NOTE ON A THEOREM OF KINGMAN AND A THEOREM
OF CHUNG

By D. VERE-JONES

Australian National University

Let P = {ps;} be the matrix of transition probabilities of an irreducible,
aperiodic Markov chain. It is known (see [3]) that if the chain is transient, the
interated probabilities {p{}’} may tend geometrically to zero, in which case there
is a common value R > 1 such that, for all 4, j, {p{P’R"} tends to a finite limit as
n — o, but {pi’r"} is divergent for r > R. Kingman [2] has called this the case
of “geometric transience,” and shown that, under the conditions below, if {u.}

is an initial distribution, and C' some set of states, the quantities
Pi(n) = > upsy
and
Qe(n) = 2jecpiy
satisfy limpow [Pi(n)]"" = lima.w [Qc(n)]"™ = 1/R.
(Kingman discusses a continuous time process, but his results apply with
the obvious changes in the present context.)

The conditions to be satisfied by {u:} and C are stated in terms of solutions to
the inequalities

(1) RY. piBi < B (B: > 0),
(2) RY api; < a; (a5 > 0).

(It can be shown that non-trivial solutions to these inequalities always exist.
We shall call them right and left R-subinvariant vectors respectively.) Kingman’s
condition on the vector {u;} is that it should satisfy the condition S uiBs < oo
for some right R-subinvariant vector {8:}, and the condition on the set of states
C is that it should satisfy the condition D ica; < o for some left R-subin-
variant vector {o}.

The purpose of this note is to use the general theory developed in [4] to show
that in fact these conditions imply a stronger result, namely the convergence of
the quantities P;(n)R" and Qc¢(n)R" to finite limits. We shall also apply the
results of [4] to two theorems of Chung’s concerning the convergence of func-
tionals of a Markov chain.

The discussion in [4] concerns the convergence of the more general sums

Pi(n; R) = Xiuiti/R™
Qi(n; R) = X;tiPw;R™;
S(n;R) = X 2w v;R™;
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where T' is any (not necessarily stochastic) irreducible, aperiodic, non-negative
matrix with convergence parameter R, and {us}, {v;} are any (not necessarily
non-negative) vectors.! As before, it can be shown that there always exist posi-
tive left and right R-subinvariant vectors, say {as}, {8}, while suitable conditions
on the vectors {u;} and {v;} take the form

(3) > |uilBs < for some right R-subinvariant vector {8},
(4) Do aylvi] < for some left R-subinvariant vector {a.}.

Then it is proved that

(A) (3) is a sufficient condition for the convergence to a finite limit of the
sequence P;(n; R) (n — «);

(B) (4) is a sufficient condition for the convergence to a finite limit of the
sequence Q;(n; R);

(C) (3), (4), and the supplementary condition esther |uj =< Ka; for some
K < «,or |vi] < K'B:for some K’ < w, are sufficient to ensure the convergence
to a finite limit of the sequence S(n; R).

When the appropriate conditions are satisfied, the limits can be computed by
interchanging the limit and summation operations, i.e. they are zero whenever
the matrix is R-transient or R-null, and equal respectively to

(2 wibe/ 20 auBi)os, D cuvn/ 2 awi)Bi, (2 i) (2 )/ D b

when the matrix is R-positive, (when the vectors {a;} and {8:} are uniquely
defined (up to constant factors), strictly invariant, and satisfies the condition
2oy < »).t

Applying these results to Kingman’s problem, we see that under his conditions,
the sums P;j(n)R" and Q¢(n)R" tend to finite limits which are zero if P
is R-transient or R-null, and equal to (D miB/ 2k cxBe)a; and (X kec o/
> axBs)Bi respectively if P is R-positive.

As a second application, suppose that the chain is positive recurrent, and let
{2,} denote the sequence of random variables whose transition matrix is de-
scribed by P. Then as n — «, the distribution of z, tends to a limit {w;} which
is a left invariant vector for P. If f( - ) is any function from the state space onto
the real, we shall call the sequence y, = f(2.) a functional of the Markov chain.
Applying criterion (B) for the matrix P, with R = 1, a4 = m and v, = f(k)"
(r > 0), and supposing that initially 2o = 7, we obtain the following theorem for
the convergence of the moments of y, .

THEOREM. Let {z,}, f(-){=;} be defined as above. Then the moments E(y, )
exist and tend to a finite limit if the corresponding absolute moment of the limat dis-
tribution, Elyo” = > mi|f(7)I", is finite, in which case E(yn") = E(ya')-

It is not difficult to show that the conditions (A) and (B) are necessary as well

1 The terminology is that used in [3] and [4], to which the reader is referred for further

explanation and a proof of these results.
2 See footnote number 1.
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as sufficient for the convergence of the sums P;(n; R), Qi(n, R) if the matrix is
R-positive and the vectors are non-negative; hence the condition of the theorem
is necessary if the function f( - ) is non-negative.

By making use of (C) it is possible to extend the results to the case when the
initial distribution is not restricted to a single state. For example, the conclusions
of the theorem will continue to hold if, in addition to the condition Ely.|" < o,
the initial distribution is dominated by some multiple of the limit distribution.

These results are only a slight extension of those of Chung [1], Theorems I. 14.5
and I. 15.4; the main point of our discussion is that it shows that the analytical
content of the theorems can be obtained very readily by direct arguments.
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