## DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTENCE THEOREMS<sup>1</sup>

## By Damaraju Raghavarao<sup>2</sup>

## University of Bambay

- 1. Introduction and summary. In this note, we give simpler proofs of results obtained, regarding the necessary conditions for existence of certain unsymmetrical PBIB designs having group divisible, triangular and  $L_i$  association schemes, in [5]. We also give simpler proofs of the necessary conditions for the existence of affine  $\alpha$ -resolvable GD(m, n), T(n),  $L_i(s)$  and BIB designs obtained in [6]. We follow the notation of these two papers throughout this note. We finally obtain necessary conditions for the dual of a design D, to be a specified design E.
- 2. Gramians of the rational characteristic vectors of N'N in terms of the gramians of rational characteristic vectors of NN'. Let  $\theta_0 = rk$ ,  $\theta_1$ ,  $\theta_2$ ,  $\cdots$ ,  $\theta_s$  be the distinct rational characteristic roots of NN', where N is the incidence matrix of the design defined in the usual manner and N' is its transpose, with respective multiplicities  $\alpha_0 = 1$ ,  $\alpha_1$ ,  $\alpha_2$ ,  $\cdots$ ,  $\alpha_s$  and zero be a characteristic root with multiplicity  $\beta$ . We shall put  $\beta = 0$  if NN' is non singular and the results of this note still hold true. Obviously  $1 + \sum_{i=1}^s \alpha_i + \beta = v$ . Then, the characteristic roots of N'N are  $\theta_0$ ,  $\theta_1$ ,  $\theta_2$ ,  $\cdots$ ,  $\theta_s$ , 0 with respective multiplicities  $\alpha_0$ ,  $\alpha_1$ ,  $\alpha_2$ ,  $\cdots$ ,  $\alpha_s$ ,  $\beta + b v$ .

Let  $\underline{x}_{i1}$ ,  $\underline{x}_{i2}$ ,  $\cdots$ ,  $\underline{x}_{ia_i}$  be a set of independent, rational characteristic vectors corresponding to the root  $\theta_i$  of NN'. Putting

$$(2.1) X = [\underline{x}_{i1}, \underline{x}_{i2}, \cdots, \underline{x}_{i\alpha_i}],$$

the gramian of the independent, rational characteristic vectors corresponding to the root  $\theta_i$  of NN' is, by definition,

(2.2) 
$$Q_i = X_i' X_i, i = 1, 2, \dots, s.$$

Since the column vectors of  $X_i$  are the rational characteristic vectors of NN' corresponding to the root  $\theta_i$ , it follows that the column vectors of  $N'X_i$  are the independent, rational characteristic vectors of N'N corresponding to the same root  $\theta_i$ . Hence the gramian of the independent, rational characteristic vectors corresponding to the root  $\theta_i$  of N'N is

(2.3) 
$$Q_i^* = X_i' N N' X_i = X_i' \theta_i X_i = \theta_i Q_i, \qquad i = 1, 2, \dots, s.$$

Received 20 July 1964; revised 18 February 1966.

<sup>&</sup>lt;sup>1</sup> This work was financially supported by a Senior Research Fellowship of the Centre for Advanced Training and Research in Mathematics, University of Bombay.

<sup>&</sup>lt;sup>2</sup> Now at Punjab Agricultural University, Hissar (Punjab), India.

Hence

$$|Q_i^*| = \theta_i^{\alpha_i} |Q_i|,$$

and from Lemma 1.4 of Ogawa [4],

$$(2.5) c_p(Q_i^*) = (-1, \theta_i)_p^{\alpha_i(\alpha_i+1)/2}(\theta_i, |Q_i|)_p^{\alpha_i-1}c_p(Q_i),$$

where  $(a, b)_p$  is the Hilbert norm residue symbol and  $c_p(A)$  is the Hasse-Minkowski invariant of A.

In the above discussion we have considered the gramians of the independent, rational characteristic vectors corresponding to the non zero, rational roots only. If Q and  $Q^*$  are the gramians of the independent rational, characteristic vectors corresponding to the zero root of NN' and N'N respectively, then |Q|,  $|Q^*|$ ,  $c_p(Q)$  and  $c_p(Q^*)$  can be evaluated with the help of Equations (3.11) and (3.13) of [5]. In what follows p stands for odd primes only.

3. Simpler proofs of results of [5]. A semi-regular GD(m, n) satisfying b = v - m + 1 is a LB design (Cf. Laha and Roy [3]). Let N be the incidence matrix of such design. Then the non zero characteristic roots of NN' are  $\theta_0 = rk$  and  $\theta_2 = r - \lambda_1$ , with respective multiplicities  $\alpha_0 = 1$  and  $\alpha_2 = m(n-1)$  (cf. Connor and Clatworthy [2]). It can be easily shown that  $Q_2$  has

$$(3.1) |Q_2| \sim n^m,$$

and

$$(3.2) c_p(Q_2) = (-1, n)_p^{m(m+3)/2},$$

where  $a \sim b$  stands for the fact that the square free parts of a and b are the same. Then  $Q_2^*$ , in view of (2.4) and (2.5) has

$$|Q_2^*| \sim \theta_2^{\alpha_2} n^m,$$

and

$$(3.4) c_p(Q_2^*) = (-1, \theta_2)_p^{\alpha_2(\alpha_2+1)/2} (\theta_2, n^m)_p^{\alpha_2-1} (-1, n)_p^{m(m+3)/2}.$$

Since the semi-regular GD(m, n) is a LB design,  $Q_2^*$  must be rational congruent to the gramian corresponding to the independent, rational characteristic vectors corresponding to the multiple root (i.e.  $\theta_2$ ) of the BIB design, which is the dual of the semi-regular GD(m, n) under consideration. Hence

$$(3.5) |Q_2^*| \sim b,$$

and

$$(3.6) c_p(Q_2^*) = 1.$$

Hence, if the semi-regular GD(m, n) with b = v - m + 1 exists, then from (3.3) and (3.5), we must have

$$\theta_2^{\alpha_2} n^m b \sim 1$$

and from (3.4) and (3.6) we must have

$$(3.8) \qquad (-1, \theta_2)_{p}^{\alpha_2(\alpha_2+1)/2} (\theta_2, n^m)_{p}^{\alpha_2-1} (-1, n)_{p}^{m(m+3)/2} = 1.$$

We can easily verify that Conditions (3.7) and (3.8) are equivalent to the conditions given in Theorem 4.1 of [5]. Theorems 5.1, 5.2, 6.1 and 6.2 of [5] can similarly be proved.

4. Simpler proofs of results of [6]. Let N be the incidence matrix of an affine  $\alpha$ -resolvable BIB design with parameters v,  $b = t\beta$ ,  $r = t\alpha$ , k and  $\lambda$ . The gramian  $Q_1$  of the rational characteristic vectors corresponding to the root  $r - \lambda$  of NN', has

$$(4.1) |Q_1| \sim v,$$

and

$$(4.2) c_p(Q_1) = 1.$$

Then  $Q_1^*$ , in view of (2.4) and (2.5), has

$$|Q_1^*| \sim (r - \lambda)^{v-1} v,$$

and

$$(4.4) c_{p}(Q_{1}^{*}) = (-1, r - \lambda)_{p}^{v(v-1)/2}(r - \lambda, v)_{p}^{v}.$$

Since the design under consideration is affine  $\alpha$ -resolvable, its dual is  $GD(t, \beta)$  and  $Q_1^*$ , must be rationally congruent to the gramian of the independent, rational characteristic vectors corresponding to the non zero multiple root of  $GD(t, \beta)$ . Hence

$$(4.5) |Q_1^*| \sim \beta^t,$$

and

$$(4.6) c_{p}(Q_{1}^{*}) = (-1, \beta)_{p}^{t(t+3)/2}.$$

Hence if the affine  $\alpha$ -resolvable BIB design exists, we must have

$$(4.7) (r-\lambda)^{v-1}v\beta^t \sim 1,$$

and

$$(4.8) \qquad (-1, r - \lambda)_p^{v(v-1)/2} (r - \lambda, v)_p^{v} (-1, \beta)_p^{t(t+3)/2} = 1.$$

We can easily verify that the Conditions (4.7) and (4.8) are equivalent to the necessary conditions given in Theorems 5 of [6]. Theorems 8 and its corollaries of [6] can similarly be proved.

5. Duals of designs. Given two designs D and E, one may be interested to know whether the design E can be the dual of D. For this purpose, we must

necessarily have the number of treatments of D to be equal to the number of blocks in E, number of blocks of D to be equal to the number of treatments in E, and the number of replications of D to be equal to the block size in E. Further, if N is the incidence matrix of D and  $N^*$  is the incidence matrix of E, then the non zero characteristic roots along with their multiplicities should be the same for NN' and  $N^*N^{*'}$ . Additional necessary conditions for this purpose can be obtained in view of Section 2. For the given design D, we know the gramians  $Q_i$  of the independent, rational characteristic vectors corresponding to the roots  $\theta_i$  of NN' ( $i=1,2,\cdots,s$ ). If  $Q_i^*$  is the gramian of the independent rational characteristic vectors corresponding to the root  $\theta_i$  of N'N, then  $|Q_i^*|$  and  $c_p(Q_i^*)$  can be evaluated from (2.4) and (2.5). For the design E, the values of  $|P_i|$  and  $c_p(P_i)$  can be independently obtained, where  $P_i$  is the gramian of the independent, rational characteristic vectors corresponding to the characteristic root  $\theta_i$  of  $N^*N^{*'}$  ( $i=1,2,\cdots,s$ ). In order that E be the dual of D, it is clearly necessary that  $P_i$  be rationally congruent to  $Q_i^*$  and hence  $|Q_i^*| \sim |P_i|$  and  $c_p(Q_i^*) = c_p(P_i)$  ( $i=1,2,\cdots,s$ ).

Let us consider the particular case of symmetrical designs, i.e. designs in which v = b and r = k. We know that the dual of a symmetrical BIB design is again a symmetrical BIB design. We may be interested to know whether a similar property holds in case of PBIB designs.

Let N be the incidence matrix of a symmetrical PBIB design with association scheme A and  $Q_i$  be the gramian of the independent, rational characteristic vectors corresponding to the characteristic root  $\theta_i$  of  $NN'(i=1, 2, \dots, s)$ . If  $Q_i^*$  is the gramian of the independent, rational characteristic vectors corresponding to the root  $\theta_i$  of N'N, then (2.4) and (2.5) give the value of  $|Q_i^*|$  and  $c_p(Q_i^*)$  respectively.

If the dual of this design is again a PBIB design with the same set of parameters and association scheme A, it is necessary that

$$|{Q_i}^*| \sim |Q_i|$$

and

$$(5.2) c_p(Q_i^*) = c_p(Q_i).$$

Hence in order that the dual of a symmetrical PBIB design with association scheme A to be a PBIB design with the same set of parameters and the same association scheme A, it is necessary that

(5.3) 
$$\theta_i^{\alpha_i} \sim 1, \qquad i = 1, 2, \dots, s,$$

and

$$(5.4) (-1, \theta_i)_p^{\alpha_i(\alpha_i+1)/2}(\theta_i, |Q_i|)_p^{\alpha_i-1} = 1, i = 1, 2, \cdots, s.$$

Thus

Theorem 5.1. Necessary conditions for the dual of a symmetrical PBIB design

with association scheme A to be a PBIB design with the same set of parameters and the same association scheme A are (5.3) and (5.4).

Illustration 5.1.1. Consider T(2) of the Tables [1] with parameters

$$(5.5) v = 10 = b, r = 4 = k, n = 5, \lambda_1 = 2, \lambda_2 = 0.$$

From Corollary 5.1.4 of Connor and Clatworthy [2], we can obtain

(5.6) 
$$\theta_1 = 6, \quad \alpha_1 = 4, \quad |Q_1| \sim 5.$$

The left hand side of (5.4) becomes

$$(5.7)$$
  $(5.6)_p$ 

which has the value -1 for p=3. Hence the Condition (5.4) is violated. Thus the dual of T(2) with parameters (5.5) cannot be a T(2) with parameters (5.5). In fact the dual of this design is the singular group divisible design designated by S 17.

**6.** Acknowledgment. The author is thankful to Professor S. S. Shrikhande for his helpful suggestions.

## REFERENCES

- [1] Bose, R. C., Clatworthy, W. H. and Shrikhande, S. S. (1954). Tables of partially balanced incomplete block designs, Inst. of Statist., Univ. of North Carolina, Reprint Series No. 50.
- [2] CONNOR, W. S. and CLATWORTHY, W. H. (1954). Some theorems for partially balanced designs. Ann. Math. Statist. 25 100-112.
- [3] LAHA, R. G. and Roy, J. (1956-57). Classification and analysis of linked block designs. Sankhyā 17 115-132.
- [4] Ogawa, Junjiro (1959). A necessary condition for existence of regular symmetrical experimental designs of triangular type with partially balanced incomplete blocks. Ann. Math. Statist. 30 1063-71.
- [5] SHRIKHANDE, S. S., RAGHAVARAO, D. and THARTHARE, S. K. (1963). Non existence of some unsymmetrical partially balanced incomplete block designs, *Canad. J. Math.* 15 686-701.
- [6] SHRIKHANDE, S. S. and RAGHAVARAO, D. (1963). Affine α-resolvable incomplete block designs. Contributions to Statistics volume presented to Professor P. C. Mahalanobis on his 70th birthday. Pergamon Press, New York, 471-480.