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The notion of a random distribution function on the line associated with a
probability measure u on the unit square S was introduced and investigated by
Dubins and Freedman in [3] and [4]. Certain of its properties were discussed by
us in [5]. We now introduce a random distribution function F,, whose values are
probability distributions on the square which has properties expressible in
formulae from information theory, as was the case in [5].

The construction of F,, will be given formally below but it may be helpful to
describe it briefly first. F,, is normalized by setting F.,(S) = 1. A point (2., y.)
in S is chosen according to the distribution u. F, is now defined on the dyadic
rectangles

Sw=1z,y)]0=2<30=y<},

Su=[(x,9) 0=z <4$ 3=y =1

Sw=1[z,y |3 221,02y <{
and

Su=1[zylise=1,3=y=1)
by

Fo(Sw) = zuyu

Fo(Su) = zu(1 — yu)
Fo(Sw) = (1 — 20)¥o
Fo(Su) = (1 — o) (1 — ya).

At the next step the measure in each of the four rectangles is partitioned among
its dyadic subrectangles in the same way but independently of each other and
of the previous choice (z,,, ¥.). This process continues and in the limit defines
F, . Our main result, Theorem 2, gives the dimensions of the supports of F, and
its margins in terms of various ‘average entropies’ of w.

We let z(n, j) = /2", I(n, j) = lx(n, 7), z(n, j + 1)), and S(n’jy k) =
I(n,5) X I(n, k). We also let I(n, z) be that I(n, j) containing x and S(n, z, y)
be that S(n, 7, k) containing (z, y).
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For any function k on S we denote the expectation and variance of &k by
Bu(k) = [sk(z, y) dulz, y)
ol'(k) = Eu([k — Eu(k)]").
We define constants G and H by
G = [s—lelogz + (1 — @) log (1 — )] du(z, y)
H=[s—lylogy + (1 —y)log (1 — y)]du(z, y).

All logs, here and in the remainder of the paper, are taken to the base 2. Thus
the integrands above lie between 0 and 1 for all z and y so that the integrals
exist and G and H lie between 0 and 1.

The probability space @ is the set of all (P,,;z) for n = 0, 1, ---,
i=01---2"—1land k = 0,1, --- 2" — 1 where each P, ;; is a point of
S. A probability measure is obtained by requiring that the coordinate variables
be independent and have the distribution u. Expectation with respect to this
measure will be written E, . The (n, j, k) coordinate of an  in @ will be written
(xo(n, Jy k), yu(n, 3, k).

We set

Ay(n, 2 + a,2k + &) = Jz.(n,j, k) if =0
= |1 —2z,(n 4k if a=1
Bw(n, 2] + €, 2k + 62) = y,,,('n, j, k) if € = 0
=1 —yo(n,5,k) if =1

and let A,(n, z, y) be A,(n, p, m) for that (p, m) with (z, y) ¢ S(n + 1,p, m).
F, is defined inductively on dyadic rectangles by

F.(8(0,0,0)) = 1
Fo(S(n+ 1,2/ + a, 2% + &))
= Fo(S(n, 7, k))Au(n, 2j + a, 2k + &)Bo(n, 2j + &, 2k + &)

for &, e = 0, 1. This uniquely specifies a probability measure F, on S for each
w. We will write G, and H, for the marginal distributions of F,, on the z and
1y axes respectively.

TueorEM 1. For almost all w

(a) limpsew — 7' log Fu(S(n, 2, y)) = G + H for F.almost all (x, y).

() limpse — 7" log Go(I(n, 2)) = G for Galmost all x.

(¢) limpsew — n " log Ho(I(n, y)) = H for H, -almost all y.

We will need the following well known result.

LemMA 1. If f, is F, measurable, where {F,} is an increasing sequence of o-
fields, E(f,2) = on’ with Dy 0a2/0* < o, and if E(fo/Faa) = 0 for all n, then

. —1
limy.e Z,’Ll =

almost everywhere.
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Proor oF THEOREM 1. Let F, be the o-field in 8 X Q generated by the sets
S(n 4+ 1, 7, k) and the random variables z,(m, j, k) and y,.(m, 7, k) for m = n.
We define a probability measure on S X @ by setting

E(f(xa Z/, (0)) = Ew(fsf(xy y, w) de)

whenever the right hand side exists.
Since n ' log Fu(S(n, @, y)) = 07 2215 log Au(k, z, y) + log Bu(k, , y)
(a) will follow if we can show that

gn(2, Y, w) = log Au(n, z,y) + G

and
ho(z, y, w) = log By(n, z,y) + H

satisfy the conditions of the lemma for F, and E as defined above.
Since g, is constant on each S(n + 1, j, k)

E(g.") = Bu([sgs (%, y, ©) dF.)
= B (X3 205 T Fu(S(n + 1, 5, b))llog Au(n, j, k) + GI)
= Bu( 22070 20 2oea=0 2= Fu(S(n + 1, 2p + @, 2m + «))
flog Au(n, 2p + @, 2m + &) + GT).
But
Lo b0 Fu(S(n+ 1,2p + @, 2m + e))llog Au(n, 2p + & ,2m + &) + GT
= F.(S(n, 5, k) 240 Au(n, 2p + &, 2m)[log Au(n, 2p + «, 2m) + GI*
< 2F.(8(n, j, k) )maxo <, <1 zllog  + GI*
< 2F,(8(m, j, k))maxo <» <1 [¢(log )* + 7]
= 2F,(8(n, 5, %)) (1 + G*)
SO
E(g:?) £ 200 + B33 Xnm Fu(8(n, p, m))) = 2(1 + &).
An F,_; measurable function has the form
f(@, g, ©) = 20 2im am(w)Bi(z, y)

where Bi(x, y) = 1if (z, y) e S(n, j, k) and vanishes elsewhere and aj,(w)
depends only on z.(m, j, k) and y.(m, j, k) for m = n — 1. We have

E(gn aji Bir)
= Bu(ap(0) 2t 2am Fu(8(n + 1, 2/ + a, 2k + @)
flog Au(n, 2§ + @, 2k + &) + G])
= Bu(ap(w)Fu(S(n, j, £))) 2tim0 2iemo Au(n, 27 + @, 2k + &)
‘Bu(n, 2] + e, 2k + e)llog Au(n, 2§ + a, 2k + &) + G])



852 T. S. PITCHER AND J. R. KINNEY

= Bu(an(w)Fo(8(n, j, k) 2otim0 Au(n, 2j + a0, 2k)
log Au(n, 25 + @, 2k) + GI)

= Bu(ap(w)Fu(S(n, j, £)))Eu( 2t Au(n, 2j + a, 2k)
[log Au(n, 2] + e, 2k) 4+ G]) = 0,

80 E(gn/Fr1) = 0. The verifications for h, are similar. The proof of (b) and
(e) is also similar.

The following lemma, which will be needed in the proof of Theorem 2, is very
similar to Satz 1 and Satz 2 of [2]. It is also implicitly contained in the proof of
Theorem 2 of [5].

LeMMA 2. Let o be a probability measure defined on the Borel sets of the interval
0, 1]. If

limy,e — n ' log o(I(n, ) = o

for all x in a set A and if ¢(A) > O then dim (A) = a.

Proor. Choose an ¢ > 0 and an integer N. For each z in A let J(n, x) be the
first I(n, z) forn = N with —n " log o(I(n, )) < a + e The collection (J;)
of such intervals is disjoint. Moreover, writing |J| for the length of J, |J;| < 277
and o(J;) = |J4*™ Thus 1 = D i o(J;) = D5 |J;1%™ and, since N is
arbitrary, this proves that the a + ¢ measure of 4 is finite and hence that
dim (A) £ a + e €is also arbitrary so dim (4) =< a.

If ¢ has atoms in A then necessarily « = 0 = dim (A) and the theorem is
true. From now on we assume that ¢ has no atoms in 4.

Now choose an integer M and an ¢ > 0. For each z in [0, 1] let J(x) be the
first I(n, z) for n = M with —n " log o(I(n, ) < a — ¢ if one exists. Let
C » be the union of all these and let ¢(C ») be its complement. As M increases
C 5 decreases and o(C 5) goes to 0. Set A = A n ¢(C ) where M is taken so
large that o(A4 ») > 0.

Now let (I;) be any covering of A » of norm =<27". Let k; be the integer
such that 27%" < |I;| < 27", I, intersects at most two k;th order dyadic inter-
vals, say I(k;, 1) and I(k; , z2). For each of these either o(I(k;,z;)) < 2759
or I(k;,x;) C Cu.1In the latter case, say I(k;, 1) C C i, we can replace I; by
the interval I, consisting of the part of I, outside I(k;, x1). If both I(k;, z;)
and I(k;, x2) are contained in C y so is I; and it can be discarded. In either case
o(Ij) = 279" < 4 |1/|°*. Hence 0 < o(An) = D o(I]) S 4221171
so the o — e measure of A  is positive and

dim (4) =2 dim (Ady) =2 a — e

Since ¢ is arbitrary this completes the proof.

TraEOREM 2. For almost all w there exist sets A, C S, B, < [0, 1], C, € [0, 1]
with F,(A,) = Gu(B,) = H,(C,) = 1 such that for any sets A € A,, B C B,,,
C c C,with F,(A) > 0,G,(B) > 0, H,(C) > 0 we have

(a)dimA =G+ H
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(b)dim B = @

(¢) dim C = H.

Proor. Take 4, , B, , and C, to be the sets where (a), (b) and (¢) of Theorem
1 are satisfied. (b) and (c¢) are immediate consequences of Lemma 2. Let ¢ be
the map of A onto [0, 1] given by

oz, y) = 2oz 2"

where z = D e 227"y = D1 9: 2", 2 = x; and 2,1 = y; . Beyer [1] has
shown that under this map dim (D) = 2dim (¢(D)). It is easy to see that
o(S(n, z,y)) = I(2n, ¢(x, y)) so for every z = ¢(z, y) in $(4.)

lim,e — (20) 7 log (Foo ¢ ) (I(2n, 2))
= liMpse — (20) " log Fu(S(2n, z, y))
= (G + H).
Also
3G + H) = limpe, — (20) 7 log (Fuo ¢ )(I(2n, 2))
< limpaw — (20 4+ 1) log (Fuo ¢ ) (I(20 + 1, 2))
< limp — (20) 7 log (Fuo ¢ ) (I(2n + 2, 2))
= (G + H).

Hence, if A € A, and F,(4) > 0, dim (4) = 2dim (¢(4)) = G + H.

In the above case the dimension of the support of F., is the sum of the dimen-
sions of the supports of the marginal distributions. We now vary the construction
somewhat to get a case where this is not so.

Let » be a probability measure on [0, 1] and set

K= —[t(zlogz + (1 — 2)log (1 — 2)) dv(2).

Q now is the set of all (P, ;) forn =0,1,---,7=0,1,---,2" — 1and
k=01, ---,2" — 1 where each P, ; is a point of [0, 1]. The coordinates are
independent and have the distribution ». We will write z,(n, j, k) for the (n, j, k)
coordinate of w.

The random measure K, on S is determined by

K.(8(0,0,0)) =1
Ko(S(n + 1,2 + &, 2k + &) = Ko(S(n, 4, k))Ca(n, 2j + &, 2k + &)

where

|

Co(n, 2f + &, 2k + &) = 32.(n, j, k) if e = e
= %(1 - 20,(’"/, j, k)) if @ 7 €.

For (z, y) eS(n + 1,2 + &, 2k + &) we set Cu(n, 2, y) = Cu(n, 2j + &,
2k + 62).
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Since
2T Ku(S(n + 1,4, k)
= DMV K(8(n+1,2m, k) + K (S(n+1, 2m + 1,k))

= 3 215 Ku(S(n, m, [k/2]))
cer = QD

the margins on the x axis are uniform and a similar calculation shows that the
margins on the y axis are also uniform.
TaeOREM 3. For almost all «

limn-»oo - n—l lOg KQ(S(’YL, Z, y)) =1 + K

for K -almost all (z, y). If D, is the subset of S on which the above relation holds
and D C D, has K,(D) > 0 then dimD = 1 + K.

Proor. The proof is very similar to the proofs of Theorems 1 and 2. We let
G, be the field generated by the S(n + 1, j, k) and the z,(m, j, k) for m < n.
E is defined as in Theorem 1 with F, replaced by K, . Calculations similar to
those in the proof of Theorem 1 yield

E((log Cu(n, z,y) + K + 1))
E(log Cu(n, 7, y) + K + 1/Gn)

This enables one to apply Lemma 1 to the functions
ko(z, y, 0) = log Cu(n, z,y) + K + 1.

The rest of the proof is an exact duplicate of the proofs of Theorems 1 and 2.

Since —zxlogz — (1 — z)log (1 — z) < lexceptatz = %, 1+ K <2
except in the case where » is concentrated at 3 which is, of course, just the
product measure on the square.

IA

2(1 + (1 + K)%
0.

I
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