SPECTRAL ESTIMATES USING NONLINEAR FUNCTIONS'

By EuceNE R. RopEMICH

Jet Propulsion Laboratory, Pasadena

0. Summary. The main result proved here (Theorem 3) is a generalization of
a formula of Goldstein [2], who showed that if the estimate S(w) for the spectral
density is computed by the use of the function y(z) = sgn (x), and the spectrum
is flat, then the dominant term in the variance of S(w) is 2n’K/N. Theorem 3
evaluates this term for nonflat spectra and for more general functions y(z).

This analysis shows that the loss in accuracy caused by working with y(z)
instead of z itself can be decreased considerably by using for y(z) a step function
with more than two values. Some results on Gaussian process, interesting in their
own right, are proved along the way. ’

1. Introduction. The spectral density S(w), |w| < =, of a discrete stationary
Gaussian process {2}, —© < k < o, of mean zero, can be expressed in terms of
the correlations R.(k) = E(2,2.x) by

S(0) = X tew € “Ro(k) = Ra(0) + 2 D iy cos kwRo(k).

An estimate of S(w) can be obtained from observations of {z;} by truncating the
series and replacing the quantities R.(k) by appropriate estimates R.(k). As-
sume that R.(0) = E(z;’) is known. Then the 2’s can be normalized so that
R.(0) = 1, and the estimate for S(w) is

(1) S(w) =1+ 2 D5 cos kwRy(k).
A simple choice of R, (k) is
(2) R-"?(k) = N-l ZJ’Z=1 TnLrn+k )

where N is large. Each term in the sum has mean R.(k) and the variance of this
expression approaches zero as N — «. Hence for large N, it is close to R.(%k)
with high probability. However, for large N the evaluation of the sum can be

quite time consuming.
It has been observed [2] that if

yi = +1, z; = 0,
- —1, <0

then R,(k) = E(YnYnyr) satisfies the relation
R.(k) = sin [(7/2)R,(k)].
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This suggests putting

(3) Rﬂ(k) = N_l le=1 YnYn+k
R.(k) = sin [(x/2)R,(k)].

For large N, and K small compared with N, this formula for R, (k) can be evalu-
ated much more rapidly than (2) [2]. The problem arises of estimating the mean
and variance of 8(w), when evaluated by (1) and (3). It is hoped that the mean
is close to S(w) and the variance is small.

A more general method is considered here. We take y; = y(z:), where y(z) is
any odd, bounded, nondecreasing function, normalized so that E(y,") = 1. It is
shown (Lemma 3) that there is a function F(¢) such that R,(k) = F[R,(k)]. In
general F(¢) is not an entire function, but is analytic in a region of the complex
plane including the open interval —1 < ¢ < 1. For the present purposes, F(¢)
may be extended in any way to a continuous function on — o < ¢t < . We take

By(k) = N7 35t Yathnra
R.(k) = F[R,(K)].
With this definition, it is shown that except for a term of order N, E{S(w)} is
Sx(w) = 1+ 2 D i~ cos kwR.(k),

and E{S(w)’} is approximately Sk(w)?, with a leading error term of order K/N,
which is given explicitly, and another error term o(K/N ), whose exact order de-
pends on the degree of regularity assumed for S(w) (Theorem 3). This result is
obtained for a large class of summation methods (or windows) in place of (1),
including Césaro sums.

The hypothesis on S(w) in Theorem 3 is satisfied if S(w) is a periodic function
of bounded variation which satisfies a Lipshitz condition of order ¢, @ > 0

([3], p. 136).

2. Estimates for the moments of &, (k).

Lemma 1. Let f(2),2 = (21, - -+ , 2.) be analytic in a convex region D containing
the origin, with |f(2)| = M. Let {m,(2)} be a set of products of the z;’s such that in the
power series expansion of f(z) at (0, - -+, 0), every term s divisible by one of the
m’s. If ¢ is a point whose 8-neighborhood |2; — ¢ < 8,5 = 1, - -+, n, isin D, then
IF(5)] £ 2"M X4 (8/8)% |mu(§)|, where dy is the degree of .

Proor. Suppose p of the ¢;’s have absolute value less than §/3. By renaming the

coordinates, these may be taken tobe ¢1, {2, - - , ¢» - Then if
(4) lzjl < 26/3) .7 = 17 Y 2
,zi_§j|<6: J=p+1 --,n

zis in D. It follows that the power series expansion

(5) f(z) = Za,---.kfo gk,...k,,(z,,+1, ,Zn)zlkl zpk”
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converges in the region (4), and
ngl"'kp(zl y T zp)l = M(3/23)kl+m+kp-

By the convexity of D, there is a sequence of overlapping regions of this type con-
verging to zero, in which f(z) is analytic and (5) is valid. Hence (5) is also valid
in a neighborhood of the origin. There we have

(6) Graootop(Zot s ** % 3 Zn) = D onys e om0 Qhgeen@ ey © 0 20
f(z) = Z;:l,...,kﬂao akl...knzlk‘ e an".

Let 7, (2) be obtained from m;(2) by omitting the factors z; with j > p. Then
each term in (6) must be divisible by one of the . ’s. It follows that the same is
true in (5). The sum of the absolute values of all terms in (5) which are divisible
by one of the products ;' (z) is dominated by

M(3/26)* |/ (2)] T17 (1 — 3/28|2,])7,
where d;,” is the degree of =, (2). At z = ¢, this is at most
M (3/28)% |m (£)I(1 — $)7™ = 2°M (3/28)™ |m/(¢)]
< 2°M(3/6)% |m/(£)] = 2"M(3/8)™ |mi(2)],

since in the last step, only factors of the form 3/8 2], 7 = p + 1, were added.
Summing over the m;’s accounts for each term in (5) at least once. Hence the
result follows.

LemMmA 2. Let {z:} be a stationary Gaussian process with mean zero and variance
1, and a spectral density S(w), |w| < w, which is integrable.

Then for any posttive m, there is a constant un > 0 such that any m X m covariance
matrix [Re(p; — Pr)ligmt,eoeim s D1 < D2 < + ¢+ < Dm, has its eigenvalues =y, .

Proor. We will use induction on m. Let u,, be the infimum of eigenvalues for
matrices of rank m. It will be shown that u, > 0, and p, =< un_i form = 2.

(i) For m = 1, the matrix is the identity. Hence u; = 1.

(i1) Suppose we have determined that u;, - - - , pn—1 are positive.

We have

bm = Infr; () Z?k=1 aa R (p; — pr),

where Li(m) = {a:, p: |’ + -+ + to, p1 < p2 < -+ < Pm}, tm— can be ob-
tained from this expression by putting a, = 0. Hence un = pm—1 . If g = pm—1,
it is positive. Hence we may assume p, < um—1'. Expressing B.(p; — px) in terms
of S(w),

pm = inf (20) 7" [, dwS(w) |2 re ae™[.

By the Riemann-Lebesgue lemma lim,.,, (27)™" [Z, dwS(w)e™ = 0. Hence there
is a number ny such that if n > m,, this integral has absolute value less than
(Um—1 — mm)/4m. If one of the differences p11 — p1, 1 =1 = m — 1, is greater
than 7, ,
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(20)7™ [, dwS(w)] T ase™ "
= (21)7 [ doS(w){] Lica are™ " + | i are™ [}
+ 2 Z:l‘=1 >:l7cn=l+1 a0 (2r)7" f T dewS(w) e PP
e Dkt O et D @ — 2 5T |a5] |0k (et —pam)/4m
Z et = 20 (et~ pm) /41 = (s + 1) /2 > o -
Hence such sets of p;’s need not be considered in finding u., , and
| = inf1y0m (20)7 [Zr deoS ()] 2k are™ "
where Ls(m) = {a:, pila + - + @’ = 1,0 S p1 < -+ < pm < mno},

v

or Bm = TINQ <py< e <pp mng (M3 D1, *** , Dm),

where

p(m; iy -+ y Pn) = MiNg2ppaniat (20) 7" [1, dwS(w)| iy are™ |
This is the minimum eigenvalue of a certain matrix. It is the value of the integral
when (a1, - - -+ , an) is the corresponding eigenvector. It is positive, since S(w) > 0
on a set of positive measure, and the other factor in the integrand has only a
finite number of zeros. Hence u, > 0.

REeEmARK. If S(w) is bounded below by a positive constant S, we may take
um = S for all m.

LEmmA 3. Let y(z) be an odd, monotonic increasing function of x with
y(z) = 0(z") as ¢ — = for some power n. Let x1 and zs be random variables with
mean O and variance 1, and a biwariate Gausstan distribution. Let y; = y(x;),
i = 1,2, and assume E(y.") = 1. There is a function f(z) of the complex variable
z and an tnverse function F(z), depending only on the function y(x), such that
E(ywye) = flE(xix2)}, E(xixs) = F{E(yw2)}. f and F are odd functions, analytic
m a region of the complex plane containing the open interval —1 < z < 1.
f(£1) = £1, F(£1) = £1, and f(2) and F(z) are continuous, increasing func-
tionsof realzon —1 Sz < 1.

Proor. Define

f(2) = [2r(1 — N7 [ day dasy (1) y(22) exp [— (2 + 20" — 2e2123) /2(1 — )]

for —1 < Rez < 1, taking the branch of the square root which is positive for z
real. The integral converges uniformly in, any compact subset of this strip, hence

it defines an analytic function there. Define f(1) = 1, f(—1) = —1.
Differentiating,
f(2) = 2r(1 = )N [ den desy (21)y (@)
(7 e/ (1 = 2°) + (21— 2m2) (22 — 221)/ (1 — 2°)7]

cexp [— (2 + z° — 2ewis)/2(1 — &%),
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and by integration by parts
F2) = [2r(1 = N7 [ dy(@) dy(s) exp [— (o1 + 22" — 2eam)/2(1 — &),

which is positive for 0 < z < 1. Hence f(z) has an inverse F(z) analytic in a
neighborhood of the image under fof {—1 < 2z < 1}.

We need to show lim..1; f(2) = =1, taking the limit through real z with
2| < 1.In (7), put z, = 221 + (1 — 5%

f(z) = (2m)™ [ dey(21) exp [—3a] [ diexp [—3ly(ze + (1 — 25)).

Since yleas + {1 — 2°)¥ = O(1 + [z1]" + [¢[*), by the dominated convergence
theorem,

lim,,i— f(2) = (27r)%fdx1y(x1) exp [—3ai’] [ dt exp [— 38y (z:) = 1.

Since f(z) is clearly an odd function, lim,.,_,. f(2) = —1. Hence the analytic
inverse function F(z) defined above is defined in a region which intersects the
real axison —1 < 2z < 1. Define F(4=1) = =1. Then all the conclusions of the
lemma follow.

The following hypothesis will be used in several lemmas:

Hyporuesis A. (i) {z:} is a Gaussian process with E(z;) = 0, E(z") = 1 for
all 7, such that for any set of distinct integers 4, %, - - - , %» the covariance matrix
[R2(75 , %k )]j k=1, ,m is positive definite with its minimum eigenvalue at least un, , a
positive constant.

(ii) y(«) is an odd, bounded, nondecreasing function on — o < z < «» with
Ely(x:)*] = 1. The random process {y.} is defined by y: = y(z:).

In some of the lemmas, the full strength of the hypothesis is not necessary. For
example, in the next lemma, y(z) may be any bounded measurable function.

Leuma 4. Assume Hypothesis A, with |y(x)| = Y. Let ny, - -+ , n, be integers,
of which only ni ,---, n:, are distinct. Then there is an analytic function
Foyooon,({zrit 1<k <i<q) of 39(q — 1) complex variables such that
(8) E(Yn, + -~ ?/np> = Fnr--np[{Rx(nik ) nij)}i§k<j§q]'

Fry...n, depends only on the function y(x) and the coincidences in the sequence
ni, -+, Np. It s analytic in the convex region D, formed by the union on the
regions

(9) 2k — oril < ul(omn)1/4p, l=sk<j=gq

where (pmn) s any positive definite symmetric ¢ X q matrizx with 1’s along the
diagonal, and p[(pmn)] s its minimum eigenvalue. In D, ,

(10) Py, ({22} < (2'7).
In particular, this inequality is valid if

[2t; — Ra(nay, nz,)l < up/4p, I1=k<y

IIA
()
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Proor. Define the ¢ X gmatrix M by My, = 1,5 =1, - -- YOG My =M =z,
1=7<j=q Let

(11)  Fapeenyfzigh = [(2r)"*(det M)
St dtgy ()" y(t) T exp [—3 D% it (MY ],

where I; is the number of appearances of n; ; among ny, - -+, n,. Let {po;} be a
value of {z;;} at which M is positive definite. It will be shown that in the region
(9), det (M) > 0, and the integral in (11) converges uniformly. Since the union
of all these regions is a convex set, there is a unique continuation of det (M)}
throughout D, , subject to the condition det (M)* > 0 if M is positive definite.
The bound (10) will be established in (9).

Let M, be the value of M when {z;;} = {ps;}. Then if we set M = M, + M, ,
the elements of M have absolute value less than u/4p in (9), where u = u[( ok )]
M, has a positive definite square root M,'. In terms of the norm lu|]| =
(>4 |uiH)? of a complex g-vector u, we have Mo *u| < u¥ul, and in (9) (1M ]|
S [0 ((w/dp) ke lw)T < (w/4)|lull. Hence || Mo MiMo | < 3 |[u.
This shows that the expansion

M™ = M 2w (=) (Mo MM M
converges, and
1M (M — M Metu|| = || 5o (= 1)"(Mo MM )™
S 2 d7 uf = % ull.

Two consequences of this are

(12) Re {224 m wi( MM Mot) i) =2 3 D 0iuf
for real u, and || Mo*M; " M| < 4 |lu||. By the last inequality,
(13) det (MoM7'MH)| = (4)%

In (11), put ¢t = Mou. We have
|Foyvonyl < [ldet M/ (20)1YP [ dty - - - diyexp [ Re 2 (M t)]
= [ldet (MM Mob) [}/ (2r) 77
fduy -+ dugexp [—1 Re D¢, w( MM M) ).
By (12) and (13), the integral converges uniformly in (9), and
|Fayeeon [($)/(@m)IY” [ duy -+ dugexp (—F 2% u)
= 2y? < (2'Y)”.

Lemma 5. Assume Hypothesis A. Let p be a fixed positive integer, and let n; ,
m;i,J =1, -+, p, be integers, with m; > n; . Then

E{I17= Wnjym; — EWYnjym)])} = O |7P]

IA

ol
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where the sum is over all products =@ of correlations R,(ly , b2) with Iy, Iy taken from
{na, -+, mp} and iy # ly , which have the following properties, and are minimal in
this respect:

(1) each of the 2p letters appears an odd number of times;

(ii) for each pair (n;, m;), there is an even number of factors, at least two, with
exactly one index in the pair (n;, m;).

Proor. First assume that n1, - -+, m, are all distinct. Expand the product
P=1] [Yn;Ym; — E(Yn;ym;)] into a sum of products of y:’s and expectations.
Taking the expected value term by term, by Lemma 4, E(P) is the value of a
function Gy,...n,({21;}) which is analytic in the region Ds,, with |G,,...n,| <
27(2'Y)*. Lemma 1 will be applied to this function. A product which is minimal
with respect to (i) and (ii) has degree less than 3(°¢), since no correlation may
appear more than three times. Hence it suffices to show that in the expansion of
Go,...m, about the origin, every term has properties (i) and (ii). For simplicity,
we may consider the corresponding expansion of E(P), which is valid if all the
correlations are small.

Replacing any one of the variables y,; (or y.,;) by its negative changes the
sign of E(P). This may be accomplished by replacing z.; by —x,; , which changes
the sign of R,(n;, l) for I 5 n; . Hence E(P) is odd in these correlations, which
shows that each term has the property (i).

Now, for a given j < p consider the correlations R,(n; , 1), R.(m; , 1) for [ # n;
or m; . Replacing x,; and @n; by —2,; and —z,; changes the signs of these cor-
relations, and leaves E(P) unchanged. Hence E(P) is an even function of them.
Also, if all of these correlations were zero, we would have

E(P> = E[ynjymj - E(ynjymj)]E{Hk;éi [ynkymk - E(ynkymkn}
= 0.
Hence each term is of positive degree in {R,(n;, 1), R.(m;, 1), | # n; or m;},

so that (ii) is satisfied.
If the values of n1, - - - , m, are not all distinct, the above procedure shows that

E(P) = 012 |(«) ™),

where, instead of (i) and (ii), each product satisfies the following properties:
(i") Any number which is the value of an odd (even) number of subscripts
appears an odd (even) number of times.
(ii") Each pair (n;, m;) which is distinct from the other subscripts satisfies

(ii).
In one of the factors R.(q1 , ¢2) of one of the products (=) ®, there is no unique
way of assigning one of the letters ny , - - - , m, to g1, unless ¢; is the value of only

one letter. Suppose that this assignment is made in any permissible way. Then
(7')® can be modified, without changing its value, so that it satisfies (i) and (ii).

First (i) will be satisfied. Let I, - - - , I be a set of equal letters. For 1 < 7 <
m — 1, insert into (x')® the factor R,(l; , In)(= 1) if necessary to make I;
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appear an odd number of times. Then by (i'), L, appears an odd number of times.
Applying this procedure to each set of equal letters, (i) is satisfied.

(i) implies that for each j, (z')” contains an even number of the factors
R.(n;, 1), Ra(ms, 1), with I £ n, or m; . If this number is zero, then by (ii")
one of the letters, e.g., n;, is equal to another letter I . Insert into («') the
factor R.(n;, l)°. If this is done for each j, (ii) is satisfied.

Lemma 6. Assume Hypothesis A. Let {x:} be stationary, with a spectral density
S(w), |w| < m, which is in L. Let

Ry(k) = E(YnYntt),
Ry(k) =N Zz=1 YnYnth «
Let p be a fixed positive integer. Then for large N and arbitrary positiveky , - -+ | kyp,
E{I12= [By(k;) — Ry(k)]} = O(N™™).
Proor. We have Ry(k;) — Ry(k;) = N7 201 [atnit; — E(Ualnss;)]-
Hence
E{II- [Ry(k;) — R, (k)]}
= N_p Z?{l ,,,,, np=1 E{sz;l [ynjynj-i-kj - E(ynjynj+kj)]}'
Applying Lemma, 5, with m; = n; + k;, this is O . N2 30 oo mpet |7 P)).
The number of products = depends only on p. Hence it suffices to show
N2 ot [7®] = O(N7"?). Since S(w) is in L%, ¢ = 2 |R.(k)]=
(2m)™ fl,, S(w)dw < ©.Forl £ j < p, if ls, 5 are selected from n;, m;,
and Iy, I, from the other subscripts, by Schwarz’ inequality

(14) 2N i [Ro(l — B)R(ls — 1) S [2o0,m1 Rally — 1)’ 270 ,m1 Ru(ls — 1))

g

A

and similarly

(15) YRl — B)] S 6N

Let some of the factors of 7” be removed, if necessary, to make it a product
7’ which is a minimal product with the property that for each j, the total number
of appearances of n; and m; is at least two, and they do not appear in the com-
bination R,(n; — m;). Note that the degree of =’ is at least p.

Consider D%, ....n,=1 |7 |. For any j, if n; or m; occur in exactly two factors of
7 we may estimate the sum from above by summing over n; and applying (14).
If there is only one such factor, (15) may be applied. This gives a sum over less
indices of a product of lower degree. Apply this procedure repeatedly, until we
arrive at a product in which, for any j such that n; or m; appears, they appear at
least three times. By the minimal property of «’, there are no factors remaining.

Let »; be the number of times (14) was applied, » the number of times (15)
was applied. Then

! L —p § ~—] —1
:1.'~'mp=1 |7r| =< o."z(o’N)zl'lNP vi—ve g%(v2+v1)Np 2(1’2+l’1).
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The degree of = is v, + 2vs = p. Also, »1 + v < p. Hence
N2 g [T S NP2 0y |='|
< GHortD NI < o2
Lemma 7. In Lemma 6, if we add the condition
2w |Re(E)| < 0,
then
E(ITf= [By(k;) — By(k)I} = O(N™'7™),

where [(p + 1)/2] denotes the integral part of (p + 1)/2.

Proor. In the proof of Lemma 6, whenever a factor N* was introduced into
the estimate by the use of (15), instead, D _n,=1 [Rz(li — k)| = O(1) could be
used. Thus, in the estimate O(N?"?), if p/2 is not an integer, we may replace it
by the next larger integer [(p + 1)/2].

LemMa 8. Under the hypotheses of Lemma 6, for fired m and 6, and arbitrary
k> 0,

Pr[|R,(k) — R, (k)| > 8] = O(N™™).
Proor. Take p = 2m in Lemma 6, and &y, --- , k, = k. We obtain
E[|R,(k) — R, (k)" = O(N™™).

This expected value is at least as large as 6" Pr [|R,(k) — R,(k)| > 5. Hence
the result follows.

TueOREM 1. Let G(21, -+, 2m) be analytic in a domain of complex m-space
which contains the set —1 < z; < 1,5 =1, ---, m, and let G(z1, -+, 2m) be
defined and bounded when all the z;’s are real.

Let {x:} be a stationary Gaussian process with mean 0 and variance 1, and a
spectral density S(w) e L.

Let y(x) be an odd, bounded, nondecreasing function with Ely(x:)*] = 1. Put

Y = y(x‘)y
R,(k) = E(ynyn+k)’
Ry(k) = N—l ZZ=1 YnYntk -
Then for fized p, large N, and arbitrary ky, -+ | km > 0,
(16) E{GR,(k1), -+, Ry(kn)l} = GIR, (K1), - -+, Ry(kn)]

+ Yozqttanzs GaeanB{ [T [Ry(k;) — R,(kp)]Y} + O[N],

where
Yoprgm = (@1 g 1)7(8/020)™ -+ (8/32m) "G (21, -+ 5 2m) |eymryas) imtyeeeim -
Proor. Let y; be the quantity of Lemma 2. Then for &k > 0, and real ¢, {,,

4+ b+ 2R (k) = w(t + 8.
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This implies |R.(k)| < 1 — py. By Lemma 3, |R, (k)| < f(1 — p2) < 1.

For sufficiently small p, the set of (21, -« - , 2a) such that |z; — ¢;| < p,j =
17 e ,m,forsomeg'l, yg-mWIth _f(l _:U'2) =6 éf(l —/12)yj = 1) e, m,
lies in the region of analyticity of G(z1, -, 2»). Then for any ky, - - , ky,
the set [z; — R,(k;)| < p,7 =1, -+ - , m, lies in this region.

Suppose
(17) lzj - R@l(kj>l = P/2, .7 = 17 T, M.
Then

G(zl y Tty zm) = G[Ry(kl>y ttt Ry(krrL>]
+ Dizatotanzo Ggean Le1 25 — Ry(EDIY 4+ O tm |y — Ry(k)”™.

By Lemma 8, the probability that (17) is not satisfied by z; = R,(k;) for all
7 is O[IN~®*P”] Hence

B{GIR,(k1), -+, Ry(kn)] — GIRy (K1), -~ - , By (k)]
(18) — Dt tansr Gaeean L L= [By (k) — Ry (k;)]9}
= O{N~"" 4 370 BIR,(k;) — Ry(k)|”™]}.
By Schwarz’s inequality and Lemma 6,
B[R, (k;) — B, (k,)|"™"] = (E{[Ry(k;) — R,(k)I"*})}
— Q[N~@+V7,

Thus, taking the expected value term by term on the left in (18) yields the
desired result, for the terms with »_ ¢; = 1 have expectation 0.
TrEOREM la. If in addition to the hypotheses of Theorem 1, we have

Za [Ra(R)| < o,

the error term in (16) is O[N],
Proor. As in Theorem 1, using Lemma 7 instead of Lemma 6.

3. The main theorem.
LEmMA 9. Assume Hypothesis A.

(1) E(ynly"2y"3y"4) = R@I(nly nZ)Ry(n3y n4) + Ry(nly n3>Ry(n27 n4)
4 Ry(n1, na)Ry(n2, ms) + O(2 |m)

where the sum 1s over all products m; of three distinct correlations R.(n; — n;)
with j # j such that each index ny, - - - , g occurs n the product.
(i) Let v; = Yuym; — E(Yn;ym;),J = 1, -+, 4. Then

E(011)2113114) = E(?}ﬂ)z)E(UglL; + E’(?}ﬂ)g)E(?)z?L;) + E(011)4>E(021)3) + 0( 2__: l1l'3*|),

where the sum s over all products ms* of three distinct correlations R,(q; , q;) with
g; = njormj, ¢y = ny or m; , such that the three pairs (§,7') include 1, 2, 3 and 4.
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Proor. (1) Assume first that ni, - - -, nq are distinct. Consider the expansion
of E(yaysys) in a power series when the correlations are all small. Since y(x)
is odd, each term involves every subscript. Hence the only terms not divisible
by one of the products 3 are those which contain only two distinct correlations.
There are three possible choices for these correlations, namely R,(n:, ns) and
R.(ns, n4), and the two other pairs obtained by permutation of the indices. The
same applies to the quantity

Q = E(YnYns¥ns¥ns) — E(YniYn2) E(Ynslns) — E(Yn1¥ns) E(YnyYns)
- E(ynlyn4)E(yn2yn3)‘

But if all correlations are zero except R.(ni, nz) and R.(ns, n4), or one of the
similar pairs, this is zero. Hence (i) is true by Lemma 1.
Ifn1 = nz;fng,nz;f’ﬂ‘;#na,

Q = E(yilynsym) - E(ynayn4) - QE(ynlyna>E(yn1yn4)'

For small values of R,.(n1, ns), R:(n1, n4), Rz(n3, n4), @ may be expanded in a
power series in these correlations. Consider first the terms which involve only
one of them. The terms involving only R,(n:, n3) give the value of Q when
R.(m1, nd) = R,(ns, ny) = 0, which is zero. Hence there are no such terms.
Similarly, there are no terms which do not contain at least two distinct correla-
tions. Thus by Lemma 1

Q = O[|R.(n1,n3)Ra(ny, ma)| + |Re(n1, ms) Re(ns , ma)| + [Re(na , na) Ro (5 ,n4) |].

Inserting the factor R.(n1, ns)(=1) in each term gives O( X |ms|).
The cases with more than one pair of equal subscripts may be handled similarly.
(ii) The proof of (ii) is analogous to that of (i). Only the case of distinct sub-
scripts will be considered.
In the expansion of

Q* = E(012)211304) - E(?}ﬂ}z)E(v;ﬂM) e E(vw;:,)E(UﬂL;) it E(1)104)E(1)22)3),

every term which is not divisible by one of the products ms* contains only cor-
relations which may be put into two classes: after a permutation of subscripts,
one class of correlations depends on ny, mi, ns, me, the other class depends on
ns, ms, N4, Mg . But setting all correlations zero which are not in one of these
classes makes Q* = 0, since then E(vwwws) = E(vw:)E(vaws), E(vws) =
E(vws) = 0. Hence there are no such terms. The result follows by Lemma 1.

LemMa 10. Assume Hypothesis A, with {z:} stationary and D2 |Ro(k)] < 0.
Let

R, (k) = E(YnYn+t),
Ry(k) = N_l ZIZ=1 ynyn+k .
Then for arbitrary N, K > 0,
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(19) 2% B{[R,(k) — R,(K)PIR,(1) — R,(D]} = O(K/N* + K*/N¥),
form =3o0r4and0 =t = m,

(20) 2 5m [IRy(R)| + R, (DNE([R, (k) — B,(B]R,(1) — R,()]"™}

= O(K/N%,
ifla’kl’ Ibkl = lak = 17 e 7K7
2 E abB{[R, (k) — R,(K)][R,(1) — R,(D)}
(21) = D kb N Zﬁl,n2=l [R,(n1 — ng)Ry(m1 — ma + k — 1)

+ R,(my — ng + k)R, (ny — me — 1)] + O(NY),
(22) 2k R,(B)| + [R(DIIE{[R, (k) — B,(B)I[R,(1) — B, (D]} = O(NY),

(23) 2 ket |Ry(k)Ry(D)|E{[R, (k) — R,(k)]"} = O(NTY),
and
(24) 2k [Ry(K)|E{[R, (k) — R,(k)I'} = O(N™).

Proor. By Lemma 9, (ii), withm; = n; + k,5 = 1,2, 3, ms = ns + 1,
E{[R,(k) — R,(K)IIR,(1) — R,(D]}
= N 2 0 imimt B{ I Tim1 [ 9m; — B (Ynym)]}
= 3E{[R,(k) — R,(k)[}E{[R,(k) — R,(k)][R,(}) — R,(1)]}
N e O( 2 [s™),

where each product 5™ is a product of three distinct correlations involving dif-

ferent n,’s, such that ny, -+, n4 all occur. By summing in the proper order,
using estimates such as
(25) 2 [Be(m = m)| = X% [Re(m)| = O(1),

we find that for any such product, N* 2%, ... .,.z1 |75*| = O(N~®. By the appli-
cation of Lemma 7,

(26) E{[R,(k) — Ry,(K)IIR,(1) — R, (D]}
= O(N™* + N7E{[R,(k) — R,()][R,(1) — R,(D]}).
We have
E{[Ry(k) — Ry(B)I[R,(1) — RBy(D]} = N7" 225, namt [E(YnsYny 44Ynalnyrt)
= E(Yntn1t6) B (Ynolno+1) |-
Hence by Lemma 9, (i),
2okt |B{[Ry (k) — Ry(B)IR,(1) — R, (D]}
(27) S N Do e { IRy (m1 — mo)Ry(ny — ma + k — 1)]
+ [Ry(n1 — ma + k)By(n1 — na — )| + O( X |ms))},
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where each product 73 is the product of three distinct correlations of pairs of the
variables n, , Zuj+k , Ty , Tugt1, such that all subseripts occur. By summing in
the proper manner, using estimates such as (25),

N—2 ka,z=1 Zﬁl,nﬁl |7l'3| = O(N_l)-

The contribution of the first two terms in the sum on the right in (27) isO(KN ),
since R,(7) = O[|R.(5)|]- Hence

2t |E{[R,(k) — R,(K)]IR,(1) — R,(D]}| = O(K/N),

and summing (26) yields (19). Similarly, an equation analogous to (27) shows
that (21) is true.
For the left side of (22), we have instead of (27),

2 [By(B)| + |R,(DIE{[R, (k) — R,(B)]R,(}) — R,(D]}
= O{N 2D fim1 Do mamt IRy (B)| + |Ry (D[N Ry (11 — m2) Ry(na — g + kb — 0|
+ [Ry(m — n2 + E)Ry(n — na — 1| + 2 |m]]}.

Since R,(j) = Ol[|R.(j)|], each R, on the right may be replaced by R, . The
term ), |ms| contributes O(N ") as before. Multiplying out the remaining factors,
we get a sum of terms of the type 73 . Hence (22) is true.

The remaining relations, (20), (23), and (24) depend only on Lemma 7:

B{[R,(k) — R,(W)]R,(1) — R,(D]"™} = O(NT), m =34,
B{[R,(k) — R,(K)I'} = O(N7T),

and

22 |Ry(k)| < .

TueoreEM 2. Let G(z) and H(z) be odd functions, analytic in a region including
the interval —1 < z < 1 and defined and bounded for all real z. Let ay , by, , k =
1,2, - -+, be numbers of absolute value at most 1.

Let {z:} be a stationary Gaussian process with mean 0 and variance 1, with
> [Ru(R)| < <o

Let y(xz) be an odd, bounded, nondecreasing function with E{y(z:)?} = 1. Let

yi = y(z:),
R,(k) = E(YnYutt),
R,,(k) =N Z?Lr:l YnYn+tk -
Then for arbitrary positive integers K, N,
(28) B{2 - aGR,(R)]} = i aGIR,(R)] + O(N ™ + KN*),
Ef{ §z=1 akblG[R,,(k)]H[R,,(l) = Zk =1 axbG[R, (k) H[R, ()]
(29) 4+ G(0)H'(0) 2 %11 axbiN " 2%, ot [Ry(ma — me)Ry(ma — ma + &k — 1)
+ Ry(ny — na 4+ k)Ry(nma — ma — )] + O(N* + K*N7%).
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Proor. Apply Theorem 1a to the function G(z1)H (z). For p = 4 we have
E{GIR,(k)H[R, (D]}
(30) = GIR,(B)IHIR, ()] + 2 mes 2= {G°[R, (k) IH™ °[R,(1)]/t! (m — 1)1}
E{[R,(k) — R,(k)I'R,(1) — R,(D]""} + O(N ).
Similarly,
(31) E{G[R,(k)]} = GIR,(k)] + 3G"[R,(k)IE{[R,(k) — R,(k)]"} + O(N).

The expressions on the left in (28) and (29) may be expressed in terms of (30)

and (31). The O-terms in these equations contribute O(K*N~°) to (29) and

O(KN7?) to (28). The contributions of the other terms will now be investigated.
For any derivative of G (or H) which occurs, we have

GO[R, (k)] = G(0) + O[R,(k)I], t odd,
= O[|R,(k)]], t even,

since G(z) is odd. Eliminate the derivatives in (30) in this way, multiply by a:b:,
and sum over k and I. By Lemma 10, Equations (19)—(23), the result is (29).
Similarly, (28) follows from (31) by the use of (24).
LemMA 11. Let g(w), |o| = w, have the Fourier series

g(w) = ZI:O——w akeikw~

Let f(2) be analytic in |2| < p, with f(0) = f(0) = f'(0) = 0. Let by, —» <
k < o, be such that by = f(ax) if |ax| < p. If g(w) has bounded variation, and
i akl < o, then the function h(w) = D i bie™ has a continuous second
dertative.

Proor. Choose 7 between 0 and p. There are at most a finite number of
values of k for which |a;| > r, and removing the corresponding terms from the
series for g(w) and 2 (w) cannot affect the conclusion. Hence we may assume that
las] < r for all k. Then b, = Of|as|’].

For k = 0,
lail = (2m) 7 [Zr e™g(w) do| = [(20k) ™" [Ze * dglw)] S (20k)™ [Zr |dg(e)]-
Hence a; = O(k™), and k%, = O(k|ax|*) = O(|ax|). This shows that — D K’bee™
is a continuous function, for the series converges uniformly. A(w) is obtained by
integrating twice.

TuroreM 3. Let {x} be a stationary Gaussian process with E(z;) = 0,
E(z?) =1,

2o |Ro(k)] < =,

and a spectral density S(w), |w| = m, which is a function of bounded variation.
Let y(x) be an odd, bounded, nondecreasing function on — o < x < o such that
Ely(z:)’] = 1. Definey; = y(x:) and
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Ry(k) =N ZZ:I YnYn+k

Let Sy(w) be the spectral density of {y:}.

Let F(z) be the function of Lemma 3, with its definition extended to all real z so
that F(z) is bounded for z real.

Let {c;, k = 1, .-+, K} be a nonincreasing sequence of numbers with ¢; < 1,
Ck g 0.

Define

S(w) = 1 4+ 2 ) 5 ¢ cos koF[R,(k)],
Se(w) = 1+ 22 5 ¢ cos kwR.(k).
Then for any positive integers K, N with K < N,

(32) E[S8(w)] = Sx(w) + O(N ")
and for 0 < o < m,
(33) ElS(w)’] = Sx(w)’ + (2vK/N)F'(0)’S,(w)* + &,

where v = K'Y 1 ¢’ and & satisfies the following bounds:
(i) for w such that

(34) 8(o) = 8(w) + 0(Jo — &'[%),

where 0 < a = 1,

(35) & = O0(K"*N), 0<a<l,

(36) & = O[(1 + log K)N7'], a =1
(ii) If w is such that the derivative S'(w) exists, and

(37) 8(e) = 8(w) + (o = 0)8'(0) + 0(lo" — o'**), B>0,

(38) & =0(N).

Proor. By Lemmas 3 and 11, S,(w) satisfies all the hypotheses for S(w).
In Theorem 2, take a; = b, = ¢ cos kw, G(2) = H(z) = F(z). Using the series
for 8(w), we find that (32) is true for K < N, and

E[S(w)Y] = Sx(w)® + 4F'(0)* 2 k11 cxc; cos kw cos lw
NN et [Ry(ma — na)Ry(ma — e + k — 1)
+ Ry(m — na + E)Rylmy — ma — )] + O(NT).
This sum may be expressed in terms of S,(w) by the relation
R,(5) = (2m)7 [7r daSy(e) ™"
We find that (33) is true, with
8 = —(2vK/N)F'(0)*S,(w)*
+ (F'(0)°/x") [ [ do’ dw”Sy(')8y (0" ) K (w, ', ") + ONT),
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where
,’ "-’”) = Z)ﬁz:1 ¢rC; oS kw cos lw
N~* ZZI sna=1 {€XP [z'w’(nl — ng) — iw”(nl —ne+ k —1)]

+ exp [iw' (n1 — na + k) — 1" (01 — ne — D]}

K(w, w

Integrating term by term
[] do’ do"%(w, o', ") = (47°/N) Dty ¢ cos® ke
(27°/N) Dk ¢ 4+ (20°/N) Doy ¢ cos k.

By the second mean value theorem ([1], p. 256) since ¢,” is monotonic, for some
index K’ < K,

Drac cos 2kw = ¢ P ey cos 2kw + cx D i—kr41 cos 2ke + 0(1) = 0(1)
for 0 < w < 7. Hence
[[ do’ do”" % (w, o', ") = (20°K/N)y + O(N7Y)

Il

and
8 = [F'(0)"/r'] [[ do do"[8,(«))8,(0") — 8y(w) K (w, &, &") + ONT).
Letdi = ¢x — ck1, k = K — 1, dx = cx. Then
K(w, 0’y 0") = 2 fmt dy dnKjm(0, o', &),
where
Kim(w, o', 0") = Dby 21 cos ko cos lw
(39) N7 Y mem {exp [0 (1 — n9) — 40" (1 — my 4+ k — 1)]
+ exp [i (1 — ny + k) — i’ (1 — ny — 1)]}.
By virtue of the identities
2= 0xp [i(0” — @) (m — ny)] = sin® (N/2) (o' — o")/sin’ 3(o’ — &),
2 D ki cos kwe™™* = exp {i[(K + 1)/2](w1 — w)}
-sin (K/2) (w1 — w)/sin $(w1 — )
+ exp {{[(K + 1)/2](w1 + w)}
-sin (K/2) (w1 + w)/sin (w1 + w),

Ii

we have
(40)  RKjn(w, o', ") = N'sin’ (N/2)(o" — ") /sin’ (o’ — )]
+Of 2wk’ o Dpmim [810° (p/2) (w01 — w)/sin” (w1 — )]}
Also, & = [F'(0)*/7"] D 5me1 dj dnEim + O(N), where
8im = [[ do’ do"[8,(0")8,(0") — Sy(w) 1 %jm(w, &', &").
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Since D _fomei |d; dn| = &° < 1, it is sufficient to show that &;, satisfies (35), (36)
or (38).
By (40),

8im = O(N™" [ [ do’ d”]8,(")8,(") — Sy(w)’]
‘[sin® (N/2) (o' — ") /sin’ 3(o" — &")]
2o (80 (2/2) (01 — @) /sin® 3w — )]}
Using the fact that S,(w) is an even function,
8jm = O(N" [ [ do’ d” |8,(")8, (") — Sy(w)’|
(41) [sin® (N/2) (0" — &")/sin" $(0” — &")]
2 pmim [8i0° (p/2) (0" — ) /sin* $(” — w)]}.

)

Assume (34). Then
8,(w)8,(w") = 8y(w)* = Offsin }(o" — &”")|* + |sin 3(e’ — w)|.
(41) may be estimated by using the relations
J3 [sin® (n/2)o’ /sin’ $0'] do’ = 7,
7 [sin® (n/2)e/|sin 30’ do’ = O[f37" 0> % do’ + [1-1 (do’/()*™)]
o(n'™%), 0<a<l,

- O(1 + logn), a=1

We find for 0 < a < 1,

8im = Ol 2pmim (NP7 + pN 7)) = O(K™°NY),

and for & = 1, &» = O[(1 + log K)N Y], verifying (35) and (36).
Now assume (37). This implies that

8,(w') = 8y(w) + [(cos w — cos ') /sin w]S, (w)
+ O(Jcos w — cos w'|'*?),
S, ()8, (") — S,(w)? = Sy ()8, (w) (2 cosw — cosw — cos w”)/sin w
+ O(lcosw — cos o[ + |cosw — cos "+

+ |cosw — cos'w’] [cos @ — cos w|).

By a procedure analogous to that above, using the estimate [§ [sin® (n/2)w’ do’/
sin o'|"™* = O(1), we find that

Ejm = [‘Sy("-’)Sy/("-’)/Sin w]
[ do’ dw” (2 cos @ — cos &’ — c08 ") Kjm(w, &, 0”) + O(N7D).

This integral may be evaluated by integrating the series for X, term by term.
Most of the terms give no contribution. We have
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(477 [ [ do’ de” (2 cos w — cos &’ — 08 w”) Kjm(w, o, ")
= (2/N) cosw D_i39™ cos® ke
— [(2N — 1)/2N*|[2_ 259 cos kw cos (K — 1)w
+ DRt 608 kw cos (k + 1))
= (2/N) 289 [cos w cos’ kw — cos kw cos (k + 1)w] + O(N* + KN7?)
= N7'sinw 23209 sin 2kw + O(N™') = O(N7Y).

Hence &;, = O(N ).

The formula for the variance of S(w) may be given more explicitly than by
Theorem 3 for simple choices of S(w). For example if S(w) = 1 + 2R,(1) cos w,
in the terms of order N ' only the quantities,

e = E(yy2),
o = E(y1y2y3y4),
v = E(y'ys),

T = E(ywp'ys),
7 = E(ylzyzyg)
enter. For ordinary partial sums (¢1, -+, ¢k = 1), we find that

7[5 Var [S(w)] de = (2K/N)F'(0)*-77" [§ Sy(w)* duw
—~ N7'F'(0)*(2 + 80 + 2 + 47 + 8¢ — 180%)
— N7F'(0)* — F'(p)"|(2v + 47 + 40 — 100°) + O(KN7?).

For small values of R.(1), the effect of the terms after the first on the right is to
decrease the average variance.

4. The value of F'(0). If S(w) is evaluated by the original method of the
introduction [using y(z) = ], it is easily verified that the conclusion of Theorem
3 applies: e.g., if S(w) satisfies hypothesis (ii) of Theorem 3,

E{8(w)} = Sx(w)* + (2vK/N)S(w)* + O(N7),

for 0 < w < w. The term of order K/N given in Theorem 3 differs from this by the
replacement of S(w)’ by S,(w)* and the introduction of the factor F'(0)%.

It can be shown that S,(w) always lies between the same bounds as S(w), and
has the same average value. Thus, the effect of the factor S,(w) is to increase the
variance of §(w) in some places, and decrease it in others.

The factor F'(0) gives a uniform increase in variance for all w. By differentiat-
ing Equation (7) in the proof of Lemma 3, we have

F'(0) = [f (O] = Efay(=)}™"
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Fig. 1. The function F(z) when y takes two values with the ratio f.

TABLE 1
Values of F'(0) for n = 2
o az a/az a F’(0)
0.482 1.608 0.300 0.981 1.133
0.402 1.608 i 0.943 1.137
0.710 1.419 3 0.976 1.188
0 1.36 0 0.612 1.232

In particular, for y(z) = z, F'(0) = 1, and for y(z) = sgn (z), F'(0) = =/2.
It can be shown that for any other choice of y(z) which is an odd nondecreasing
function such that E{y(z)®} = 1, F'(0) lies between these limits.

It is advantageous to pick a function for y(z) such that the computation of
R,(k) can be done rapidly and F’(0) is close to 1. The computation is simple if
y(z) is a step function taking only a few values. This leads us to consider a
function of the type

y(z) = aj, Ga<r<c¢, j=1--,m
y(—z) = —y(x),
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where) = << - <¢,=40,0=m < -+ < a,.For a given value of
n, the numbers a; , ¢; may be chosen so as to minimize F’(0), given E[y(z)*] = 1.
This must be done numerically forn = 2.

The best value of F'(0) for n = 2 is given in the first line of Table 1, with the
corresponding values of the constants. When as/a; is a power of 2, the circuitry
needed to compute R, (k) is simplest, and the computation most rapid. The other
lines in the table show best values of F'(0) for several fixed choices of a;/as .

Comparing with the value F'(0) = 1.57 fory = sgn (), we see that most of the
increased error over that for y = z has been removed. The best value of ai/as
which is a power of 2 is 1. The function F(z) is plotted for this case in Figure 1.
Note that it is essentially linear until 2| is close to 1.

F’(0) can be decreased further by taking larger values of n. The best case for
n = 3is

ay = 0327, as = 1030, as = 1951,
a = 0659, ¢ = 1447, F'(0) = 1.062.
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