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SMIRNOV TESTS FOR NORMAL ALTERNATIVES!
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1. Summary. Lower bounds for the Pitman efficiency of the one-sided Kolmo-
gorov test for all normal alternatives and for the Smirnov test for normal shift
alternatives are obtained. In the one-sample case this does not fall below 36
per cent at the usual levels of significance and power. In the two-sample case
the lower bound depends on the ratio of the two sample sizes and does not fall
below 36 per cent when the ratio is larger than 40. We assume that the results

of [1] are known.

2. Definitions and notation. We take the following definition of Pitman effi-
ciency given in [4]. Let {t,} and {t,*} be two sequences of tests all of the same
size « to test the hypothesis 8 = 6, . Let 6; be a sequence of parametric alter-
natives which converge to 6. Let {n;} and {m} be two sequences such that

(2.1) limie Ps(0;) = lim,. P.(6;) = B, 0<B<1,
where P; is the power of {{,,} at 0; and P;* is the power of {ts;} at 6;. Then
the relative efficiency of {t,} with respect to {¢,"} is defined to be e[{t.}, {t."}] =
lim;,. mi/n; if this limit exists and is the same for all m;, n; satisfying (2.1).
In the present paper n; are replaced by larger values and the resulting lower
bound for efficiency depends both on « and 8. ®(z) and ¢(z) stand for the
c.d.f. and density of the standard normal distribution, respectively. K, is the
root of the equation in z, ®(z) = 1 — «. All the distributions that figure in

are assumed to be continuous.

8. Lower bound for efficiency in the one-sample case. We shall first prove a
lemma useful for the main result. We use the familiar Slutsky-type arguments
(see, for example, [2] p. 254) and only outline the proof.

Lemma 3.1. Suppose { X} and {Y,} are two sequences of random variables with
continuous c.d.f.’s and ¢, a sequence of constants with the following properties

(1) Y, —» Y with a continuous distribution F

(ii) 3 a sequence of constants a, > P{|X, — a.| > ¢ - 0Ve > 0

(iil) limg.w € = ¢

(iv) limye P{Y > ¢ — as = B.

Then lim, . P{Y, > ¢, — X,} exists and equals B.
OQUTLINE OF ProOF. Let F, be the c.d.f. of Y, . Since F is uniformly continuous
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on (—ow, ») given § > 0 He(s) 3
(3.1) |[F(c — an =€) — F(c — a,)| < §/4forall a,.
Now,
(3.2) P{Y. > ¢ — Xa} = P[{Ys > co — Xu} n{|Xs — aa| > ¢]
+ P{Y, > (o — @) — (Xn — aa)} n{| X0 — aa| = ¢
Now choose Ny{8, ¢ such that
n > Ni(§, €) = P{|X, — a.| > ¢ < §/4.
An examination of the right hand side of (3.2) shows that
(33) n> Ni(d,6) =1 — Fo(ca — @+ €) — 8/4 = P{Ya > cn — X4}
S 1 — Fulen — an — €) + 6/4.

Since F,(z) — F(z) uniformly in z, which can easily be seen from the hy-
pothesis (i) AN,(6, €)

(34) n > No(5,€) = |Fulcn — @n £ €) — F(ca — an £ )| < 8/4.

Now, making use of the fact that F is continuous and ¢, — ¢ and using (34)
in (3.3) weget [I — F(c — a.) — P{Ya > cn — X,}| < & for sufficiently large
values of n. Using now the hypothesis (iv) the conclusion follows.

Now let F,(z) be the empirical c.d.f. based on X;, X5, -+-, Xu, & random
sample from an unknown distribution F. We would like to test the hypothesis
H,: F(z) = ®(x) against H, : F(z) = ®((x — 0)/0), 8 > 0,0 > 0. Kolmo-
gorov’s one-sided test is given by: reject ®(x) if and only if

(3.5) n} sup, (®(x) — Fo(z)} > ena

with M. €2, = (3 1l0g o M)} The t-test based on a sample of size m is given
by: reject ®(z) if and only if

(3.6) m*X/Sm > t(m—l),a

with s,2 = (1/(m — 1)) 2oy (X; — X)? and Smaaften-n.,of = 1 — o where
S.1(z) is the c.d.f. of the Student’s t-distribution with (m — 1) d.f.

TueorEM 3.1. A lower bound for the Pitman efficiency of (3.5) compared to
(3.6) s given by
(3.7) (2/m)[(Ko + Kig)/{Kip + (2loga™)}T

Proor. Let 6; and o; be two sequences such that lim;,e 8; = 0 and lim,.« o
= 1. Let 8; = sup, {&(z) — ®((z — 0:)/0:)} = ®(a:;) — ®((a; — 0;)/0:) where
0 < a; < 0; and let Uy, = ®(a;) — 8 = ®((a; — 0:)/04). Let n; be a sequence
of sample sizes such that

(38) limie ®l{ Uni(1 — U} Hndss — (3loga™)? — ni )] = 8
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Now, Upi(1 — Up;) = ®((a; — 60:)/0:)®((8; — a:)/0;) — L as i — « and from
the mean value theorem n'6; = nl{a; — ((a; — 0:)/0:)}e(h:) where h; — 0
as ¢ — . Thus,

ns; = nd{(ai(os — 1) + 0.)/cde(hs) = 0.4 (a:/8:) ((o5 — 1)/0s) + o Ye(hi)
since {(ai/0:) ((os — 1)/0s) + o Jo(hi) = 0(0) = (20)F as i — « it follows
from (3.8) that lim.,, 70, exists and is given by

(3.9) lim,,., ni0; = (7/2)4Kis + (2loga™)¥.

It follows that n; — « and hence from (4.2) of [1] the left-hand side of (3.8)
is a lower bound for the power of 8; for sufficiently large . The power of the test
(3.6) based on a sample size m; at the alternative (8;, ¢;) is given by

(310) P{ Yz > t(ml—l),a - mﬁ()i/si}

where s; = sn; and Y; = m} (X — 6,)/s; is a Student’s ¢ with (m; — 1) degrees
of freedom.
Now, we choose the sequence m; in such a way that

(3.11) limp, (I — ®{K. — mi6y/od] = 8.

Since Y, converges in law to the standard normal distribution and P{|m.0,/s;
— ml6:/s:] > ¢ — 0, it follows from Lemma 3.1 that limi.. P{¥; > bmi—1), e
— mi0,/s) exists and is equal to B, i.e. the choice of m; is such that the power
of (3.6) tends to 8.

Now, from (3.11) it follows

(3.12) lim e mi0; = Ko + Kis.

The result now follows from (3.9) and (3.12). The following gives numerical
lower bounds for some values of « and 3. ‘

8
24
.90 .95 .99
.01 .45 .46 .48
.05 .39 .41 44
.10 .36 .38 42

It can be seen that (3.3) decreases with o and increases with 8 so that for «
between .01 and .10 and 8 between .90 and .99 the efficiency is larger than .36.
By making use of the approximation for the “tail” of the normal distribution
(see [3], p. 166) it is easy to see that K, ~ (—2log a)* = (2loga ) asa — 0
and we see that the limiting lower bound for efficiency is 2/7 as o — 0. It is
interesting to note that this is independent of 8.

4. Bounds for the power in the two-sample case. Before deriving a lower
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bound for Pitman efficiency in the two-sample case we shall extend the results of
[1] to two samples. Let Xy, X, - - - , X, be a sample from an unknown distribu-
tion F and Y1, Y,, ---Y, from an unknown distribution G. Let Hybe F = @
and H, : F = F®, G = G¥ with F¥ > G“. Let F..(2) and G,(z) be the em-
pirical e.d.f’s of X’s and Y’s respectively. Then the one-sided test (see [5])
rejects H, if and only if

(4.1) {mn/m + 0}t sup, {(Fu(z) — Gu(2)} > €mm.a
With B noe €mna = (5 loga™)? where m, n — « in such a way that m/n
= 7> 0.

Lemma 4.1. A lower bound for the asymptotic power of (4.1) is given by
(1 = )3l{Us(1 — U} Hnls — (1 + (= + D'G loga DD/ — oY)

where 5 = sup, {F"(2) — GV (2)} = F®(2) — G (%) say, and Uy = G (2)
= F(l)(ZO) — 4.

PrOOF. F,(2) — G,(2) = {F®(2) — Gu(2)} — {F"(z) — F.(2)} so that
sup. {Fn(z) — Gu(2)} 2 sup. {F®(2) — Gu(2)} — sup. {F"(z) — Fu(2)} and
since {X,} and {Y} are independent, '

Proy g [{mn/(m + n)}%Supz {Fn(2) — Ga(2)} > €mn,al
= Pown! sup, {F®(2) — Gu(2)} > (1 4+ v){(m + n)/m} emn.al
Prw[m? sup, {FP(2) — Fu(2)} < v{(m + n)/n} emn.al

for any 0 < y < 1. By choosing v = {n/(m + n)}! independent of m and n and
proceeding to the limit we get asymptotic power

2 (1 — @) limpse Pe [0 sup, {F®(2) — Ga(2)}
> {1+ (r 4+ D} (3 loga)i/r

A lower bound for the last expression can be obtained from (4.1) of [1] and this
completes the proof of the lemma.
Now, let the null hypothesis and the alternative be given by

(4.2) Hy:F =G = ®(z/0); H,:F = &/a0), G=%@x—0)/0)
with 6 > 0 and ¢ > 0 unknown. The “best” parametric test is given by:
(4.3) (™ 4+ 2 HY = X)/omn > tnins.a

where wh, = (m 4+ n — 2)7 2 (X — X)P + 2 (Y — Y)Y and
timtn_2),a 18 defined as in (3.6).

TrarorREM 4.1. A lower bound for the Pitman efficiency of (4.1) compared to
(4.3) for normal shift alternatives (4.2) is given by
(2/77) (7 + 1)(Ka + Kip)'{Ki@a—en + [(1 + (1 + 1))/71(2 loga™)}

The proof is analogous to that of Theorem 3.1 and is therefore omitted. We
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now use Lemma 4.1 for the lower bound for the asymptotic power of the Smirnov
test.

When « is small and 7 is large we notice that this lower bound is approximately
the same as in the one-sample case. The following are some numerical values
for the lower bound.

a, 8
1 5 10 20 40
a = .01
8 = .90 .22 .27 .30 .33 .36
a = .01
5= .95 .24 .29 .32 .34 .36
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