .
— (205 ab)" — 225 af 2o b 17
As a special case of either of these examples, we have that if
S = liMpae 2 gkt a0 XXk,
then .
(3.5) Efexp (45)) = [1 — 26 2 a/T"

This is not at all surprising for several reasons. First of all, § = (Q_q1 a,X;)%,
i.e., S is the square of a normal variable with mean zero and variance i a;,
which implies (3.5). What is more pertinent from the point of view of this paper
is that if a;x = ajax , then the matrix [ax], 7, k = 1,2, - - - , n, has only one non-
zero eigenvalue, namely D /- a7, so that S, has the same distribution as
Xy® D% a and therefore S is distributed like Xy* D7 a;® which again implies
(3.5).

The theory that we have developed does not simplify the next calculation,
since apparently d(\; A) is most simply evaluated by means of its infinite product
expansion. We mention it because we will want to refer to it later.

ExampLE 3. Let A(s,¢) = min (1 — s,1 — ¢) = 1 — max (s, t). A has eigen-
values [(k — 3)7]° and normalized eigen functions 2t cos (k — Dws,
kE=1,2,---,and hence

A(s, t) = 2 225 {leos (K — 3)mscos (k — $)xt]/[(k — $)=]}.
Moreover
dn; A) = Tl — (40 (2k — 1)*7%)] = cos N

Hence E{exp [i£ D1 ((k — 3)7) X} = [sec (248)'].

An example of a similar nature is obtained by taking A (s, t) = min (s, ) — st
and leads to E{exp [if Y 1 (k) 72X:} = [(26£)*/sin (26£)*]". This result is well
known and has an important statistical application in connection with the limit-
ing distribution of the von Mises measure of discrepancy between a sample dis-
tribution function and a specified distribution function (see [3] for details).
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5. Interpretation of S as a Wiener functional and some consequences. We are
still considering the case where X; is distributed N (0, 1) but now we find it con-
venient to pick a very special representation for X;. For this purpose, let
{z(t),0 = t < 1} be the Wiener process, i.e., a Gaussian process with continuous
sample functions z satisfying z(0) = 0, E{x(t)} = 0 and E{z(s)z(t)} =
min (s, t). Let {¢,(t)} be the classical complete orthonormal sequence of tngono-
metric functlons in L* (0 1),1i.e.,let {¢;(¢)} be the sequence 1, 2t sin 2nt, 2} cos 2nt,
2t sin 4rt, 2* cos 4nt, Fmally, let X; = [¢@(t) dx(t). Then X1, X, -+~
forms a sequence of independent random variables each distributed N (0, 1) and

= > 10X X = f(l) f(ly An(s, t) dz(s) dz(t)

where as usual 4, (s, ) = > ik a,k¢,(s)¢k(t)

THEOREM 7. Assume D jpa1ap < o and suppose that A(s, t) =
1iMunsw An(s, t) 28 of bounded variation on [0, 1] x [0, 1] (in the sense of Hardy-
Krause [1]). If S, is as above, then S, converges in quadratic mean to S where

S = [3[3 A(s, t) da(s) da(2).
Proor. It can be shown that
(5.0) E{[[3 [3 A(s, 1) da(s) de(t)['} = 2 [o [5 A*(s, 1) ds dt + [Jo A(t, ¢) dif'.

Wiener ([16], p. 31) has given a heuristic derivation of this result. We will give
another. Let t; = j/n,j = 0,1,2, .-+ , n, and let Az; = x(¢;) — x(t;-1). Then

B{[f5 [ A(s, t) da(s) de()T}

= B{liMp.e D mijimt Ay, )AL, t) ATpAT AT AT

= limpaw Dopiiict Al )AL, ) B{ATATAT;AT)

= 1w { Do tjmyimi [A(t:, )AL, ) + A, t)A(L;, t:)
+ A(te, YA, )™ + 3 2 At , )AL, t)n™")
2[4 [3 A%(s, t) dsdt + ([} AL, t) de.

The only difficulty in this whole argument is in interchanging the expected
value and limit at the second step. This seems to be hard to justify. However
(5.0) can be proved rigorously as follows. First integrate by parts in the double
Stieltjes integral, square the result, then bring the expected value inside each of
the resulting integrals by Fubini’s theorem, evaluate and finally integrate by
parts again. This computation is exceedingly lengthy due to the boundary terms
that occur in the integration by parts and we shall not reproduce it.

Once we have (5.0) we may apply it tothe kernel A(s, t) — Aa(s, t) obtaining

E{IS — 8.1} = B{If§ [3 (A(s, ) — Au(s, 1)) da(s) dz(t)]}
(5.1) = 2[5 [1A(s, 8) — Auls, )] ds dt
+ 13 (At t) — Aa(t, 1)) dif”.
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Now since 4 is of bounded variation, A.(s,t) — A(s, t) as n — o« at points of
continuity of A [10] and moreover this convergence is bounded. But again because
A is of bounded variation, 4 is continuous at almost all points of the diagonal
s = ¢ ([2], p- 722). Thus by bounded convergence]

[o Ant, t) dt — [3 A2, t) di
and so the second term at the end of (5.1) goes to zero as n — . Since 4 is
square summable (being of bounded variation) the first term also goes to zero
and the proof is complete.
Putting this result together with Theorem 5 yields
CoroLLARY 4. If A(s, t) s symmetric and of bounded variation and if
{z(t),0 < ¢t £ 1} is the Wiener process, then

Elexp [ig [5 [3 A(s, t) da(s) da ()]} = [d(2ig; A)]7

We mention that this result can also be obtained (but only after a good deal
of effort) as a corollary to the main theorem of [18].

ExampLE 4. Let A(s,t) = —p[max (s, t)] where p(¢) is of bounded variation on
[0, 1] and p(1) = 0. Then [} [§ A(s, t) da(s) dz(t) = [32°(t) dp(t) as may be
shown by integration by parts. Hence

Bfexp [i£ [32°(t) dp()]} = ld(2i; )]

which extends a result of Cameron and Martin [6]. Taking p(t) = t — 1, we find
(see Example 3) that d(2%; A) = cos(2:¢)! and therefore

Efexp [it [5 (1) dil} = [see (2:)']".
ExamprE 5. Let A(s, t) = min (s, t). Then d(2:¢; A) = cos (2:¢)* and
J3 I3 ACs, ) dals) da(t) = [3l2(t) — 2(1)F dt
and therefore
Efexp (it [0 [2(t) — 2(1)F df} = [sec (2i£)'T.
Thus we have the not surprising fact that fﬁ 2*(t) dt and f o lz(t) — ()P dt
have the same distribution.

Acknowledgment. The author would like to thank the referee for helpful
comments.
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