CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, I: LIMIT
DISTRIBUTIONS OF SUMS OF RATIOS OF SPACINGS

By SAurn BLUMENTHAL!

Rutgers—The State University

1. Introduction. In this paper, we study the limiting distribution properties
and stochastic convergence of certain statistics based on ratios of sample spacings
from different populations. The interest in these statistics stems from their con-
nection with the “parametric” two sample hypothesis. This application is dis-
cusseb in detail in the companion paper, Blumenthal (1966). The statistics them-
selves are described below.

Let Xy, , Xnand Yy, ---, Y, be a set of (n + m) independent random
variables, the first m having common edf F(z) and the second n having common
¢df G(z). Denote the two sets of ordered observations by Xy’ < --- £ X, and

Yy £ .- £Y,.. The sample spacings, or sample successive differences, from
the two sets of random variables are given as
(1.1) DX, = X — X/, i=1,--,m—1,
DY, = Yiu— Y/, j=1,,n—1
If m = n, we can define the statistic
(12) S.(r) = Y15 (DXy/DY.), 0<ll=L

If m > n,asubset X;,, -+, X, of X1, -+, X, can be chosen at random and
then S.(r) can be defined as above. We shall assume m = n whenever we dis-
cuss Sn(r).

Under certain assumptions about the behavior of F(z) and G(z) in the tails,
limiting distributions are found for S.(r) in Section 3. It is found that as |r|
varies from 0 to 1, the limiting distribution varies over the class of stable dis-
tributions with parameter o going from 1 to 2 (see Section 3). Stochastic con-
vergence of S,(r) to a limit is taken up in Section 4.

In the following section our notation and assumptions are detailed.

2. Preliminary remarks. In this section we introduce the basic tools which are
used in Sections 3 and 4. The results of those sections depend on being able to
express the set of random variables DX,;/DY;,7 =1, ---,n — 1, in terms of a
set of independent random variables. To establish this equivalence, the ratio
(DX /DY ;) will be expanded in a Taylor series as a function of the hazard rate,
and certain well known properties of the hazard rate will be used to make the
connection with the set of independent random variables. The relation of gen-
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eral spacings to exponential variables by means of the hazard rate was used by
the author (1963), and by Proschan and Pyke (1962), (1965). For uniform spac-
ings, LeCam (1958) also used the connection with exponential variables to ob-
tain limit theorems.

We now define the hazard rate function and give some of its properties. For a
more comprehensive discussion see Barlow, Marshall and Proschan (1963).
Let F(z) be a distribution function with density f(z). The hazard rate h(x) is
defined

(2.1) h(z) = f(z)/(1 — F()).
The cumulative hazard rate H(x) is
(2.2) H(z) = [2oh(t)dt = —log (1 — F(x)).

It is easily seen that the random variable H(X) (where X has cdf F(x)) has
the standard exponential distribution,

(2.3) PHX)Sz)=1—¢"

Since H(z) is an increasing function of z, if X < --- £ X m Tepresent the
ordered values of m independent random variables with common distribution
F(z), then H(Xy) £ --- £ H(X,') represent the ordered values of m inde-
pendent exponentially distributed random variables. Let
(24) U= (m — )H(Xin) — HX)), i=0,1-,m—1,

(with H(Xy') = 0). The fundamental result for this paper is that Uop, -- -,
Un are a set of m independent exponentially distributed random variables
with the distribution (2.3), and that we can write

(2.5) H(X/) = 2is (Us/(m — ), i=1,-,m

The distribution property of Uy, -+, Unm-1 was used by Rényi (1953) in the
study of order statistics, and discovered independently by Epstein and Sobel
(1954) in the study of life testing plans, but appears to predate both, being
found in the work of Sukhatme (1937).

The spacing DX is related to the hazard rate through the expansions

(2.6) DX; = (H(Xin) — H(XJ))/MX)
and
(27) W(X:) = W@) + rlH(X:) — H@IW (E)/K7(9)
+ 1[H(X:) — HOFME )" (X:) — (2 — r)(B (X)) V/hT (X))
for any r, if the indicated derivatives exist and are continuous, where we have

X/ £ X £ Xin, i=1--,m—1,
and
min (F_l(z/m), X@) = Xz < max (F_l("/m))Xt)’ i=1--,m— 1
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The notation used is the following: k(%) is an abbreviation for h(z) evaluated at
x = F'(4¢/m). Similarly for b'(¢), h” (3), and H(z). We use the prime notation
for derivatives: h'(x) = (dh(x)/dx), etc. F*(x) is the usual inverse of the
distribution function which we assume to be unique whenever used. In fact we
assume that f(z) > 0 on an open interval (F (), F'(»)),0 S u<v <1
where u, v will be apparent from the context of discussion and are in most places
taken as 0 and 1.

We shall use corresponding notation for the Y’s and G(z). The hazard rate
is g(x), the cumulative hazard rate, Q(x), derivatives will be primed, and ¢(%)
will be ¢(x) evaluated at + = G(3/n), etc. The assumptions regarding f(x)
apply also to g(x) with the same values of (u, v).

Further, define
(2.8) Vi=(n—)(Q(Yin) — QY/), i=0,1,--,n,
(with Q(Yy') = 0). As before
(2.9) QYY) = 2255 (Vi/(n — j)), t=1-,mn
where Vy, ---, V, are independent, exponeﬁtially distributed random variables
which are also independent of Uy, ---, U,. The corresponding versions of

(2.6) and (2.7) will not be repeated.

In Theorem 3.0 we shall investigate conditions under which the first order
term in (2.7) can be omitted or replaced by a simpler term while in Lemma 3.1
we consider the conditions under which the second order term in (2.7) can be
ignored.

In studying convergence and distribution properties under the assumption
that F(z) = G((x — u)/s), a simplification can be obtained by noting that

(210) DX@ = 0’DX11;, 7 = 1, R (2 1,

where the random variables Xi;, - -+, X1, are independent with common' dis-

tribution G(z). Thus any theorem which is true when F(z) = G(z) holds also

when F(z) = G((z — p)/c) with the obvious substitution of (DX,/s) for DX, .
For later reference we state two simple facts

(2.11) P(UJV) <) = 2™ /(1 + 27, r >0,
and
(2.12)  E[(U/V)1 = ¢ &/(1 + 2)*) de = «r/sin o, 0<r<l

3. Limiting distributions for ratios. In this section we shall obtain the limiting
distributions for the sums S,(r) = D (DX;/DY.)". (See (1.2.)) We take the
index of summation to run from 1 through n — 1 throughout this and the follow-
ing sections unless stated otherwise. We assume m = n. The distributions are
obtained both for F(x) = G(z) and for F(xz) # G(z). The results are based on
Theorem 3.1 which establishes the connection between these sums and sums of
the independent random variables discussed in Section 2. It is then possible to



SAMPLE SPACINGS THEORY 907

use standard limit theorems found in Gnedenko and Kolmogorov (1954) to
establish the forms of the limiting distributions of the sums of independent ran-
dom variables. Except in the case where the limiting distribution is normal,
our results give the value of the characteristic function of the limiting distribu-
tion. Of course this identifies the distribution uniquely but without an expression
for the distribution function itself, it is not possible to compute percentage points,
ete. :

Two types of distributions arise below. In Theorems 3.1 and 3.3, we obtain
the so-called stable distributions. The characteristic function ¢(¢) of these dis-
tributions can be represented by (see Gnedenko and Kolmogorov, p. 164)

(3.1) log ¢(t) = int — clt|*{1 + 18(¢/[tw(t, @)},

where «, 8, 7, ¢ are constants (9 is any real number, -1 =8 =1,0 = a =2
¢ = 0)and

w(t, @) = tan ra/2 fa#1l
2/w)loglt| . fa=1.

In Theorems 3.1 and 3.3, in each case we have 1 < a < 2. For a = 2, (3.1)
represents the normal distribution and we shall arrange the result so that the
limiting distribution is the standard normal (mean 0, variance unity). We denote
this distribution by ®(x). For 1 < « < 2, we denote the distribution (3.1)
by S(a, 8, 1, ¢) listing the values of these constants in the order given.

Each of the distributions in Theorems 3.1 and 3.3 has 8| = 1 and is skewed
toward the right. Such distributions have been studied by Mandelbrot (1960)
in connection with economic theory and he has labelled them ‘Pareto-Lévy”
distributions (for 1 < & < 2). He also mentions some tabulation now in prog-
ress which when published will make the present results of more immediate
usefulness. For discussions of stable distributions in general the reader is referred
to Lukaecs (1960) and to Fisz (1962).

In Theorem 3.2, we obtain as limiting distributions infinitely divisible (ID) dis-
tributions of the class L which arises from limits of sums of independent random
variables. These can be represented in general by

(3.2) log o(t) = int — (/2) + [Yule™ — 1 — ut/(1 + w*)] dM (u)
+ [T [ — 1 — qut/(1 + )] dN(w)

where 7 is any constant, ¢* = 0, and M (u), N(u) satisfy certain regularity con-
ditions (see Gnedenko and Kolmogorov, p. 84). We shall have o® = 0 in each
case in Theorem 3.2 and M (u) = 0 (all ). Also we shall have (—N(u)) =
4 *in each case. Thus we shall indicate the distributions (3.2) simply as L(», a)
in the theorem.

Preliminary to Theorem 3.0, we need some restrictions on how far a uniform
order statistic can deviate from its stochastic limit.

Lemma 3.0. Let Xy, - -+ , X, represent a random sample from the uniform dis-

I
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tribution on [0, 1]. Let the ordered values be Xy’ < --- < X.'. Then the Sollowing
statements will hold:

(8.32) lima.. P{(i/n) — Xiy < n' ¥, X/ — (i/n) < a3,
t=1---,n} =1,
(3.3b) limp. P{|Xi; — (is/n)| < (logn)/n;j =1, -, kn},
k fixed and the indices 4;, - - - , %t fixed} = 1,
(3.3¢) limp,e P{X, <1 — (nlogn)™, Xy > (nlogn)™} = 1.

Proor. Equation (3.3a) is a restatement of a theorem of Kolmogorov (1933),
while (3.3b) follows easily from the fact that for any collection of events A4;,
t=1,---, m, (with complements A4.°) P(7=d:) =1 — D 7y P(4S).
Here, each A" has probability [1 — ((log n)/n)]". Finally, (3.3¢) is derived
from

P{(nlogn)? < Xy, -+, X, <1— (nlogn)™} = [L — 2(nlogn)™]"

—s g~ @llogn) _ 1

This concludes the proof.

In the following theorem, we write X, — pY, to mean that the sequence of
random variables X, — Y, approaches zero stochastically. In later theorems, it
will be convenient to write £{X,} — F(z) to mean that F(x) is the limiting dis-
tribution for the sequence {X,} of random variables.

TeEOREM 3.0. Let F(x) and G(x) be distribution functions whose hazard rates
satisfy the conditions stated below. Let the DX, , DY;, U;, V,, h(3), q(2), etc.,
be as defined in Section 2. As n increases,

(3.4a) (1/n7) 22 (DXo/DY:)" —2(1/0") 22 (U/ V) (g(8)/h(5)),

;<r=1l,
(34b) (1/nlog n)'3. (DXy/DY.)* —p(1/nlog n)*Y (Us/Vi)H(q(:)/h(5))}
r= %’

(3.4c) n Y (DXi/DY.:) = 3 {(Us/ Vi) (g(4)/h(3))"
+ (m*/(n + 1 — ) sin wr)[(Vi — 1) 2=k () G /()
— (Ui = 1) 22550 (@ GF G /BTG, 0<r<i

Equations (3.4) are valid also with DX; and DY interchanged, provided that
U; and V;, and q(«) and h(z) are correspondingly interchanged.
Let

K(z;r) = K (F ()¢ (6 (2)/W"(F (), 0==z=1.
Then we require that
(1) f5{Q =) [1 K y; r)dy} dz <
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(3.5a) and
(2) there exists a function p(8) such that
limsao [a(3, 7) [ip {(1 — 2) "' [ K*(y; 1) d} da] = O,
lim;.o p(8) = 0,
lims. (8 log 8/p(8)) = O,
where a(3, r) = max {1, (—log 8)*'}. Furthermore, let
a(z; 8, r)
= SUPa(ey.s M(F ()R (F'(y)) — (2 4 r) (W (F'(9)))"/ (F ()]
where
R(z,9,8) = {(z,9): [y — 2] <8(z),y <1~ (#(~logd)™),
y > (8(—log )™}
and
z) =8 od<z<1-—034,
=&, 0=2z=41—-6=<zr=1L
Then we require that for some function »(§) with lims.o v(6) = O that
(1) lims.o SUPogsg1-eea [0(3, 7)0*(—log 8)(1 — 2)™"
(3.5b) J5 @ @)aly; 8 )1 dyl = 0;
(i) limsao [a(3, ) [iT0n [ ()a(y; 8, )T dy] =0
and that
(350)  limswo [b(3, 7) [5" (¢ (2)ax(®; 8, 7)(L — )7} da] = 0,
where
b(s, r) = 5, 0<r<i,
=8(-logd)?, =4
=8, l<r<l,
= &'(—log 5)?, r=1

All of conditions (3.5) must be satisfied also with r replaced by (—r) and
with g(z) and h(z) interchanged, making four sets of conditions in total.

Note: When 0 < r < 1, condition (3.5a-1) implies (3.5a-2) as is easily seen.
The latter condition is of concern only when 3 < r < 1. It can also be shown
that when r = 1, (3.5b) implies (3.5¢). Further remarks on the conditions
appear following Lemma 3.1.
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Proor. Using (2.6) and (2.7) and their counterparts for the DY, we have
2 (DXy/DYy)" = 2 (U V) (q(i)/h(5))"
— 120 (UJ/ V) (H(X:) — H(@) (G @OF (@) /BT (@)
+ 22 (U/ V) (QY:) — Qi) (W ()q'(5) /477 (4))
=22 (U/V)"(H(X:) = H(#))'d (D))" (X)
— (2 4 n(HE (X)X + r 2 (U/V)(Q(Y3)
— Q)R (DIg(F)g" (F) — (2 — r)(d(F))* /g7 (V)]
— "2 (U/ V(Y — QUi)MH(X))
(36)  — H@)IG O @)/¢T@OR (@) — "2 (U/ V) (QT)
— QU))(H(X)) — H(3))ld (8) (h(X:)h" (X:)
— 2+ nNE &N /TORT(RI] — "2 (U V) (QY)
— QU (H(X) — H@)IW (6 (a(T)q" (T3
— 2 = (@ F)V/BTE (TN — 22 (U/V)(Q(Y:)
— Q())(H(X:) — H(D)'[(e(¥o)q" ()
— (2 = 1) (T (X)W (X)
— 2+ ) W(X))N/¢ (TR (X)]
where
X/ =X Xiqn, Y/ =V, 2 Yiu, i=1---,n—1,
X.e [X:, F'(i/n)), Yiel¥:, G '(i/n)], i=1-,n—1.

The first term on the right in (3.6) is of the form used in (3.4) and we must
study the remaining terms. The second and third terms are very similar in na-
ture and we shall show that when properly normalized, they converge stochasti-
cally to zero for 3 < r =< 1, and to the appropriate random variable given on the
right side of (3.4¢) for 0 < r < 3. The remaining terms represent “error”
terms and will be shown to converge stochastically to zero, under the conditions
(3.5). This latter demonstration will be given in Lemma 3.1. Because of the
similarity of the second and third terms, only the second will be studied in detail.

Ignoring the coefficient, —r, the second term in (3.6) can be rewritten

(87) X (U/V) (H(X!) — HE)) (g G (5)/h(5))
+ 2 (U/V) (H(X) — HX)) (G @R E)/RE)).

_ It is the first term in (3.7) which we shall study further. By the definition of
X:, we have wp 1, H(X;) — H(X/) £ HXina) — HX/) = Uy/(n — 9).
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It will be seen in the course of the proof that this bound is sufficient to guarantee
that whenever the leading term in (3.7) converges to zero or to a random vari-
able having finite variance, the secondary term converges stochastically to zero.
A further simplification results from using (2.2) to note that

(3.8) H(7) = Q(7) = —log (1 — i/n)
2% 1/ (n = §) + Aa/(n — 5)

where IA,,I < B (mdependent of n). Using (3.8), and the representatlon (. 5)
for H(X/"), the leading term in (3.7) becomes

(3.9) > (U V) (d G @) /B () 55 (U — 1)/ (n = j).

The error in using (3.9) will be stochastically of the same magnitude as the
secondary term in (3.7) and will thus converge stochastically to zero. Finally,
introducing a change in order of summation, we write (3.9) as

(310) X35 [(Us — 1)/(n — NIXiSh (US/ V) (W ()¢ (1) /B ().

The study of the variance of (3.10) is complicated for ¥ = r =< 1 by the non-
existence of the 2rth moment of (U,/V;). This difficulty is circumvented by the
introduction of the “truncated” variables U/, V. defined by:

U/ =U; if (U;/V;) = nlogn
(3.11) = (nlogn)V; if (Uy/V:) > nlogn,
vVi=V; if (U/Vs) z 1/nlogn

= (nlogn)U; if (U/V;) < 1/nlogn.
It is easily seen that

(3.12) EWU/ —1) = —=1/(1 + nlog n),

EWU —1)*= (1 + (nlogn)®)/(1 + nlogn)®* <1
and that
(3.13) E(U//V{) £ kilog (nlogn),
| B(UZ/V{Y < b (nlog n)™ >,
It is also easy to verify that
(3.14) 22 PUUY/VY) ## (U/V)] = 20/(1 + nlog n)

which goes to 2610 as increases. Similar expressions obtain for > pP(U/ ;ﬁ U,)
and D> P(V/ # V.). Thus it is possible to substitute U/ for U; and V| for
V,;in (3.10) and study the stochastic convergence of the resultant expression
which has a finite second moment. Thus writing

(8.15) "~ A; = (1/(n — §)) 21k (UL/VY (W (5)g (6) /B (4)),
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we have
E{3 A;(U/ — 1)}
(316) = X E(U; — 1’4} + 2265 E(U; — 1)(Us' — 1)4;4,
=Y (14 (¢/nlog n))EA] + 2D 455 (d/nlog n)E(U: — 1)A;As

using (3.12) and the fact that 4 ; involves 7 subscripts which are strictly greater
than j. Now we have

B(A}) = (n — )Xk B(US/ V(R ()¢ () /B (4))?
(3.17) + 2(n — )7 Disizin E(US/VIYEUL VY
(W' ()g () /W7 (3)) (W' (k)g (k) /B*Y (K)),
which becomes for r = 1 (using (3.13)),
E(A}) = lka(nlog n)*/n*(1 — (i/n))"] ZiZha (K (9)q(2)/ K(4))*
(3.17a) + [2(k1 log (n log n))*/n*(1 — (j/n))’]
Yisirs (B (8)g(6)/W(3)) (W (k) q(k)/ h*(k))

and for } < r < 1, using (3.13) and (2.12) (neglecting the slight error of apply-
ing (2.12) to (U'/V’) instead of (U/V)), (3.17) is

E(A}) = [ka(nlog n)"/n*(1 — (/n)) ) Xih (W (3)d )/ B (5))*
(3.17b) + [2(ar)/(sin 7r)'n*(1 — (§/n))]
ki i(B ()g () /T (3)) (B (k) g (k) /W ().

Now introduce the normalizing constant (1/n) into (3.16) from (3.4a), use
(3.17) and the leading term of (3.16) becomes

7 ka(log n)* 7 055 (1/n) (1 — (§/m) 7
(3.18) (R (D) 6 /BT (6)) (1/n) + 2v(n, r) /0"
S0 (U/m) (1 = (G/m))7
- Dz W (G () () (k) /B ()R* (K)1(1/n)*
with y(n, r) given by
(3.18a) v(n, 1) = (k1 log (nlog n))? r=1,
= (ar)*/(sin 77)?, i<r<l

For r = 4, (3.17) becomes (using (3.13) and (2.12)) (neglecting the slight
error of using (2.12))

[ (log (n log n))/n*(1 — (3/n))'1 ik (B ()¢ (6)/K*5(9))*(1/n)
+ [/4nE (1 = (/1)) D (B ()@ (0)/H°()) (' (k) (k) /B* (k).
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With the normalization (1/n log n) from (3.4b) we obtain
ka(log (n log n))/nlog n] 2235 (1/m)(L — (j/n))
(3.19) - 2iSia(W D@6/ @) (1/n) + /4 (g n)”*
2% (1/m)( — (§/m))7
2 kizi (W (DR (k) (0)q (k) /B ()R (k) ) (1/m)".

There is still the double sum in (3.16) to consider and we claim that
essentially this term can be obtained by using E(U, — 1)EA;EA, in place of
E(U, — 1)A;A; since the error of so doing can be shown to be of smaller mag-
nitude than the resulting expression. This approximation leads to

(3.20) [C/(n" log’ m)][ 20 (1/m){(1 — (§/n)) ™ XiTha (B (9)g'(&)/K (0))}T

for § < r < 1, where C depends on r through (2.12), and where the normalizing
constant changes to [C/(n log® n)] for r = % and to [C log (n log n)/n’ log® n]
for r = 1. In all of these cases, condition (3.5a-1) assures the convergence to
zero of this expression, since the sum in the square brackets is the Riemann sum
approximation to

(320a) [ol1/(1 — 2)1f2 ' (F(y))q' (G () /B (F(y))] dy da
and using the fact that [§¢°(z) dz < © = [bg(x) dz < o we see that if
(3.20b) [i{(l —2) i K(y;r) dy} do < oo
then (3.20a) is also finite. By the Schwartz inequality,
(1—2) ([ K(y;m)dy)" = (1 — 2)7 [L K'(y; 7) dy

so that (3.5a-1) does insure the finiteness of (3.20b) and thus of (3.20a).

For r < %, there is no need for introducing U’ and V' variables and we can
consider (3.16) without the primes. Doing so, using (2.14), and normalizing with
n? gives (omitting the intermediate steps)

E{(n))7'> A;(U; — 1)}* = (2nr/n sin 27r)
i (/) (1 = (§/n) 7 25 (W (0)g (0) /K (4))*(1/n)
(3.21) + (wr/sin 7r)? > 77 (1/n)(1 — (j/n))*
- 2kein (W () (3) /B (3)) (W ()g () /B () ) (1/m)",

Note that the double sum of (3.16) is identically zero when U’ is replaced by U
so that (3.20) does not arise.

The three expressions (3.18), (3.19) and (3.21) are basically similar and can
be summarized as

(Can(r)/n) 225= (1/n)(1 = (§/n)) 7" 2055 (B (D)’ () /K7 (4))*(1/m)

3.22
(822) + Dba(r) 255 (1/m){(1 = (3/n)) ™ 22055 (W () () /B () (1/n))
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where C and D may depend on 7, a.(r) = 1 for 0 < » < % and (log n)*" for
(3) <7 = 1,ba(r) = 1for 0 < r < %, and b,(r) — 0 as n increases for (%) <
7 = 1. Thus, if condition (3.20b) holds, the second sum in (3.22) represents a
Riemann sum approximation to the integral and will approach the integral.
Thus when multiplied by b.(r), it converges to zero for (1) < r < 1, and to the
given finite integral of (3.20b) for 0 < r < 1. As seen before, (3.20b) does
hold whenever (3.5a-1) is satisfied.

The first term in (3.22) converges to zero for all . For some distributions,
Jo{(1 — 2)?[LK*(y; r) dy} dz < = in which case the preceding argument
suffices. It is easily verified that this condition implies (3.5a), and in many
cases this integral is divergent, and so is the sum in (3.22) but we shall show
that condition ((3.5a)-(2)) is designed to limit the rate of divergence. Write
b = (1/n0) 2 iZa—iva (B (k)q"(k)/B**(k))*(1/n). Then the first term in (3.22)
is (using the Abel sum formula)

(8.23)  Ca(r) 2i=e (1/4)bs
= Ca.(r){(1/n)B, — By — 2 1w (1/i(i — 1))Bi},
where
(3.24) B; = D i,b;
Fons (1/n) (1 — (k/n)) 7 22550 (W () () /B (5)) (1 /n).

Now condition (3.5a-1) asserts that B, approaches the given finite integral, and
B; = 0 by definition.

Also, for ¢, such that (¢,/n) — 0 as n increases, we have B,, < e(e > 0, given,
arbitrary) for all n sufficiently large since it is seen from (3.24) that

B, < [izsldz/(1 — )] [Z W (F 7' ()@ (G () /BT (F ()P dy < e

provided that 6 is sufficiently small, and (¢,/n) < 6. Since all terms are positive,
B;<B,,i=1,---,t..Also, all B; < D < o for some D. Thus, we have

2o (1/i(5 — 1))Ba < By, > iz (1/i(5 — 1))
+ D2y, (1/i(s — 1)) < By, + D/ta.
Returning to (3.23), we see that if ¢, goes to infinity with =, then if a,(r) is

bounded, (3.23) converges to zero. This applies to 0 < r < 1. Since we can
always choose ¢, so that (logn/t.) — 0, the difficulty for £ < r < 1 arises with

1

(log n)zr_lBtn . Condition (3.5a-2) asserts just this with 6 = n~*. This completes
the proof for 3 < » < 1. For 0 < r < %, it remains to be shown that

WIS (U — 1)/ (n — )]
15 (U V)™ — ar/sin arl(h' (3)g (3) /B () —2 0

in order to justify writing (3.4¢). This is accomplished by straightforward com-
putation of the second moment and will be omitted.



SAMPLE SPACINGS THEORY 915

Lemma 3.1. Under conditions (3.5), the “‘error terms” of Equation (3.6) when
appropriately normalized, converge stochastically to zero.

Proor. The “leading” error terms in (3.6) are the fourth and fifth. Since
these are similar, only the fourth will be studied in detail. The sixth term is a
hybrid of the second and third, and will converge to zero whenever those terms
converge to proper random variables. The last three terms represent combina-
tions of the fourth or fifth with the second or third and again the methods used
herein show that they converge to zero under the conditions of the theorem.
Limiting attention to the fourth term, we shall show the stochastic convergence
to zero of

(3.25)  Ca(r) 22 (U/Vi)'(H(X:) — H(©))q'(4)
AEIR (X)) — (2 + ) (W(X))") /R (X))

where
Cu(r) = n7, 3<rsl,

= (nlogn)™, r=14

= n_'%’ "0 <r< %
Writing,

H(X)) — HG) = H(X)) — H(X/) + H(X{) — H(:)
(3.26) < H(Xipn) — H(X)) + H(XJ) — H(3)
= [Ui/(n — 9)]

+ 2% (Ui — 1)/(n — j) + B/(n — 1)

as was done in the preceding theorem, it is easily seen that (3.25) converges to
zero if and only if

(3.27)  Cu(r) 22 (U V) (2ims (U; — 1)/ (n — 5))°d (3)
TR (R — (2 + ) (B (X)) /A (X))

converges to zero.
Because F (X) is uniformly distributed on (0, 1), Lemma 3.0 applies to the

ordered values F(Xy') < --- £ F(X.). Thus, since
F(X:) — i/n| < max (|F(XJ) — i/n], |F(Xiss) — i/n])
by the construction of X, We can use Lemma 3.0 to conclude that
(3.28) limp.o P{F(X:) — /0| < 8, =1,+-+,n —1;
F(X,) £1— (1/nlogn), F(X1) Z (1/nlogn)} = 1
where
o = nt WHl1gigsn—n—1

- . 3. 3
= (n") logn, 1 S0, iz n—n.
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Write
(3.29) a(d) = SUpla_izmi<s; [(R(F'(2))R" (F(2))
— (24 )" (F 7 (@)I) /A (F (2))]).

Following Proschan and Pyke (1965), we shall show the stochastic convergence
of (3.27) given the event described in (3.28), since that is sufficient to imply
the “unconditional” convergence of (3.27). But given the event of (3.28), we
can replace the random variable ([h(X)h" (X.) — (2 + r) (B (X)) )/ (X))
by the nonrandom quantity «(¢) given in (3.29). Thus we shall demonstrate the
convergence to zero of

(3.30) Ca(r) 2 (U V2)'d (a(d) (257 (U — 1)/ (n — 5))".

The method will be to investigate the second moment of (3.30). Since
E(U;/V;)" does not exist for r = 1, we again use the equivalent variables U LV
introduced in (3.11) when necessary. To save space, we shall write out the
moments using U’s and V’s, with the understanding that primes are intended
where needed. The expected square of (3.30) consists of two parts

(331a) C.A(r) X E(U/VHTE(XIS [(U; — 1)/(n — NG @D)al@)
(3.31b)  2C.5(r) Yusi E(UW/ Vi) E(U/ V) (X85 (U — 1)/(n = LI
(X U; — 1)/(n — NN (@) (B)a(d)alk)).
Writing
UL — 1)/(n — L)) = 255 (U — 1)/(n — L)]
+ Tha (U = /(v — D] + (Us = 1)/(n — 1),
we have
(53 (U — 1)/(n — DD (XS WU; = 1)/ (0 = P
= (s [(U; — 1)/(n — DD
+ (3 WU = D/ (n = HDH = (U — D/ (v = DI
332)  + (Ui — D/(n — )BT, — 1D/(n — DI
+ 2((U: — 1)/(n — (S [(U; — 1D/ (v = DY
+ 2((U; — 1)/(n — D)) (TS [(U; — 1)/ (n = D’
(5= [(U; = D)/ (0 = DD
+ 2B (U — D/ — DY (s [(U; = 1)/ (0 = HD.
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The following are easily verified:
E(2 5= (U= 1)/(n — D' = C/(n — i + 1)},
(333) E(XS[(Ui—1)/(n— NI’ = C'/(n —i+1),
B(Xisl(U;i = 1)/(n =)D = 1/(n —i+1),
E(imin (Ui = )/(n =) =1/(n =k + 1) — 1/(n —i + 1),

where C, €’ are of the form a + o((n — 7 4 1)7*). Further, using the fact that
the joint density of T = (U/V) and U is

Il

Il

f(t, u) = ut e e, uz0,t=0,
we find that
E(UT) =2/(1 —7r), r<l1,
(3.34) < 2ET, r=1;
E(U'T) £3/(1 —1), r<]1,
=< 3ET, r =1

Now, use of (2.14) and (3.13) along with (3.33) and the definition of C,(r)
(3.25), gives for (3.31a)

(3.35) a(1) 20 (n — i + D7(¢ (D)a())"/n],
where
a(r) = A, 0<r=3
= A(logn)* ™, i<rs1

and A is of the form (4" + o(1)). The use of (3.32), the independence of the
U’s and V’s and (3.33), (3.34) along with (2.14) and (3.13) yield for (3.31b)

(3.36)  2ba(r) 2i>: [(C/(n — i + 1)*)¢' ()¢ (k) a(d) (k)
+ (@ (@)a())/(n — i+ D) (d(B)a(k)/(n — &k + 1))]

where
ba(r) = B/n, 0<r<is,
- B/nlog n, r =3
= B/n”, t<r<i,
= Blogn/n’, r=1,

and again, B = (B’ + o(1)), and C = (C’ + o(n — i + 1)*). Strictly speaking,
(8.35) and (3.36) are valid only when U’s and V’s appear in (3.30). The correct
expressions for (U')’s and (V')’s in (3.30) are of the nature of (1 + O(n™"))
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times the expressions (3.35) and (3.36) (which can be verified using (3.12)).
Thus it is sufficient to show that both (3.35) and (3.36) converge to zero as n
increases. Further simplification in (3.36) is attained by noting that for k > 7,
(n —k+ 17> (n—14+ 1) so that (3.36) converges to zero if and only if

(3.37)  2ba(r) Disi (¢ (D)a(3)/(n — i + 1)) (¢ (B)a(k)/(n — &k + 1))
= bu(M[(X ¢ @)a(@)/(n — i+ 1)) — 2 (@ (@)a()?/(n — i+ 1)

converges to zero. Since a,(r) = nb.(r), the second term on the right in (3.37)
goes to zero whenever (3.35) does. Thus it is necessary and sufficient to have
(3.35) and

(3.38) du(r) 22 ¢ (D)e(8)/(n — 3 + 1)
where
da(r) = 073, 0<r<i3
= (nlogn)?, r =%,
=n, ' i1<r<l,
= (logn)n, r =1,

converge to zero. In general, both (3.35) and (3.38) must be checked. However,
for r = 1, (3.35) alone suffices (by the Schwartz inequality).

Using the Abel sum formula as in Theorem 3.0, we find that (3.35) approaches
zero as m increases if there is a sequence of constants ¢, depending on n, such

that
liMysw {@a () log ta(n — 4 4+ 1)7°B;} = 0, uniformly in ¢
=1,2 -, t,— 1

H

(3.39) and
liMpse {@n (r)B;,} = 0, where
@’ (r) = max (1, (logn)*™),
B = 235 (d(a(i)/n.
Conditions (3.39) can be more conveniently expressed by the use of integrals
and noting that

(3.40) B; < [ ¢ (z; n)d(z) dz

whete g¢(z; n) is the step function whose value for (22 — 1)/2n <
z £ (20 + 1)/2nis ¢(¢/n), and

a(€) = supjy-si<sc [(RF@NOB (F(y)) — (2 + 1)
(3.41) T F)P/ATE )]
8(z) = 28; (eq. (3.28)) for (2 — 1)/2n <z = (2% + 1)/2n.
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Since ¢'(z) exists and is continuous, if (i/n) — p, then the integral in (3.40) will
converge or diverge together with [ G=Um (1)l (z) de so that conditions
(3.5b) are sufficient to insure (3.39), making the identification of § with nt,

The convergence of (3.38) to zero is easily seen to be equivalent to condition
(3.5¢).

RemARKs oN TaEoREM 3.0 AND LEMMA 3.1. (1) Results (3.4) bear a similarity
to those of LeCam (1958) who found that for functions of uniform spacings, the
limiting distribution would be the same as the limiting distribution of the same
function of exponential variables (as in (3.4a) and (3.4b)) with the possible
exception of having an additional variance term as in (3.4¢). Neither result is a
special case of the other, but both reflect the same phenomenon.

(2) An important special case of Theorem 3.0 occurs for F(z) = G(z), in
which case the conditions (3.5) need only be checked for 4+r and —r and also
take on a simpler form since q(z) is then h(z). If (&' (z)/h*(x)) is bounded, then
(3.5a) is easily verified. The function a(z; 6, r) in (3.5) is bounded by sup A~ (y)
with y suitably restricted. Conditions (3.5b) and (3.5¢) can then be seen to
hold by examination of the limiting case (h'(x) /W (z)) = 1, which happens for
the uniform distribution. This is a limiting case in the sense that if &'(z) = 0, or
if " () = 0, or either tends to zero, the conditions (3.5) are easily verified, but
when (A'(2)/h*(x)) is merely bounded, (3.5b) and (3.5¢) are difficult to verify,
and with the uniform this quantity always equals its bound. The computations
involved in finding a(z; 6, r) are easy for the uniform, a(x; §, r) being in fact
sup [(1 — y)"|, and it is somewhat surprising that for the conditions (3.5b and
¢) to be satisfied, careful attention must be given to the limits on the integration
and the definition of 8(x). (Note that »(8) can be taken to be 6.) The integrals
in (3.5b, ¢) diverge if the upper limits are set equal to unity, and if §(x) is taken
equal to 6 for all , the conditions fail when r = 1. In the recent work of Proschan
and Pyke (1965), 6(x) was just § and we were quite surprised in trying to check
the conditions (3.5) for the uniform to find that this definition of 6(x) was not
sufficient. This makes us regard the uniform as a difficult distribution to handle
for sample spacings ratios which is paradoxical since it is the most naturally
associated distribution with ordinary sample spacings.

(3) The difficulty of working with uniform spacings is pointed up not only by
the complications mentioned in (2), but by the fact that LeCam also had to
relate their behavior to that of exponential variables, and then use very delicate
manipulations to achieve his results. Exponential variables lend themselves
nicely to work with spacings as seen in Section 2. The expansion in terms of the
exponential is crucial to Theorem 3.0. This is most easily seen by examining
Blumenthal (1962) in which an attempt was made to expand general spacings
in terms of uniform spacings. Such an expansion necessitated great restrictions
on the densities f(z), most of which have been avoided by the present technique.

(4) We would also conjecture that if 2’ (z)/h*(x) is not bounded and F(z) =
G(x), (3.5b and ¢) will not hold. One example where this quantity is not bounded
is given by F(z) = 1 — (logz)™, 2 > e, for which not even (3.5a) holds. It is
easily verified that (3.4) is false for this F(z).
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Since boundedness of (k'(x)/h*(x)) when F(z) = G(z) is sufficient for (3.4)
and “almost necessary” as the preceding example shows, we might ask what sort
of distributions satisfy or fail to satisfy this requirement. In terms of the tail
behavior of the distribution F(z), |h'(x)/k’(z)| < B implies (1 — F(z))*™ <
f(z) < (1 — F(x))®*. It also implies that zf(x)/(1 — F(z)) (ie., zh(z)) is
bounded away from zero.

Roughly speaking, not many distributions will violate these conditions. This is
due to the representation 1 — F(z) = ¢ 7@ (see (2.2)), which implies that
H(xz) — o as z increases. Now suppose that zh(x) approaches zero for large z.
Writing g(x) for zh(x), it is readily verified that H(x) — o implies that the
series Y n—1 (g(n)/n) must diverge, even though g(n) — 0. Thus, the rate of
convergence to zero must be very limited. For instance g(z) can behave as
(1/logz) or some slightly more rapidly decreasing function, but not as
(1/log )*** for any positive 8. The previous example then is typical of such
distributions.

In passing, we note that for a distribution having xh(x) approach zero, no
moments of positive order exist. Also, even for as badly behaved a distribution
as the Cauchy, the quantity «h(x) approaches unity for large .

(5) In examining the proof of Lemma 3.1, it might be noted that it is not
necessary to have a second derivative and a second order term in the Taylor
series expansion, but great difficulties in handling the error term arise when only
a first order expansion is used. Qur attempts indicated that when the error term
in a first order expansion was suitably restricted, the conditions imposed almost
amounted to the assumption of a second' derivative, and looked very unappeal-
ing. Also deeper troubles with the 8(x) terms seem to arise. One place in which a
first order expansion might not introduce too many complications would be for
1 < r = 1 since the first order term vanishes there. This would mean two ex-
pansions for the separate cases r < %, r = %, and two separate sets of conditions
which hardly seem worthwhile in view of the limited additional generality
gained.

The limiting distributions of the quantities on the right sides of (3.4) now
can be determined by use of theorems in Gnedenko and Kolmogorov.

TaeorEM 3.1. If F(2) = G(x) and F(x) satisfies the conditions of Theorem 3.0,
then as n increases,

(342a) &{log n[(1/n logn) 2. (DX,/DY;) — 1]}

— 8(1,1, —1,7/2), r =1;
(3.42b) £{(1/n") > [(DX.;/DY;)" — (wr/ sin =r)]}

— S[(1/r), —1,0, (—=(1/r)M(1/r) cos (x/2r))], % <r<1,
where M(1/r) = [5[(e™ — 1 + y)/y"**"] dy;
(342¢) £{(1/nlog n)* 3 [(DX:/DY:)! — (x/2)]} — &(a),
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(3.42d) £{(1/nod’(n, 7))} > [(DX:/DY,)" — (wr/sin ar)]} — &(x),
0<r<i,
where
ooi(n, r) = [2ar/sin 2rr — (ar)*/sin® 7]
— (2 fsin o)’ X [ /n(n — @ 4+ 1)] Do (B (G)/BXG))
+ [2(xr*)?/sin’ ar] 30 (1/m){[1/(n — 5 + 1)] Ximea (W () /BN

Proor. Lemma 3.1 allows application of the results in Section 35 of Gnedenko
and Kolmogorov for sums of independent, identically distributed random vari-
ables. Use of Theorem 2 of Section 35 yields both (3.42a) and (3.42b). The
constants « and 8 are found by using Equation (15) of Section 34 and Equations
(7) and (8) of Section 35. The constant ¢ follows from the definitions used in
Section 34. In (3.42a),  can be found by direct evaluation of the characteristic
function of [(1/n) Y (U;/V;) — logn]. The sums in (3.42b) are in the “domain
of normal attraction” of their limit laws.

From Theorem 1, Section 35, (3.42¢) follows. Notice that the sum here is not
in the “domain of normal attraction” of the normal law since the second moment
of (U;/V:)* does not exist.

In (3.42d), Section 35 does not apply since the quantities on the right side
of (3.4¢) are not identically distributed. The limiting normality is easily verified
by the standard central limit theorem (Theorem 4, Section 21 of Gnedenko and
Kolmogorov). A direct computation of the variance of the right side of (3.4c)
leads to the given value of o’ (n, 7).

Next we consider the distributions when F(z) # G(x).

TueoreM 3.2. If F(x) and G(z) satisfy the conditions of Theorem 3.0, the sums
A, (r) converge to non zero limits, and o1’ (n, r) converges to a mon zero limt, then
the distributions of the quantities below converge to the indicated ID laws.

(343a) &{log n[(1/nlog nd,(1)) > (DX;/DY;) — 1]
— L(~-1,1), r =1
(343b)  £{(1/nAn(r)) 2° ((DX:/DY.)" — (arg (¢)/k'(3) sin wr)]
‘ — L0, 1/r), i<r<l,
(343¢) £{(2/nlog ndn(3))} X [(DXy/DY:)t — (7/2)(q() /h(5))}

— ®(2), 7 =

ol
<

where Aa(r) = (1/n) X (q(3)/h(5))"";
(3.43d) £{(1/nei’(n,r))* X (DX:/DY:)" — (arg (3) /K (7) sin 7r)]}
——><I>(x), 0<r<i,
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where
al’(n, r) = (1/n) > {(2mr/sin 2rr — (ar)*/(sin 77)*)(q(3) /h(3) )™
—2(wr”/sin @r)*(q(4) /h(5))"{[1/(n — 1 + 1)] 2724 [ (R (5) /W ()]
+ [1/(n — 7 + D] X555 (DG () /(D
+ (wr*/sin wr)*{(([1/(n — i + 1)] 205k [ ()R () /B2 (5)])?
+ ([1/(n — 5 + DI 22 (D (D /(DD
Proor. Using Theorem 3.0, the problem is reduced to one concerning inde-
pendent random variables. Equations (3.43a) and (3.43b) are verified using
Theorem 1, Section 25 of Gnedenko and Kolmogorov (G-K). The fact that
¢ = 0 follows from the convergence of A,(r) and Equation (11), Section 35
of G-K which holds by virtue of our Theorem 3.1.

Equation (3.43c) follows from Theorem 4, Section 26 of G-K. Equation
(3.43d) is a result of the standard central limit theorem.

4. Stochastic convergence. In this section, we study the stochastic conver-
gence of the statistics S,(r) whose distributions were considered in the previous
section. Results similar to these were obtained by the author (1962) under
somewhat more restrictive conditions on the distribution functions. We shall
take advantage of the work of the previous section in obtaining the convergence
theorems.

TureoreM 4.0. Let F(x) and G(x) satisfy (3.5a-1) and assume there exists a
function v(8) with

lims,ov(8) = 0

such that
(1) limsso SUPoss s1—oola’ (8, r)8*(—log 8) (1 — z)™*
(4.13) S Waly; 8,1 dy = 0;
(2) limsso [0/ (5, 7) [15300 [g"(9)aly; 6, T dy] = 0,
where
a8, r) =&, 0<r<ij
= —d’log s, r=13
=o' (=logd)™, L<r<l,
= (1/(—log?)), r=1,

and a(y; 8, r) is gien in (3.5).
Further, we require that

(4.1b) (i) limese {857 ¢'(®)a(x; 5, r) de} = 0;
(i) limeo{ [i=5 ¢'(2)a(z; 8, 1) da} = 0.
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These conditions must hold with r replaced by (—r) and/or q(z) interchanged with
h(x).
Then as n increases

(4.2a) (1/nlogn) >, (DX:/DY;)
—p (1/nlogn) 2 (q()U: /() V), r=1
(42b) (1/n) 22 (DX:/DY)" —p (1/n) 22 (¢ U@V,  0<r <L

Proor. Essentially, Theorem 3.0 and Lemma 3.1 should be repeated with new
normalizing constants. The crucial step in Theorem 3.0 is verifying that (3.23)
converges to zero. The multiplier a,(r) now converges to zero for all r, so that
in following the steps of examining (3.23), it is seen that (3.5a-1) alone suffices.

We must also verify that the second term in (3.22) goes to zero, but this is
trivial since the revised b,(r) — 0 for all r.

In going through Lemma 3.1, again it is necessary to check (3.35) and (3.38)
with appropriate re-definition of a.(r) and d.(r). Condition (4.1a) is a direct
counterpart of (3.5b) with the revised a(8, r) term. Because d.(r) for this
Theorem is given by '

du(r) = 07, 0<r<li,
= n(logn)}, r =1

convergence of (3.38) is assured by convergence of

(4.3) 2 (1/n(n — i 4+ )¢ (D)a(d).
Use of the Abel sum formula gives as an upper bound on (4.3)
(4.4) (By/m) 4 Bn

where B; = > 2= (¢'(j)a(j)/n). Taking m = n? and identifying & with 7 lead
to condition (4.1b) to guarantee that (4.4) converges to zero. This completes
the proof.

Note that all of the conditions of Theorem 4.0 are less restrictive than the
corresponding conditions of Theorem 3.0, and the second order conditions are
particularly weaker. This is naturally to be expected in view of the smaller nor-
malizing constant and essentially ‘““first order” nature of stochastic convergence.
We might add that since a,,(r) does converge to zero, (3.5a-1) is not necessary—
the integral can diverge subject to some restraint on the rate of divergence. For
r = 1, the restraints would be severe—almost equivalent to (3.5a-1), and we can
verify that the distribution cited in the fourth remark following Lemma 3.1,
provides an example where (4.2a) is false when F(x) = G(x).

TreorEM 4.1. Let F(x) and G(z) satisfy the conditions of Theorem 4.0. Then
as n increases

(452) (1/nlogn) Y, (DX:/DY5)
—p 5 (9@ (@) f(F(2))) da, 7 =1,
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—p(rr/sin 7r) 3 (9(G ) f(F(2))) de, 0 <r <1

Proor. By Theorem 4.0, we need only consider the sums of independent

random variables appearing in relations (4.2).
To establish (4.5a) or (4.5b) for # < r < 1, the theorems of Section 28 of

Gnedenko and Kolmogorov can be used. The strong law of large numbers (Sec-
tion 27 (ibid)) establishes (4.5b) for 0 < r < 4. In this latter case, the functions
of U; and V; converge in the strong sense of probability one to the given constant,
but the convergence in Theorem 4.0 is not with probability one so that this
statement cannot be made in (4.5b). The integrals given are the limiting values
of the appropriate sums. (These are the quantities A4,(r) which appear in
Theorem 3.2.) This completes the proof.

Acknowledgment. The author wishes to thank the referee for his careful and
painstaking reading and criticism which led eventually to a better paper.
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