THE SEQUENTIAL COMPOUND DECISION PROBLEM
WITH m X n FINITE LOSS MATRIX

By J. Va~ Ryzin
Argonne National Laboratory

1. Introduction and summary. Consideration of a sequence of statistical
decision problems having identical generic structure constitutes a sequential
compound decision problem. The risk of a sequential compound decision problem
is defined as the average risk of the component problems. In the case where the
component decisions are between two fully specified distributions P; and P,,
Py # P,, Samuel (Theorem 2 of [9]) gives a sequential decision function whose
risk is bounded from above by the risk of a best “simple’” procedure based on
knowing the proportion of component problems in which P, is the governing
distribution plus a sequence of positive numbers converging to zero uniformly
in the space of parameter-valued sequences as the number of problems increases.
Related results are abstracted by Hannan in [2] for the sequential compound
decision problem where the parameter space in the component problem is finite.
The decision procedures in both instances rely on the technique of ‘“‘artificial
randomization,” which was introduced and effectively used by Hannan in [1]
for sequential games in which player I’s space is finite. In the game situation
such randomization is necessary. However, in the compound decision problem
such “artificial randomization’ is not necessary as is shown in this paper.

Specifically, we consider the case where each component problem consists of
making one of n decisions based on an observation from one of m distributions.
Theorems 4.1, 4.2, and 4.3 give upper bounds for the difference in the risks (the
regret function) of certain sequential compound decision procedures and a best
“simple’’ procedure which is Bayes against the empirical distribution on the
component problem parameter space. None of the sequential procedures pre-
sented depend on “artificial randomization.” The upper bounds in these three
theorems are all of order N and are uniform in the parameter-valued sequences.
All procedures depend at stage k on substitution of estimates of the k — 1st (or
kth) stage empirical distribution px—; (or pi) on the component parameter
space into a Bayes solution of the component problem with respect to px—; (or
pr). Theorem 4.1 (except in the case where the estimates are degenerate) and
Theorem 4.3 when specialized to the compound testing case between P, and P,
(Theorems 5.1 and 5.2) yield a threefold improvement of Samuel’s results
mentioned above by simultaneously eliminating the “artificial randomization,”
by improving the convergence rate of the upper bound of the regret function to
N _’}, and by widening the class of estimates.
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Higher order uniform bounds on the regret function in the sequential com-
pound testing problem are also given. The bounds in Theorems 5.3 and 5.4 (or
Theorems 5.5 and 5.6) are respectively of O((log N)N™') and o(N*) and are
attained by imposing suitable continuity assumptions on the induced distribu-
tion of a certain function of the likelihood ratio of P, and P, . Theorem 6.1 ex-
tends Theorems 4.1, 4.2, and 4.3 to the related “empirical Bayes” problem. Also
lower bounds of equivalent or better order are given for all theorems.

The next section introduces notation and preliminaries to be used in this
paper and in the following paper [15].

2. Preliminaries.

2.1. The Problem. Consider the following finite statistical decision problem.
Let X be a random variable taking values in a measure space (X, &, p) which
is known to have one of m possible distributions in the finite class

® = {Py;0e9, Q= {1, ---, m}. Based on observing X we are required to
make a decision d e ® = {1, - -+, n} incurring loss L(6, d) if we make decision
de D when X is distributed as Py, 0 = 1,---,myd=1,---,n. Let

L = (L(6, d)) be the m X n matrix of losses.

Suppose that such a statistical decision problem is repeated sequentially with
Q, ®, (X, §, u) and L remaining the same in each problem. Specifically, let
X ={Xy;k=1,2 ---} be a sequence of independent random variables X
with values in (%, &, u) where X, is distributed as Py, 6; ranging in
Q. Let0 = {6, ;6,62 k = 1,2, ---} be a sequence of parameter values on €.
Let Q be the space of all such sequences.

In the sequential situation X; = (Xi, -, Xx) is known to the statistician
at stage k. Hence, a decision procedure for the statistician in such a repetitive
sequential situation is a sequence t = {t:} of decision functions t, = t:(Xx) =
(ta(X), -+, ten(Xx)) where t:a(Xi) = O represents the probability of selecting
decision d after X; is observed. For slightly greater generality, so that the nota-
tion will apply also in the problem of [15] where the statistician is given both

01 = (0, -+, 6k1) and X; at the kth stage we may write
(2.1) te = te(0, Xi) = (ta(0, Xi), -+, tn (0, Xi)),
ta(® Xi) 20,  Diatu(8, X) =1,
where t;, is a probability distribution on ® = {1, - - - , n} with the dependence on

0 in accord with the knowledge of the ’s available to the statistician at stage k.
Thus in this paper we shall always have t, = t:(X;) while in [15] we shall always
have t, = t:(8;_1 , X&). Such a procedure is said to be simple if there exists a vec-
tor of n real-valued measurable functions on (X, &, u), t(z) = (a(x), ---,
t.(z)), with Yo ta(x) = 1,ts(z) = 0, such that txa(8, Xe) = ta(Xi), k =1,
2,---3;d =1, ---,n. Hence, the kth decision depends only on X} , the kth ob-
served random variable. A simple rule will be denoted by the vector function
t= (b, - ,ta).

Before discussing such procedures further we shall introduce some notation.
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2.2. Notation. For 0 ¢ Q, let P denote the product probability measure X7
Py, . For fixed k, let 6, = (6;, ---, 6) and P, = X7 Py, . Expectation with
respect to P and P;, will be denoted by E and E; respectively. Also, expectation
with respect to Py will be denoted by E, for each 6 ¢ €.

The following notation relating to the m X m matrix of losses L = (L(6, d))
is convenient. Let Ly and L* denote respectively the 6th row and dth column of
this matrix, 6 = 1, ---,m,d = 1, ---, n. The ordered difference of the dth
and d'th columns L* — L* will be denoted L* with components L = L(86, d)
— L(6,d). Let L = maxpaa [Lé | and L* = maxgq |L(6, d)].

Let E™ be m-dimensional Euclidean space. If u = (u1, --- , un) and v = (v,
.-+, vy) are two vectors in E™, define wv = (uwi, - -, Undn) and (u, v) =
> ™, uw; as the vector of componentwise products and the usual inner product
respectively. The usual norm in E™ is given by |jul| = (u, u)’. Let ¢ = (da,

-, 8m), where 8;; = O or 1 as ¢ 5% j or ¢ = j, be the <th basis vector in E™,
2 =1, -+, m. The vector of all zeros in E™ is denoted by 0 and the vector of all
ones by 1. The dimension in which these operations are carried out will always
be clear from the context.

Next, for each positive integer and each 8 ¢ Q, define pe(0) = k™D 5 e, ,
where ¢; is the 7th basis vector in E™. Note that p,(0) = (pr(8), - -+, Prn(0)),
where pro(8) = k' s 86,0 is the relative frequency of 6s equal to 8 in the
first k members of 0, 6, = (6;, ---, 6:), 0 Q. We shall call p.(0) the k-stage
empirical distribution on Q for 6 ¢ Q. We shall often write p,(0) simply as p
= (pm, ***, Pem) suppressing 6 therein.

We shall assume throughout that the measure u boundedly dominates the class
P. That is, for every 0¢Q,

(2.2) fo(x) = (dPo/dp) (x) = K a.en

for some positive finite K. There is no loss in generality in this assumption since
u may be taken as Y iy Py with K = 1. Let f(z) = (fi(z), -+, fm(z)) be the
m-vector of densities defined by (2.2).

2.3. Decision Procedures. We now return to discussion of procedures t in
(2.1). For fixed N and 0 ¢ Q, the risk function of the procedure t over the N
problems is denoted by Rx(0, t) and is defined to be the average of the risks in
the component problems,

(2.3) E{ > oy L(6i, d)ta(0, Xi)} = E(Log, , t:(0, X2)), k=1,---,N.
Hence,

(2.4) Ry(0,t) = EWx(o, t),

where

(2.5) Wx(8,t) = N7 2 k= (Lo, , (6, Xi))

is the average loss over the first N problems.
If one uses a simple decision proceduret = (4, - - - , ¢,) the risk function (2.4)
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has a particularly simple form. The loss incurred in using ¢ is
(2.6) Wx (0, 1) = 2251 pro(8){AVoms(Lsy, , 1(X))},

where AVy,_, indicates the numerical average of the Npx(0) values for which
0, = 6. Now since the (Ls, , t(Xx)) for 8, = 6 are independent identically dis-
tributed random variables with mean ps(t) = Eo(Ls, t(X)), we may express
their expected average as ps(t) to obtain from (2.6),

(2.7) Ry(8,t) = 2 51 pne(8)ps(t) = (pn(0), p(t)),

where p(t) = (p1(2), -+, pu(?)).

The problem of selecting a simple decision procedure to minimize the risk
(2.7) is straightforward for fixed 6 ¢ Q and N, i.e., choose ¢ as a Bayes solution
in the single stage component problem with px(8) considered as an a prior:
distribution on Q. However, we shall need slightly more general results later for
which we choose to minimize (£, p(¢)) for any fixed £ ¢ E™. Recalling (2.2) we
may express ps(t) = Eo(Lg, t) = [ D2 i~ L(8, d)fo(x)ta(x) du(z) and hence

(2.8) r(§ 1) = (§0()) = IZZ% (5 L (@) )a(x) du(z).
Therefore (2.8) is minimized for fixed ¢ by any vector function (%, ) = (fi(,

z), +++, tu(% x)) which is chosen as a probability distribution concentrating

on those d’s for which (¢, L%f(x)) is a minimum. That is, ¢(¢, 2) has components
ta((,2) =0 if (& Lf(z)) > min (¢ Lf(z))

(2.9) =1 if (5 LF(2)) < mina(§ L (2))

arbitrary if (& Lf(z)) = min,(¢, Lf(z)),

where D i—1ts(¢, #) = 1 and #:(§ ) = 0 a.e.u. When convenient we shall
simply refer to the rule in (2.9) as t{£}. If £ is an a prior: distribution on ©, then
t{£}, defined by (2.9) is a Bayes solution in the component problem with respect
to £&. We may always replace (2.9) with the following particular minimizing
non-randomized version of t{& given by ¢*{£}, where

It

1 (¢, ) = 1if d is the smallest integer for which
(2.10) () Lf(x)) = min, (¢ L (z))
= 0 otherwise.
For each ¢ & E™ define the following function

(2.11) ¢(§) = infir(g t) = (& Hg),

for any t{£} given by (2.9). For ¢ which are a priori distributions on @, the func-
tion ¢(£) in (2.11) is referred to as the Bayes envelope functional.

We are now in a position to discuss the criterion by which we shall examine
the efficacy of a sequential procedure tin (2.1). For fixed N, if p~(0) were known .
the best simple rule one can use is a componentwise Bayes rule ¢{px(0)} defined
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by (2.9) with ¢ = px(0). In general, this procedure is unavailable since both
N and px(0) must be known in advance. However, consider the function

(2.12) Ry(6,t) — ¢(pn(0)).

This function is called the regret function of the sequential procedure t against
the class of all simple procedures. We shall examine sequential procedures t
for which (2.12) converges to zero uniformly in 8 ¢ Q as N, the number of prob-
lems, increases. Hence, in a limiting risk sense such sequential procedures have
the advantage of performing for the first N problems about as well as an optimal
simple rule based on knowing py(0) for all N sufficiently large, no matter what
the sequence 0 ¢ Q.

Before stating the procedures t in (2.1) explicitly and examining the con-
vergence of (2.12) we close this section with the following additional notation
and preliminary lemma.

The characteristic function of a set A will be denoted simply by A enclosed in
square brackets; that is,

(2.13) [Alle] =1 if acA
=0 if azA.

The following useful lemma is a simple consequence of the Berry-Esseen nor-
mal approximation theorem (see Lo&ve [5], p. 288).

Lemma 2.1. If Yy, ---, Y, are n independent random variables with mean 0,
variance o = EY ! and third absolute moment v; = E|Y [, then for « and [ real,
120,

Prla £ Dt Vi<a+ I} £l7(2r) + 2807%,
where B is an absolute constant, o> = D i ol, and y = D im17i.

3. Sequential compound decision procedures. Consider again the problem
stated in Section 2. If in such a problem the statistician knows at stage k only
the first k observations X; = (X3, -+, Xs) and has no knowledge of the se-
quence 0, then such a problem is called a sequential compound decision problem.
Thus the procedure t in (2.1) at stage k will be functions of X; only,
i.e., tk(0, Xk) = tk(Xk) in (21) (see (31))

Such problems were considered previously for m = n = 2 by Samuel [9] and
[10] and for general m and n results are abstracted in [2]. The relationship between
these earlier results and our results will be made specific later. Also see Samuel
[11] for results on the related sequential compound estimation problem.

In [2], [9] and [10], the procedures t in (2.1) were obtained by substituting
estimates of px(0) (or px—1(0)) at stage k& and using the corresponding Bayes
rule against such an estimate. Specifically, let /i be an unbiased estimate of
pi(0) for 6 £ Q, that is, Ely = px(0),0eQ, k = 1,2, --- . Define ho = & = 0,
the zero vector in E™. Consider the following two strongly (N need not be known
in advance) sequential procedures:
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(3.1) t* = (" (b, Xi); b= 1,2, -},
t** = {t*(ﬁk;Xk);k = 1, 2, }y

where t*(¢, ) = (h*( @), -+, ta* (& ©)) With " (§, @) defined in (2.10) for
teE™ zeX,d =1, ---, n. The regret function (2.12) of the procedures t*
and t** will be shown to have upper bounds ¢ N7t and ¢" N7, respectively, for
suitable chosen classes of estimates 7 . The ¢’ and ¢” in both cases will be in-
dependent of 0 € Q.

The question of obtaining estimates Fx has already been solved in [14] (see
also [8]) in the following sense. If there exists a vector function h(z) = (hy(2),
«++, hm(z)) on X such that Eefh;(X)} = 8, where d; = 0 or 1 according as
0 # j or § = j, then the estimate

(3.2) B = h(Xe) = K2 i h(X3)

is an unbiased estimate of px(0) for all k£ and 0, that is Eh(X:) = pu(0). It is
shown in ([14], Lemma 3 and Corollary 3) that such a function h = h(x) exists
if and only if the set of densities {fi, -+, fm} in (2.2) are linearly independent
in Ly(u), the space of all u-integrable functions. In fact, because of (2.2) there
always exists an h such that max; |h;(z)| £ H < « a.e.u if the set {fr, -+ fm}
are linearly independent in L,(u). (See Corollary 2 of [14]). For a method of
obtaining such functions h as well as the proofs of the results stated above see
Section 3 of [14]. Henceforth in this paper we make the assumption that

(A;) The set of densities {f;, -+, fn} is a set of linearly independent func-
tions in Ly(w).
Under (A;) we may define by the results of [14] a non-empty class of vector
functions

3L = {h = (hl, yhm) |hi€L2(ﬂ)yE0hj(X) = 691707j= 1, - ,’I’)’L}

with Le(u) the space of all u-square integrable functions. Throughout the re-
mainder of the paper we shall confine ourselves to estimates hu, of the form (3.2)
for suitably chosen h ¢ 3¢. For such estimates the following simple inequality is
verified in [14] (Lemma 4): If h ¢ 3¢, then for k = 1,

(3.3) E||f(X:) — pe(8)] < ok,

where o> = max, Eo||h(X) — el

We comment that the functions k & 3¢ have (necessarily to satisfy Eeh;(X)
= 8;) components h; which can take negative values and thus the reason for
defining (2.8)-(2.11) for all £ ¢ E™ as well as £’s which are proper a prior: dis-
tributions.

We now give a number of useful preliminary results, some of which have ap-
peared previously in [1], [9], or [14] in the same, more restricted, or more general
form. They are included here in the present notation for sake of completeness
and later use.

The first equality is a direct consequence of (2.8) and the fact that Soa ta(x)
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= 1 a.e.p., and is given by
(34)  (50(t) = p(t) = [ Xacw (& Lf(2)){ta(2)t 2 (2)
— to(2)td (z)}du ().
The Bayes envelope functional satisfies the following properties:
Lemma 3.1. If & £ eE™, then
(35)  OI=NE p(tE))) — #()) = (5 — £, 0 (HE)) — p(HE)),
(3.6) (& = &ptE) S o) —6(®) = (£ — & 0(t8))
(3.7) le(¢) — ¢(®)] = ll¢ — £|B, where B = || L|| with L =
(Ly, -+, Ln), Ly = maxs L(6, d).
Proor. See Corollary 1 of [14] for (3.5). The right-hand side of (3.6) follows
from the left-hand side of (3.5), which implies ¢(£) = (&, p(t{8)). The left-
hand side of (3.6) follows by interchange of ¢ and ¢ in the right-hand side of
(3.6). Inequality (3.6), the Schwarz mequahty and noting that range ps < Ly
yield (3.7).
Lemma 3.2. Let sy, -+, éne E™ & = " > ik, and & = 0, the zero vector
i E™. Then
(3.8) N7 200 (5, p(H{EY)) < ¢(Bw) = N7 2000 (6, p(tEid))).

Proor. Let {; = 211 £; and define {o = & = 0. Next observe that definition
(2.9) implies ¢{£} is invariant under scale change, that is, t{ag} = t{¢} fora > 0.
Hence p(¢{E}) = o(t{¢d) fori = 0,1, --- , N, and we have

o (E, p(HE)) = 226 (6 — Sim, p(HSi)))
= D= (Fi, p(Hia}) — p(Hed)) + No(Ev).

The right-hand side of (3.8) now follows from the left-hand side of (3.5). Simi-
larly,

o (8, p(HEY)) = 2000 (5 — fam, p(HED))
(G, p(Ed) — p(HEin))) + No(Ew)
< No(&x).

Before stating and proving our theorems we point out that the results here
given and their proofs were inspired by the analogous results in the fixed sample
size compound decision problem where for fixed N the N decisions to be made
can be held in abeyance until all N random variables Xy = (X3, ---, Xu)
are known. See [3], [4], and [6] for the case m = n = 2 and [14] for the more
general m and n. Familiarity with these papers would be extremely helpful in
what follows. We point out the specific relationships between the present paper
and [2], [3], [4], 6], [9], and [14] as the results are given.

4. Main theorems. We shall now state certain sufficient conditions used to
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obtain upper bounds in (2.12) of order N? for the sequential procedure t* in
Theorems 4.1 and 4.2 and for t** in Theorem 4.3. Lower bounds for the regret
function of equivalent orders are given in Theorem 4.1.1 and Theorem 4.3.1.

Let Ls(x) be the space of measurable functions g on & such that [ |g|° du <
. The following conditions will be pertinent to what follows.

(Az) The function h = (hy, -+, hn) is such that h; is in Lz(u) for j = 1,

, M.

(A3) The columns of the loss matrix (L(6, d)) are mutually non-dominated;
that is, there is no pair of columns L* and L* such that L(8, d) = L(8, d’) for

=1,.--,m.

(Ay) The function & = (hy, -+, hn) is such that (1, k) = 1 a.e.u (where 1
is the vector of 1’s in E™) and V,, the covariance matrix of h under Py, is of
rankm — 1forod =1, ---,m.

(As) The function & = (hy, -+ , hn) is such that Vs, the covariance matrix
of h under Py, is of rank m for 6 = 1, ---, m.

We now prove the following three results.

TurorEM 4.1. If h e 3¢ and (A1), (As), (A3), and (A4) hold, then there exists a
positive constant ¢, independent of & Q such that Rx (0, t*) — ¢(pN(0)) < N7

Proor. By 1ndependence of h(X:) and p(t* {hk_l}) and by unblasedness of
h(Xz), we have E(es, , p(t*{lv})) = E(h(X4), p(t*{fns})) for k = “,
N. Then, since Ry(0, t*) = N > 1~ E(es, , p(t*{h})), we have

(41)  Rw(8,t*) = N7 20 E(W(Xw), p(*{has}) — p(*{Fa}))
+ N7 L E(h(Xw), o(t*Ba)).

Apply equality (3.4) to the first term and Lemma 3.2 with & = h(X3) to the
second term in (4.1) to obtain

(4.2) Rx(0,t*) < Ax(0) + E¢(hw),
where
Ax(8) = N7 200 Daca B [|(h(X), L (@) [{ta" (s, 282" (B, @)
+ & (e, 213 (haa , )} dp(2).
Observe that inequality (3.6) and unbiasedness of hy imply

(4.3) E{p(hv) — ¢(pn)} =0
Hence, to complete the proof of the theorem we need only show in (4.2) that
(4.4) Ay(0) £ N uniformlyin 0cQ.

To do thisfix k, d, d'(d < d'), k = 2, 2 and = and let u = L*f(x). Observe
that with the bracket notation for indicator functions we have
t* (s, @5 (B, €) + ta* (T, @) e (i , @)
(4.5) < [— (b(m), ) < 255 (A(X,), w) = 0]
+ [0 < 205((X), u) £ — (h(z), w)l.
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If u = al, a a constant, we see that since under (A;) (h, 1) = 1, (4.5) implies
the left-hand side is zero. Therefore, assume %  al. The right-hand side of
(4.5) is zera or one and it can be one only if (Y i=1 k(X,), ) falls into an inter-
val of length |(h(wzx), w)|. Applying the Berry-Esseen normal approximation
theorem in the form of Lemma 2.1 to the sum Y .= (h(X,) — e, , u) with
Sy = Zy_l uVo,u and B as the Berry-Esseen constant, we have
(4.6) Eialte* (s, )t (a, ) + t* (b, )0 (Faa , @)}

< sca(2m) 7 (h(me), w)| + 2558 D51 Bo,|(W(X,) — @, , )|

Let 4 = m " D7 u;. Note that under (A,) the null space of the matrix Ve
is the subspace spanned by the vector 1. Hence,

wVo' = (w — @l)Vo(u — al)’
2 [l — @l minfyVey' |yl = 1, (3, 1) = 0}
= |lu — @\,
where A¢ is the minimum positive eigenvalue of V, . Therefore, we have
(4.7) sia = D2amiuVou 2 |lu — al|N(k — 1),

where A> = miny A’ > 0. This inequality together with the inequalities
|(h(ze), w)| = N0 lu — atl] + lal, 21 B |((X,) = e, W’ = Ju
— a1’k — 1) maxeHs||h(X) — e, and |u — @] |u| 1 (which follows
from assumption (As) and the fact that ) ey (u; — %) = @ @ if not all the Us
are the same sign), yields by (4.6) for k = 2,

(48) Ek—l{td*(ﬁk—l ’ x)t;k' (};’k ’ x) + td*(ﬁk ’ x)t:ik’ (};’k—l ’ x)}
= (b = D7 Haa(b(@)]l + 1) + o},

where oy = (2rAY) ™ and ax = 28N maxy Egl|h — e|’, with oz < « since
hjeLs (W), j =1, -+, m, unphes [|A]| eLa(;.c) The bound in (4.8) together
with [|(h(zx), def(x)) | du(z) £ ||h(zs)|m’L, implies for k = 2,d < d
(4.9) EJ|(h(X), L¥F (@) [{ts" as , @)t3r (B, )

+ (e, @)t (aa, ©)}du(2) < (b — 1) o,
where a; = mLmaxs {onBs||h||* + (a1 + 2)Eol|h|}. Taking the bound in (4.9)

to be mL maxy Eg||h|| < as (since @, > 1) if k = 1, and summing (4.9) over all
k d d,d < d, ylelds

An(0) < N1 + Xk — 1) Hay
Observe that for N = 2, we have
(4.10) Yok — 1D =14 D205 fiaktde

<14 [Taide =2V — 1) — 1.
Hence, (4.4) is satisfied with ¢; = 2a3(2), and the proof is completed.
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THEOREM 4.1.1. If h e 3¢ and (A;) holds, then there exists ¢,/ > 0 independent
of 0 £ Q such that Ry(0,t) — ¢(px(0)) = —a/N7H

ProoF. As in the proof of the above theorem Ry (0, t*) = N'E X i~ (h(X3),
p(t*{fs_1})). Hence by Lemma 3.2 with & = h(X}) followed by use of inequalities
(3.7) and (3.3) we have

(411)  Ru(8, t*) — 6(pn(0)) = E{¢(hx) — ¢(px)} = —eBN ™.

Theorem 4.1.1 follows with ¢B = ¢,

TarorEM 4.2. If h £ 3C and (A1), (Az) and (Aa) hold, then there exists a positive
constant ¢y independent of 0 & Q such that Ry (0, t*) — ¢(px(0)) < N2 —+

Proor. The proof follows exactly as in Theorem 4.1 except we need only
assume u % 0 (u = 0 implies that the left-hand side of (4.5) is zero) in develop-
ing (4.6), since by (As) the null space of Vo is the zero vector for 6 = 1, -« - , m.
Hence, (4.7) is replaced by si_i = |lu||"A’(k — 1), which when carrled through
the remalnder of the proof yields the same result as in Theorem (4.1) with az*
= m!L maxy {0sEo|h||> + oxFs|h||} replacing oz in (4.9).

From the proofs of Theorems (4.1) and (4,2), it is obvious that ¢, < ¢; .

Observe that Thorem 4.1.1 may be used in conjunction with either Theorem
4.1 or Theorem 4.2 to form a uniform (in 6 ¢ Q) convergence theorem for the
absolute value of the regret function of t*.

One can delete the need for assumptions (A;) and (A4) (or (As)) by using the
procedure t** instead of t*. This result is given by the following theorem.

TaroreMm 4.3. If h e 3¢ and (A;) and (Ap) hold, then there exists a posztwe con-
stant c; independent of 8 € @ such that Ry (8, t™*) — ¢(pn(8)) < ;N b

Proor. By a change of variable we may express for each k, E (L, , &, Xi))

= EEy, (L, , ' (A%, X)), where &% = k{2 ;5 h(X,) + h(X)} and EEo,, is

an interated mtegral with By, on X. Subtracting and adding EEs,(Ls, , t* (b,
X)) = E(es,, p(t*{fa})) from the above equality and averaging the result on

k yields
(412) RN(07 t**) = N—l ZkN=1 E(Lolc ’ t*(ﬂk ’ Xk))
= By(0) + Bx'(8),

where By(8) = N ZH EE;, (Lq, , t* (A%, X) — ¢ (ﬁk, X)) and By (8) =
N7 E(eok , p(t*{h})). We show (i) Bx(8) = b*N* uniformly in 6 ¢
and (ii) By’ (8) — ¢(py) =< b'N ! uniformly in 6 ¢ Q.

(i) Observe that under Py, h(X) — & = (M(X), -+, he(X) — 1,
hm(X)) is an m-dimensional random variable with mean zero and covariance
matrix V; of rank rs . Hence, if under Py, 7o > 0, then there exists an m X 7o
matrix W, with transpose Wy such that W,W, = V, and WZd (X) = (h(X)
— &), where Zy(X) is an ry-dimensional random variable with mean zero and
identity covariance matrix. Therefore, if X is distributed as Py and g is an 7o-
vector with ||g|| = 1, then

(4.13) By(Zy(X), 9)* = llgl* =
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and
(4.14) E|Ze(X) P =10
Now express the difference of each term in By(0) as
(4~15) EEOk(Lok ’ t*(h—(k); X) - t*(ﬁk ’ X))
= > aca BB LiZ (15 (A%, X)t3 (e , X) — t3 (B®, X)ta* (B , X)}.
Fix 0,d, d'(d < d)and kely = {k|6 = Usmg our bracket notation for
characteristic functions and considering When G = 1, we obtain
(A, Xt (e, X) + t (A%, X)t* (e, X)
(4.16) < [- (X, LUF(X)) < 204 (MX,), L*F(X))
— (h(X), L"(X))] + [= (W(X), L*f(X))
< 205 (MX), LX) £ = (W(Xa), L™f(X))].
If h is degenerate under P, then the E X Ej, integral of the right-hand side of
(4.16) is zero since 6; = 0. If h is non-degenerate under Py(rs > 0),
but L*f(X)W, = 0 for fixed X = 2, then the right-hand side of (4.16) is zero
at such x 'pecause (h(z"), Lf”f(x)) (Za(:v ), Lf(2)Ws) + (e, Lf())
= (&, L*f(2)) = (e, L™f(x)) for both ' = 2 and X . Omitting these de-
generate cases we shall bound the right-hand side of (4.16) using Lemma 2.1.
Specifically, assume 75 > 0, pr—1,6(8) > 0 and fix X = z such that L ()W,

# 0. Define g(z) = ||Ld‘lf(x)Wol|“1def(x)Wo, noting that |lg(z)| = 1. Next
fix Xy = a, X, = 2,,ve Iy, v < k. We observe that for the right-hand side of

(4.16) not to vanish, the sum
”de,f(x)Woll_l EKk.veIo (h(X,) — e, de,f(x)) = ZKk,veIo(Zo(Xv), 9(x))

of (k — 1)pr_1,0(8) = 1 terms must fall into an interval of length |(Zs(2z) —
Zo(w), 9)| =< ||Zo(x) — Zy(xx)||. But the terms (Zo(X,), g(x)) are independent
and identically distributed with the mean zero and variance 1 (by (4.13)).
Hence, the Berry-Esseen result of Lemma 2.1 bounds the probability of the event
on the right-hand side of (4.16) by

(4.17)  {(k — 1)pi_1,6(8)} 7 (27) ¥ Zo(2) — Zo(x) || + 28| (Zo(X), g(2))]’,

where the expectation is on X in the second term. Integrating with respect to
Es, X Epin (4.17) and weakening by Eo Bo||Zs(Xr) — Zo(X)| = 2rs (implied
by (4.14)) and by Es|(Zs(X), g(@))[* < Eo|Zs(X)|’, we have from (4.16) and
(4.17) that

(4.18) EEu{ts*(A®, X)t3 (fu , X) + 3 (A", X)t" (b , X))}
< min{1, {(k — 1)pe-10(0)} "'qd},
where we take ¢o = max{1, (20 'rs)? + 28E;||Zs(2) ||} to include the cases ry =

IIA
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and (k — 1)pr_1,6(8) = O with the convention that 1/0 = . Note that ¢y < o
since, hje Ls(u) for j = 1, -++ , m implies | Zo(z)|| & Ls(u). Multiplying both
sides of (4.16) by L = maxe,q4,4 |Ls'| and noting that the left-hand side is then
an upper bound for the d, d’ term of (4.15), sum over all , d, d,kkely,d <d
to obtain from (4.15) and (4.18),

(419)  Bu(0) < L3N Tim 25279 minf1, go(j — 17,
where go = maxy go . Let [N, /m]* be the integral part of N/m. Observe that the
double sum in (4.19) is bounded by m ST min{1, go(j — 1) 7 S m(1 +
g M (5~ 1) < m(1 4+ 2gf[N/m]*}?), where the last inequality
follows from (4.10) with [N, /m]* + 1 replacing N. Finally, since [N, /mY* £ N/m
we have

Bx(8) = (3)L{mN" 4 2¢um!N%

from whence (i) follows.

(i) Express By'(0) = N7 >au E(en, — h(Xa), p(t"{i)) + N7 =t
E(h(X:), p(f*{h})). Note that by independence of h(X%) and p(t*{s_1}) and
unbiasedness of k(X3), the first term is equal to

(420) By (8) = N7 2im E(es, — h(Xa), p(t{ha}) — p(H{ha})),
while Lemma 3.2 implies that the second term is bounded from above by Eo (hy).
Hence, by inequality (4.3) we have
(4.21) By (8) — ¢(pn(0)) = By"(8) + E{o(hy) — o(pn(8))} = By" (9),
with By" (8) given by (4.20).
Now to bound By (8) use (3.4) to write

(4.22) By"(0) £ N7 2i Yace Ef|(M(Xi) — e, , LS ()]

{te"* (s, ©) 0 (e, @) + t* (T, @)t (Fas , @)} ().
Fix 0, d, d,kd<d,kely, X =2, X =z andlet u = L*¥f(z) as in the
proof of Theorem 4.1. Using the transformation (h — &) = WZy as in (i) and
noting that the coefficient |(h(zx) — e, u)| = |(Zo(xx), uWy|, we see that only
the terms for which uW, ¢ 0 and r, > 0 contribute to the bound. However, if
uW, # 0 and rs > 0, we can apply a Berry-Esseen argument from Lemma 2.1
for fixed X,, v2Iy, v < k in the bound (4.5) to the sum luwo| ™ D veta <k
(h(X,) — &, u) = > ety (Zo(X,), g) (with g = luWs||"'uWs) which falls
into an interval of length |(Zs(zx), g)|, and we obtain by arguments similar to
those used in (i) and Theorem 4.1,

E[|(h(X) — e, LF(2)]
(4.23) {ta* (s, )88 (i, @) + 1" (B, )t (i, @)} ()
< om'L min{l, { (k — 1)pes.0) 0"},
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where
g* = max{1, ((2r)7're)* 4+ 28E4||Zs(X)||"} and 1/0 = oo.

The remainder of the proof follows as in (i) with ¢ of (4.23) playing a role
similar to that of ¢ in (4.18).

TaroreM 4.3.1. If ke 3¢ and if (A1), (As), and (As) (or (As) and (As)) hold,
then thcire e%xists a ¢s > 0 independent of @ € Q such that Ry (6, t**) — ¢(px(0))
z- —C3 N -,

Proor. The bound on By (8) in (i) holds for |By(8)| as well, while by independ-
ence of h(Xx) and p(t*{hs_}) and unbiasedness of h(X)) we may write

(424) By (8) = By*(8) + N7 1ia E((Xw), p(t*{Pai})),

where By*(0) = N >t E(es, , p(t*{Hi}) — p(t*{ﬁk_l}z). By Lemma 3.2 the
second term in (4.24) is bounded from below by E¢(hy). Hence, Equations
(3.7), (3.3), (4.12), (4.24), and part (i) of Theorem 4.3 yield

(4.25) Ry (0, %) — ¢(py) = —(¢B + b*)N* + By"(0).

But —By*(0) is the same as the first term on the right-hand side of (4.1) with
h(X,) replaced by e, . Hence, lower bounds for By*(8) can be obtained under
assumptions (As) and (As) (or (As)) by arguments similar to those used for the
upper bounds on the term Ay () in Theorem 4.1 (or Theorem 4.2).

If one compares the statements and proofs of Theorems 4.1, 4.2, and 4.3 with
Theorem 2 of Van Ryzin [14], he sees that these theorems are results which are
completely analogous to the results obtained therein for the fixed sample size
(where all N decisions are held in abeyance until all N random variables have
been observed) compound decision problem with m X 7 loss matrix. Note that
the bound is of the same order (O(N*)) uniformly in 6 ¢ Q and hence with re-
gard to regret convergence the rate is as good for the sequential compound de-
cision problem as in the fixed sample size case.

5. Sequential compound testing for two specified distributions. We now
specialize the problem to the situation where m = n = 2, L(1, 1) =L(2,2) =0,
L(2,1) =a >0, and L(1,2) = b > 0. This situation is called ‘‘compound
testing between two completely specified distributions” because each com-
ponent problem consists of testing a simple hypothesis Hy : 6 = 1 against a
simple alternative H, : § = 2 incurring no loss for correct decision and a loss
a > 0 or b > 0 according as we commit a type II or type I error. For a treat-
ment of this problem in the fixed sample size case, see [3], [4], [6], and [12]. The
sequential case, which we consider here, has been treated in this testing situation
by Samuel in [9] and [10]. We will point out how reductions of our results (Theo-
rems 4.1 and 4.3 of previous section) to the sequential compound testing case
furnish improvements of Samuel’s results in [9].

A convenient simplification of notation is possible in this testing situation.
Let P; and P; be the two distributions in question and assume P; # P, (assump-
tion (A;) when m = 2). In the notation of Section 2 it is convenient to make the
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following identifications: £ = (&4, &) = (1 — 5, 9) for g real, (&, &) = (1 —
t, t) where ¢(x) = Pr {deciding 6 = 2 | 2}. Hence, a simple rule may be specified
by the single function ¢ only, rather than the vector function (f;, ;). A Bayes
rule against prior distribution (1 — 7, ) is then given by (1 — (%, ), t(, z)),
where (7, £) = (£ z) is given by (2.9), that is

(5.1) (g, z) = 1, 0 or arbitrary according as Z(z) <, >, or = 7,

where Z(z) = {afz(2z) + bfi(z)} 'bfi(x) and we assume without loss of gener-
ality that af:(x) + bfi(x) > 0 for almost all z. The non-randomized version of
t(n, ) which corresponds to (2.10) in this case becomes

(5.2) *(n,z) =1 or 0 accordingas Z(z) < gor = 1.

The Bayes envelope functional in (2.11) depends now only on 75 real and is
given by .

(5.3) ¢v(n) = ¢((1 — 7, 7)) = min, {ank2(1 — t) + b(1 — 9)Eut}
= anB(1 — t(n, X)) 4+ b(1 — 7n)Eit(n, X).

Furthermore, in considering sequential rules for the testing case, it suffices to
consider sequences of scalar functions t(X) = {t:(Xi), k = 1, 2, ---}, where
t:(Xx) = Pr{deciding 6 = 2 | X}, and 1 — t:(Xs) = Pr {deciding 6, = 1 | Xz}.
Note that if A(x) is any function such that Egh(X)} = 6 — 1 for 8 = 1, 2 and
if & = 8°(0) = k" D §100;2, then (1 — Fu, hi) with /i = k7' D 5 h(Xy) is
an unbiased estimate of px = (pr, prz) = (1 — &, &) for all 8 £ @ and we may
define the sequential procedure analogous to that give in (3.1). In particular, we
consider the sequential procedure (now a sequence of scalar functions) t* =
(t*(hi—y , Xi), & = 1,2, -- -}, where by = 0 and t*(#, z) is defined by (5.2). This
sequential procedure satisfies the following result, which is only a restatement
of Theorem 4.1 for the special case of compound testing.

TuaeoreM 5.1. If his such that Eg{h(X)} = 0 — 1 for 6 = 1,2, h e L3(u) and
h is nondegenerate under Py and Ps , then there exists a constant ¢, > 0 independent
of 8 £ Q such that Ry(8, t*) — ¢(3x(8)) = N %

It is interesting to see precisely how Theorem 5.1 generalizes and strengthens
Theorem 2 of Samuel [9] if % is non-degenerate under P; and P, . The sequential
rule given in Theorem 2 of [9] (in the present notation) is as follows: Let h(X)
be an unbiased estimate of § — 1 for § = 1, 2 (that is Ee{h(X)} = 6 — 1 for
0 = 1, 2). Define p;(Xs) = 0, ks, 1 according as iy, < 0, 0 < hy < 1, or Fy
> 1. Then define g(k, W, Xi) = {1 + E2(Wy + W)} {pe(Xe) + kW3
with W = (W, W.) a random variable uniformly distributed over the unit
square. Then, define £ = {£(Xi), & = 1, 2, ---} where (X)) = t"(gr—1, Xx)
with gr1 = g(k, W, Xsy) for k = 2, 3, --- and go = % and ¢*(n, z) given
by (5.2). Then Theorem 2 of [9] states that if & is bounded, then Ry(6, t) —
¥(5x(8)) = cy where cy — 0 uniformly in 6 ¢ @ with the risk Ry taken with
respect to E X Ew, Ewindicating expectation on W. Thus, if & is non-degenerate
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under P; and P; Theorem 5.1 furnishes a threefold improvement of Theorem 2
of [9] by removing the need for the “artificial randomization’’ introduced through
W, while simultaneously strengthening the convergence rate to N™* and widening
the class of estimates from those with bounded % to those with finite third ab-
solute moment under P; and P, .

The improvement in rate is not new, however, since the result announced by
Hannan in [2] states that if k™ is used instead of k*in defining g(k, W, Xx)
then the rate N~* holds. In fact, Hannan’s result as stated in [2] is much more
extensive and applies to any m X n sequential compound decision problem, where
7 may even be infinite under certain regularity conditions. However, his results
rely upon analogous results in his game paper (px—:1(0) known at stage k) [1],
where “artificial randomization” is essential. A main contribution of the present
paper is the removal of this “artificial randomization’ in the sequential compound
testing problem (as well as in the more general m X 7 case of the previous sec-
tion). The only randomization necessary is that provided by Ax, &k = 1,2, -+,
as shown by Theorems 4.1-4.3, Theorem 5.1 and results yet to follow.

We also state Theorem 4.3 of the previous section for the compound testing
problem. Define t** as the sequence of scalar functions {* (%, X), k = 1, 2,
..}, where t*(n, z) is given by (5.2). Then Theorem 4.3 yields

THEOREM 5.2. If h is such that Eg(h(X)} = 0 — 1 for 6 = 1,2 and h & Ls(pu),
then there exists a constant ¢s > 0 independent of 0 ¢ @ such that Ry (8, t**) —
Y(Ew(0)) < N,

The decision rule t** was proposed by Samuel in Equation (12) or [9] as the
most natural choice of a rule for the strongly sequential compound testing prob-
lem, but no results are proved therein. Hence, Theorem 5.2 furnishes the desired
result in this direction. In view of Theorems 5.1 and 5.2 the assumption about
differentiability of the Bayes envelope ¢(7) (R(n) in [9]) on [0, 1] imposed in
Eheorexix*l of [9] is unnecessary to achieve regret convergence of the procedures
t and t.

Finally, we wish to point out that the assumptions of Theorem 5.2 may be
always satisfied for any pair of distributions P; , Py(P; # P.) by choosing k() as

(5.4) h*(iv) = (cuCs — 032)_1{011.7"2(%) — cnfi(®)},

where ¢o; = Ep{f;(X)} for 6, j = 1, 2. Note that 1* is bounded (and hence in
Ls(u)) since fi(z) £ K by (2.2) and that Eo{h*(X)} = 6§ — 1foro =1, 2.
See Theorem 1 of [14] for the generalization of A* when m > 2.

An example will now be given in which the lack of randomization results in
strict inequalities on both sides of Ry (0, t**) < ¢(5x(8)) < Rx(6, t*). The ran-
domization in our problem is furnished by the assumption of non-degeneracy of
hin Theorem 5.1. The analog of this assumption in Theorem 4.1 (or Theorem 4.2)
is (A4) (or (As)) and hence this example motivates imposing of this assumption.
See Theorem 4.3.1 in this regard also.

ExaMpPLE. Let ¢ = b = 1 and let 8 = {6, 6, ---} be such that 6; = 1 or 2
as ¢ is even or odd. Let P; and P, be discrete probability distributions
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on {—1, 0, 1} with probabilities given by:

X -1 0 1
P1{X = x} 1 R3] 4
PyfX = z} 4 b 1
Z(x) 2 5 8

Let ki = 8, 8 = 0, in the definitions of t* and t**. Ry(0,t*) = 1 or .6 + ()N
as N=1 or N =2, Ry(6,t™) = .1 — ((1)N", and ¢(55(0)) = 0, .35 or
35 — (25)N"as N = 1, even, or odd and =3. Thus, the result of Theorem
5.1 (Theorem 4.1 for the testing case) is violated in this example, that
is, Rw(0,t*) — ¢(8y) — .25 as N — . Also Theorem 4.3.1 is not true for this
example since Ry (0, t™*) — ¢ (5y) — —.25 as N — .

By this example we see that some sort of randomization here furnished by an
assumption like (As) (or (As)) is necessary in Theorem 4.1 (or Theorem 4.2)
and Theorem 4.3.1. Whether assumptions somewhat weaker than these (but
stronger than degeneracy of h under Py, § = 1, ---, m) can yield these same
results has not been established.

This example is the same phenomenon as that in sequential game theory,
where in the game of “matching pennies” the strategy for player IT of playing
Bayes against player I’s empirical distribution of prior moves will not guarantee
that the average risk over N-repetitions of the game approaches the Bayes
envelope functional of the N-stage empirical distribution of player I’s move.
See [1] and [9] in this respect.

We now present additional theorems of higher convergence rates in the case
of sequential compound testing. Specify p = aP; 4+ bP; (that is, afp(x)
+ bfi(z) = 1 a.en) and let Z(z) = bfi(z). For 6 = 1, 2, let Py* be the prob-
ability measure induced under P, on the unit interval by the measurable trans-
formation Z(z) from % into [0, 1]. We shall modify (5.2) as follows:

(5.5) t'(pz) =1 if Z@) <, Z(x) e (0,1) or Z(x) = 0
=0 if Z(x) = 9, Z(x) € (0, 1) or Z(z) = 1,

for n real, x ¢ X. The motivation behind (5.5) is that when 4 = 0, (5.2) is an
inadmissible Bayes procedure in the component problem if there exists an x £
with Pi{X = a2} = 0, P,{X = z} > 0. However, (5.5) is always admissible
Bayes in the component problem. In view of this remark, (5.5) should also be
used in place of (5.2) when defining the rules in Theorems 5.1 and 5.2. It is
easy to see that Theorems 5.1 and 5.2 continue to hold if this is done.

The following conditions are pertinent to what follows:

(I) The induced distribution of Z under P is continuous on the open interval
0,1) foro =1, 2.

Observe that (I) implies uniform continuity on [0, 1] (and hence the whole



970 J. VAN RYZIN

real line) of the non-normed distribution function H ) = [0 < Z(x) <1,
Z(z) < 2l(afa(z) + bfi(z))dp(2).

(I1) For 6 = 1, 2, P, is absolutely continuous with respect to Lebesgue
measure \ on the real line and there exist a K < « such that Do (2) = (dPy*/
M) (z) = K.

For examples of pairs of distributions (Py, P») for which assumptions (I) or
(I1) hold and for a further discussion of these conditions see Sections 5 and 6
of Hannan and Van Ryzin [4].

The following theorems hold. Let t = {{ lua, X3), b = 1,2, ---} be the
strongly sequential rule where t (9, x) is defined by (5.5) with ho = 0. Theorems
(5.3) and (5.4) (or Theorems (5.5) and (5.6)) are the analog of Theorems 2
and 3 of Hannan and Van Ryzin [4] in the fixed sample size compound testing
problem.

TasorEM 5.3. Let h be such that Efh(X)} = 6 — 1 for 6 = 1,2, and
|h(z)| £ H < « a.ep. If (II) holds, then there exists a constant ¢ independent
of 8 £ @ such that Ry(8, t') — ¢(5x(0)) = ¢ (log N)N.

Proor. Let W = {2 |0 < Z(z) < 1}. By (5.5) and our choice of u, we have
from (4.2), ‘

(5.6) Ax(8) = N 224 E [w [h(Xx) — Z (@) (e < Z(z) < bl
4+ T £ Z(2) < P} du ()
< (H+ DN YIILE [w]Z2@) — fia| = @H)E 1du(z) + (@ + DY

where the inequality follows by boundedness of A implying |h(Xx) — Z(x)]
< H-+1land b — les| < QHE, & 2 2.
Note that in (5.6), assumption (II) implies that for k = 2,

[Wl|Z(z) — his| S (2H)K] du(2)
< [l — CHE £ 2 < by + CHE Nap™(2) + bpr' ()} de
< {4(a + D)HK}E .

Hence, (5.6) and the fact that for N = 2, SV.k < [ a7 de = log N imply

Ax(8) < (H + 1)(a + b){4HK (log N)N™ + N7}

from whence (4.2), (4.3) and (5.3) complete the proof.

The restriction to boundedness of & in Theorem 5.3 is not very stringent
since, as was pointed out earlier, it may always be satisfied by choosing h as B*
in (5.4). This comment pertains to theorems which are to follow also.

TaEoREM 5.3.1. Let h be such that b € Ly () and Bofh(X)} = 6 — 1for 6 = 1, 2.
If (II) holds, then there exists a positive constant co’ independent of 0 £ Q such that
Ru(0, ) — ¥(3x(8)) = —c/N ™.

Proor. To obtain the necessary lower inequality note that by (4.11) of
Theorem 4.1.1. and inequality (3.6), we have
(57) Rw(8,t) — ¢(3x) Z E{y(hv) — ¢ (on)}
> BBy — hw){bEt (v, X) — aBo(1 — ¢ (b, X))}
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Subtracting from the lower bound in (5.7) the quantity E(dy — hx)-
{_bEl(t'(SN , X)) — aEy(1 — ' (85, X))} which equals zero by unbiasedness of
hy , we obtain from (5.7) and the definition of 4,

(5.8) Rw(8,t) — ¢(5x) = E(By — hw) [ {t (hw,2) — { 3y, 2)} du().
- From the definition (5.5), (5.8) yields
Ry(8,t) — ¢(5y) < E(Bw — hw) [w{ldn = Z(zx) < ha]
(5.9) —[hy £ Z(x) < 8]} du(2)
= —Elhw — 5| [wilby = Z(z) < hal
+hy £ Z(z) < 8w} du().
Assumption (IT) implies that
Jwily = Z(z) < hy] + [y S Z(x) < 8]} du(z) = [hw — Sl(a + DK
and the result follows from (5.9) with
= (a + b)K max {Eh*(X), By (h(X) — 1)%

THEOREM 5.4. Let h be non-degenerate under Py and such that Eo{h(X)} = 6 — 1
for 0 = 1,2 and [h(x)] < H < « a.eu If (I) holds, thenfor every € > 0 there
exists an N' = N’ (e) independent of 8 & @ such that Ry (6, t) — ¢(5y(8)) < eN?
for N = N'.

Proor. In the kth, & = 2, term of the sum on the right-hand side of (5.6),
partition the space under the u integral into W n Wi = {z | |Z(x) — 8| =
(k — 1) 4 (2H) lc_l} and W n W, where W} is the complement of Wy .
Fix z ¢ Wy, let v = min {Elh Ex(h — 1)% and note that Lemma 2.1 applied
to the normalized sum siy Zy—l (h(X,) — 1), with siy = (k — 1)-
{(1 — 5i_1) Bh® + Si1Bo(h — 1)%, yields for k = 2,

E(|Z () — hua| < QH)ET] < sia (4H) (20)7
(5.10) + 285 D i1 B, [W(X,) — 6, + 1f°
< (k— 1) ¢

where ¢* = v {(4H)(2r)™ + 28(H + 1)}, 8 the Berry-Esseen constant.
Hence, by (5.10) applied for ¢ W n Wy we have for k = 2,

(511) Efwaw,[|Z(@) — b S CHE 1 du(@) £ b — D7 [waw, du(2).

For z ¢ W n Wi, we have [[Z(z) — My < CH)k'] £ ([l — 8i
= (k — 1)7"®] and hence for such z Tchebichev’s inequality implies

E[wawm [1Z(2) = fua| < (2H)K) du(2)
(5.12) < (0 + b)E[fhums — 8| 2 (B — 1)7]
(k — 1)™"*(a + b))V,
where V? = max {El*, Es(h — 1)%. Now (5.11) and (5.12) together with

!

IIA
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uniform continuity of H(z), a consequence of (I), furnishing [wnw, du(x)
uniformly (in 8 ¢ ) small for k£ sufficiently large implies

EfwlZ() — has| £ CHK Ndu(z) < nelk — 1), k2 2

where y, — 0 uniformly in 0 & @ as k — «. Hence, we have by Toeplitz’s lemma
(see Lodve [5], p. 238) with ax = (k — 1) and by = D_i2ax —  that
by O ks axyr — 0 independent of 8 & Q. Since by (4.10) by < 2N ' we see from
(5.6) and the above that
(5.13) NAy(0) = N}H + 1){ Xiew(k — 1D + (a + b)}

<2 (H+ 1)by' Zimap + N(H +1)(a +b) >0
uniformly in 6 £ Q.

The theorem now follows by (5.13), (4.2), (4.3), and (5.3).

THEOREM 5.4.1. Let h be such that h & Ly(u) and Eolh(X)} = 6 — 1for 6 = 1, 2.
If (1) holds, then for every e > O there exists an No = No'(e) independent of
0 £ Q such that Ry(8, t') — ¢(3x(8)) = —eN~* for N = Ny'.

Proor. Partition the space under the E integral of (5.9) into Fy = {|hy — 8]
< N l} and its complement Fy'. Note that Tchebichev’s inequality implies
E[Fy] < N'E(hy — 3 = N7V’ while on Fy, [y £ Z(z) < Il
+ by < Z(z) < 8y = [|Z(&) — 3] < N7} = [Gx]. Hence we have from (5.9)

and Schwarz inequality
Ry(8,t) — ¢(3x) = —Elfw — Swl{(a + b)[F¥'] + [w [Gy] du(2)}
—(E(hy — )@ + b)(EFY]D! + [wlGy]du(2)}
—{NYa + b))V + NV [w[Gx] du(z)}.
equence of (I),_‘in_lglies that

Since uniform ogn__tingjt\rg of H(z), a cons
, — =1

ITLLV Mt | T _'X !
L e s
————

[

v

v

_—
e

[

-
[

|

}

I
]
J
;
—
the theorem.
We now state without proof the following theorems. The proofs of these

theorems rely on using arguments on the terms By(0) and By" (8) of Theorem
4.3 similar to those used for Ax(6) in Theorems 5.3 and 5.4, while using the

ol 2 77T\ 2 /2 \)
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with arguments of the type used in obtaining lower bounds on E{y(hy) — ¢ (5x)}
in Theorems 5.3.1 and 5.4.1 and a treatment of the —By"(8) term in (4.25)
similar to that used for Ax(0) in the proofs of Theorems 5.3 and 5.4.

THEOREM 5.5.1. If the assumptions of Theorem 5.5 hold, then there exists a ¢’ > 0
independent of 0 ¢ Q@ such that Ry(8,t") — ¢(3x(8)) = —c,” (log N)N™.

- THEOREM 5.6.1. Let the assumptions of Theorem 5.6 hold and assume h is non-
degenerate under Py and Py . Then, for every e > 0 there exists an No' = Ny (¢)
independent of 8 € @ such that Ry (0, t") — ¢(5x(0)) = —eN* for N = Ny

There is an interesting comparison of Theorems 5.3 and 5.4 (or Theorems 5.5
and 5.6) with the analogous results of Hannan and Van Ryzin ([4], Theorems
2 and 3). In their paper it is shown that for the fixed sample size compound
testing problem if one uses for the kth component problem the procedure
t'(hy, Xx), k = 1, -+, N, where t'(5, z) is given by (5.5), then the regret
function of this procedure is of O(N™") or of o(N™*) uniformly in 6 £ @ under
condition (II) and (I) respectively. Hence, Theorem 5.4 (or Theorem 5.6)
achieves exactly the same result in the sequential case, while Theorem 5.3 (or
Theorem 5.5) does not achieve the same order O(N~') but the lesser order

O((log N)N7"). It is not surprising that some rate of convergence is lost in the
sequential case. But the fact that for Theorem 5.4 (or Theorem 5.6) and for
Theorem 5.1 (or 5.2) the same rates of o(N™*) and O(N™*) respectively were
attainable in the sequential case as in the fixed sample size case (Theorems 3
and 1 of [4] respectively) is worth noting,.

6. Comments. We make the following comments:

(i) All the results in this paper can be extended to the class of randomized
rules which in (2.9) assign the arbitrary value as », where r = r(¢, x) is the
number of columns minimizing the quantities (¢, L’f(x)). This result follows
by the symmetry argument used by the author in Section 7 of [14] and hence
is not repeated here. In particular, the component rule in (5.5) would be re-
placed by

t#(ﬂ, z) =

if Z(x) < 1, Z(z) € (0,1) or Z(x) =0
if Z(xz) > 1, Z(x) e (0,1) or Z(xz) =1
if  Z(@) =1n  Z(=)e(0,1),

for 4 real, z & %¢. Note that t* (s, ) is admissible Bayes for 0 < 5 < 1.

(ii) The results given here are all non-Bayesian; that is, the parameter 6 is
not assumed to be random. However, suppose we do assume a Bayesian situ-
ation in which 6 = {6,, 6;, ---} is a sequence of independent identically dis-
tributed random variables with & = Pr{6 = 6}, 0 = 1, -+, m, D g ds =1
Let Ex” denote expectation with respect to the N independent random vari-
ables 6; , - - -, Oy and define

(6.1) Ry(£,t) = Ex*Ry(6, t),
where Ry (0, t) is given by (2.4) and £ = (&', -+, & ).

S =

=
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Let & = {t = (&, -+, tn) | ZZ":I g =1, & = 0} be the class of distribu-
tions on €. The following theorem holds.

THEOREM 6.1. Let t be of the form t* (or t**) and let the assumptions of Theorem
4.1 or 4.2 (or Theorem 4.3) hold. Then there exists a constant ¢ independent of
£ & B such that

(6.2) 0 < Ry(£,t) — ¢(¢) < N

Proor. Observe that by optimality of t(£, z) (see (2.9)) with ¢ = ¢) in
the component problem, we have E,'E(Ls, , t) = ¢(£'), where E(Ly,, tx) is
as in (2.3) (see also (14) on p. 3 of [8]). Hence by interchanging the order of
integration in (6.1) we have Ry(£,t) = N7' D ies E.'E(Le, , th) = ¢(£), and
the left-hand side of (6.2) is proved.

To obtain the right-hand inequality in (6.2) note that

(6.3) Ry(£,t) —¢(¢') = Ex*{Rn(8,t) — 6(pn(0))} + Ex*{6(px(8)) — ¢ (i)}

The integrand in the first term of (6.3) is bounded from above by coN ~* uni-
formly in 0 ¢ Q, where ¢o = max {c;, ¢, ¢s} where ¢; as the constant of Theorem
44,7 = 1, 2, 3. Hence, the first term in (6.3) is bounded by ¢,N ™ uniformly in
¢ ¢ . The second term in (6.3) is bounded from above by BEy" ||pxy(0) — £
by inequality (3.7). But by the Schwarz inequality and independence of the ¢’s,
we have {Ex* [py(8) — £} < Ex" [[pv(8) — ¢[" = 20~ Ex"(pwe(8) — &)’
= N7 Y8 (1 — &) < N'. Hence the second term in (6.3) is bounded
by BN? uniformly in £ ¢ ®. Taking ¢ = ¢, + B completes the proof.

Results of higher order analogous to Theorems 5.3-5.6 are also true in this
Bayesian situation. However, we shall forego their statement and proof.

The Bayesian results described herein are closely related to the ‘“empirical
Bayes” approach of Robbins in (7] and [8].

(iii) All the convergence theorems in this paper are concerned with risk
convergence and are of order at least N*. This poses the interesting problem
of whether the corresponding losses (see (2.5) for definition) have a conver-
gence rate on them in the sense that N*{Wyx(0,t) — ¢(p~(0))} — 0 in probability
(or with probability 1), 0 < ¢ < 1 uniformly in 8 ¢ Q. A recent paper by Samuel
[10] with ¢ = O gives non-uniform results and calculations of this type for the
rules she proposed in [9] for the sequential compound testing problem. Hannan
and Robbins in [3] (Theorem 3) give one-sided uniform results of this type with
almost sure convergence for the fixed sample size compound testing problem
with e = 0. ’

The results of this paper hint that in the sequential compound decision prob-
lem results with an ¢ > 0 might be possible, while the papers by Hannan and
Van Ryzin [4] and Van Ryzin [14] point to the same possibilities in the fixed
sample size case for the compound testing problem and the general m X n
compound decision problem, respectively. Uniform (in 6 ¢ Q) theorems in this
direction will be given in a forthcoming paper [13].
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