A LIMIT THEOREM FOR PASSAGE TIMES IN ERGODIC
REGENERATIVE PROCESSES

By JurLian Kgemson'

Sylvania Electronics Systems

1. Introduction. In a previous note, “A Technique for Discussing the Passage
Time Distribution for Stable Systems’ (Keilson, 1965) it was pointed out that
for an ergodic Markov diffusion process or birth-death process on a state space
having an inaccessible boundary, the distribution of passage times to states of
low probability was approximately exponential, and was asymptotically ex-
ponential for any sequence of states approaching the inaccessible boundary.
It was stated that this well known limiting exponential behavior was to be ex-
pected for a much broader class of ergodic processes with inaccessible states, but
no explicit results were given. In this note, a theorem will be presented demon-
strating such behavior for any ergodic regenerative process in continuous time.

The reader is reminded that a regenerative process in continuous time (which
may or may not be Markov) is a temporally homogeneous process X(Z) on an
abstract state space of elements & characterized by an imbedded sequence of
regenerating events having a positive probability of recurrence. (The term event
is used here to mean an occurrence in time, with zero duration in time, such as an
arrival to or departure from a given set of states. For a given regenerative process,
there may be many classes of regenerating events available and attention will
focus on some single specified class.) Each such regeneration destroys the
“memory”’ of a process sample, i.e., the statistical behavior of a sample subse-
quent to such a regeneration is independent of the history of the sample before
the regeneration. The time intervals separating successive regenerations then
constitute a sequence of independent identically distributed positive random
variables. When these have a finite expectation, a renewal process may be associ-
ated with the regenerations, and the regenerative process X(¢) is then ergodic,
i.e., for any subset A of & and any initial state z, lim,.., P(X(t) ¢ A | X(0) = z)
is a non-degenerate measure P, (A ) independent of z. For an extensive discussion
of such regenerative processes see W. L. Smith (1955), and J. F. C. Kingman
(1964).

It will be convenient and will entail no loss of generality to regard the process
X(t) as being a multivariate Markov process, with the number of random vari-
ables finite or infinite, and to focus attention on the regeneration events associ-
ated with arrival to, departure from, or passage through some particular state xo
in the state space 9. We will be interested in a sequence of passage time distribu-
tions Fy(z) defined in the following way. For each value N there is given a
decomposition ¥ = %Y 4+ 2, of the state space into two disjoint subspaces
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with P (%:"™) > 0 and P, (") > 0, and we will suppose that the regeneration
state X, is always in ;7. The distribution Fy(z) is the pdf for the first passage
time from a regeneration event to the set #;™. For the decomposition Dy we
define the conditional regeneration probability py to be the probability that a
system which has just regenerated will have its next regeneration without having
visited #,™.

Let Ty denote the time interval between the (n — 1)st and nth regeneration.
Let its measure be denoted by

(1) w(A) = P(The4),
and its finite expectation be denoted by
(2) m = B(T,) = [¥w(dt).

Our basic theorem may now be stated.

TueoreM. Let X(t) be an ergodic regenerative process in continuous time on the
state space 8. Suppose there is available a sequence of decompositions D of ¥, for
which the sequence of conditional regeneration probabilities py defined above has the
limit 1 when N — . Let ¢y be the first passage time from the zeroth regeneration
to %™, Then, as N — =,

(3) (1 = py)/mlE({n) — L.
Moreover, for each x = 0,
(4) limyw P{[(1 — px)/mliy S @} =1 — €.

Equation (4) states that the distribution Fx(x) of the passage time ¢x is
asymptotically exponential. The class of ergodic regenerative processes to which
the limit theorem is applicable includes univariate Markov diffusion processes,
birth-death processes on the lattice of positive integers, more general lattice
processes in continuous time (since any skip-free character of the motion is
irrelevant), the classical fiber spinning process (cf Daniels, 1945) and related
congestion process describing the number of calls in a trunk of infinite capacity,
the queue length process and virtual waiting time process for the G/G/1 queue,
and a great variety of other processes arising in queueing theory, reliability
theory, operations research, etc. A few of these applications are discussed in
Section 3.

9. Proof of the theorem. Let the process X(f) commence at ¢ = 0 with the
zeroth regeneration. Let A, denote the event that X(¢) ¢ %, for some time ¢
between the (n — 1)st and nth regeneration. Then one must have
(5) P(A.™) =1 —py=gv> 0.

The events 4," (n = 1, 2, -++) are independent. Let ny denote the smallest
value of n for which 4, occurs. Then for the first passage time {x , one must
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have

(6) 0=<¢w =T ny =1
NI, S gw S 2V T o > L

Moreover,

(7 P(ny = n) = px" 'qv .

Let un(A) be the regeneration time distribution for paths in which the set x,™

is not reached, and let usw(A) be the regeneration time distribution for paths
in which &, is reached, i.e., let

mn(A) = P(TISA I Al(N))

and
pw(4) = P(Tie A | 4™),
so that
(8) u(A) = pyun(4) + gnuan(A).
For the subset of paths for which ny = n, the regeneration times T, T2, - -+, T
are independent random variables with Ty, T, - -+, T»— having the distribu-

tion wn(A4) and T, having the distribution uww(A4). For this subset of paths,
T, + Ty + -+ + T._y has the moment generating function ¢in '(s) and
T, + Ty + --- + T, has the m.g.f. ¢ix (s)pen(s), where

din(s) = [oe "pan(dl), i=1,2,.
It then follows from (6) and (7) by summation over n that, for s > 0,
(9) av/[1 — paoun(s)] = E(e™) 2 qudon(9)/[1 — prdun(s)];
and that
(10) (pN/qN)mlN < E(ty) = (pN/QN)mlN + mon,

where miy = [0 tuin(dt). We note from (8) that pymuy + qwmen = m. (Note
from (10) that for any Dx, gvE(¢{x) = m. Consequently, if it is known that
E(ty) — o for a sequence Dy, it follows that gv — 0, and py — 1, and the
theorem is available.) Hence (10) implies (3) provided that

(11) gwmay — 0.

Moreover, from (8), pxdw(s) + gwpwn(s) = ¢(s), where ¢(s) is the m.g.f.
of u(4). Hence

(12) [1 — paduv(gns))/av = [ — ¢(qws)l/an + ¢an(gns)-
When gy — 0, the first term on the right-hand side goes to ms when N — o,
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by virtue of (2). If it were further true that

(13) ¢‘2N(qNs) i 17 s > 0)
it would follow from (9) and (12) that
(14) limy... E(exp(—sgnin)) = 1/(1 + ms)

for all s > 0, and the theorem would follow at once from a variant of the con-
tinuity theorem for characteristic functions, as given for example in Feller (1966),
p. 408. It only remains to prove (11) and (13). We note that (13) follows from
(11), since

0 < [1 — dan(gns)l/av = [o {(1 — exp(—awst))/(qnst)} stuan(dt)

= fStﬂzN(dt) = S8Man .

To prove (11), let ¢ > 0 be given, and choose £, > 0 such that [, tu(dt) < e.
Since u(A) — qwuen(A) = 0, by (8), we have [7, tgwuen(dt) < e. Moreover,
[6° tgupan(dt) < tgw . Consequently,

qnMey = f(? tgvpen (dt) < € + togy < 2
as soon as gy < ¢/l , proving (11). QED.

3. Applications. The classical fiber spinning process alluded to in the intro-
duction was discussed in Keilson (1965). This is a process K () on the non-
negative lattice of integers, samples of which may be represented as

K@t)= D27 HG{—r:,T)

where H (¢, T) = 1 in the closed interval [0, T'], and vanishes outside this interval.
The sequence of epochs 71, 72 - - - are associated with a Poisson process of given
intensity, and the sequence of durations 7, T. --- , constitute a sequence of
independent identically distributed random variables having a prescribed dis-
tribution. This process is ergodic if the durations 7T'; have a finite positive ex-
pectation. Imbedded in the process will be the regenerative epochs at which
K (t) returns to the value zero. The conditional regeneration probabilities py
for return to zero without having reached the level N go to one as N — «. Hence
by our basic theorem, the passage time distributions to level N from the state
zero are asymptotically exponential, as conjectured in Keilson (1965).

As a second example, consider the queue-length process K (¢) for a G/G/1 type
queue. Such a queue is characterized by a single server who services customers
individually, and a customer stream for which the sequence of successive inter-
arrival times and the sequence of successive service time requirements are inde-
pendent identically distributed random variables each having a given distribu-
tion function. When the mean interarrival time exceeds the mean service time,
the queue length process is stable. The server will thereupon always return to a
state of idleness and there will be a subsequent epoch at which the next customer
appears. Such epochs constitute a sequence of regenerative events for the queue
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length process K (t). We then may infer via our basic theorem that the passage
time distribution from the regeneration epochs to a queue length N become
asymptotically exponential.

The mean passage time to a given level will often be required for practical
application of the theorem. This parameter will in many cases be available di-
rectly from the ergodic distribution for the process, as described in Keilson
(1965).
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