A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS¹

By F. EICKER

University of Freiburg (Breisgau) and Columbia University

- **0.** Summary. In [2] a central limit theorem [CLT] for sequences of univariate random linear forms was proved. That result is extended in this note to a multivariate CLT for q-dimensional linear forms of constant q-vectors with real-valued random weight coefficients. Some applications are indicated in Section 3.
- **1. Notation.** We use the following notation which differs slightly from that used in [2]. Let \mathfrak{F} be a (non-empty) set of distribution functions (d.f.'s) of random variables (r.v.'s) with zero means and positive, finite variances. Let $\mathcal{E}(\mathfrak{F})$ be the set of all sequences of independent random variables (independent within each sequence) whose d.f.'s belong to \mathfrak{F} , but are not necessarily the same from term to term of the sequence. A generic member of $\mathcal{E}(\mathfrak{F})$ will be denoted by $\epsilon = \{\epsilon_k \; ; \; k = 1, \; 2, \; \cdots \}$ or, when we discuss sequences of members of $\mathcal{E}(\mathfrak{F})$, by $\epsilon(n) = \{\epsilon_{nk} \; ; \; k = 1, \; 2, \; \cdots \}, \; n = 1, \; 2, \; \cdots$.

$$A_n = (a_1(n), a_2(n), \dots, a_{k_n}(n)) = (a_{jk}(n)), n = 1, 2, \dots, j = 1, \dots, q,$$

be a sequence of $q \times k_n$ matrices with column vectors $a_k(n) \in R_q$ (real q-dimensional Euclidean space with zero element ϕ) and elements $a_{jk}(n)$. Let $\min_n k_n \ge q$, $\min_n \operatorname{rank} A_n = q$, $a_{k_n}(n) \ne \phi$ for all n.

For $\epsilon(n)$ ε $\varepsilon(\mathfrak{F})$ we consider the random linear form $\sum_{k=1}^{k_n} a_k(n) \epsilon_{nk}$ (a random weighting of the vectors $a_1(n)$, $a_2(n)$, \cdots with the elements ϵ_{n1} , ϵ_{n2} , \cdots of $\epsilon(n)$). A short notation for this form is the matrix product $A_n \epsilon(n)$ where in this combination we interpret the symbol $\epsilon(n)$ as the vector $(\epsilon_{n1}, \dots, \epsilon_{nk_n})'$ [' denotes the transpose].

The covariance matrix of the vector $A_n \epsilon(n)$ is

$$B_n^2 = A_n \Sigma_n A_n'$$

where $\Sigma_n \equiv \operatorname{diag}(\sigma_{n1}^2, \dots, \sigma_{nk_n}^2)$ is the covariance matrix of the vector $\epsilon(n)$. B_n is the unique positive definite square root of B_n^2 . Thus, the random q-vectors

$$\zeta(n) = B_n^{-1} A_n \epsilon(n)$$

have mean ϕ and covariance matrix I_q (the q-dimensional identity matrix).

2. A CLT for random vector forms. We shall prove

$$\zeta(n) \to_L N(0, I_q)$$

Received 6 April 1965; revised 27 May 1966.

¹ Research supported in part by NSF-Grant no. NSF-GP-3694 at Columbia University.

1826 F. EICKER

 $(\rightarrow_L \text{ means convergence in distribution, } N(0, I_q) \text{ is the } q\text{-dimensional standard normal d.f.})$ for any sequence of sequences $\{\epsilon(n)\}$, $n=1, 2, \dots, \epsilon(n) \in \mathcal{E}(\mathfrak{F})$, if the following three conditions are simultaneously satisfied:

$$(I^*) \qquad \max_{k=1,\dots,k_n} a_k'(n) (A_n A_n')^{-1} a_k(n) \to 0$$

$$(4) \qquad (II) \qquad \qquad \sup_{G \in \mathfrak{F}} \int_{|x| > c} x^2 dG(x) \to 0 \quad \text{as} \quad c \to \infty$$

$$(III) \qquad \qquad \inf_{G \in \mathfrak{F}} \int_{x^2} dG(x) > 0.$$

In this paper all limits hold for $n \to \infty$ unless otherwise stated.

If the $\zeta(n)$ for all n are formed with one and the same sequence $\epsilon \in \mathcal{E}(\mathfrak{F})$ we write $\zeta(n;\epsilon)$. We say that the summands of $\zeta(n;\epsilon)$ are infinitesimal if

(5)
$$\max_{k=1,\dots,k_n} P(\|B_n^{-1}a_k(n)\| |\epsilon_k| > \delta) \to 0 \quad \text{for all} \quad \delta > 0$$

 $(\|\cdot\| \text{ means the Euclidean norm in } R_q)$. We now have

THEOREM. $\xi(n; \epsilon) \to_L N(0, I_q)$ and (5), both uniformly in $\epsilon \in \mathcal{E}(\mathfrak{F}), \Leftrightarrow (\mathbf{I}^*),$ (II), (III).

The previous univariate result [2] is completely contained in the above theorem for q = 1. We remark that conditions (II) and (III) concern only the set \mathfrak{F} and that (I*) requires no knowledge of the particular sequence ϵ occurring in a given situation. For q = 1, (I*) reduces to

(I)
$$\max_{k=1,\dots,k_n} |a_{1k}(n)| \left(\sum_{k=1}^{k_n} a_{1k}^2(n)\right)^{-\frac{1}{2}} \to 0.$$

For the proof of the theorem we need a lemma on the convergence in distribution of a sequence of random q-vectors $\{\xi(n)\}$, $n=1, 2, \cdots$. We first derive Lemma 1 where F denotes a q-dimensional d.f., X a random vector $\sim F$, and S_q the unit sphere $\subset R_q$.

Lemma 1. $\xi(n) \to_L F \Leftrightarrow \delta_n \equiv E \exp(ib_n'\xi(n)) - E \exp(ib_n'X) \to 0$ for all sequences $\{b_n\}$, $b_n \in S_q$.

PROOF. (\Leftarrow) Choose all $b_n \equiv \beta \varepsilon S_q$ and apply the multidimensional continuity theorem for characteristic functions ([1], p. 102).

 (\Rightarrow) If $b_n \to \beta$ in Euclidean norm, then the assertion follows from the Helly-Bray theorem and the continuity on R_q of a q-dimensional characteristic function. If b_n does not converge suppose $\lim_n \sup |\delta_n| = \delta > 0$. Then $\delta_{n'} \to \delta$ for a suitable subsequence $n' \uparrow \infty$, and $b_n'' \to \beta^*$ for $\{n''\} \subset \{n'\}$, $n'' \uparrow \infty$, some $\beta^* \varepsilon R_q$, which implies $\delta_{n''} \to 0$ and thus yields a contradiction.

An immediate consequence is

LEMMA 2. $\xi(n) \to_L N(0, I_q)$ if and only if $b'(n)\xi(n) \to_L N(0, 1)$ for all sequences of constant vectors $\{b(n), n = 1, 2, \cdots\}$ with $b(n) \in S_q$.

Another implication of Lemma 1 is the well known equivalence: $\zeta(n) \to_{L} F \Leftrightarrow \lambda' \zeta(n) \to_{L} \lambda' X$ for all $\lambda \in S_q$ (comp. [4], p. 103).

We remark, although this observation is not needed subsequently, that also the following is true: $\xi(n) \to_L N(0, I_q)$ if and only if $v'(n)\xi(n) \to_L N(0, 1)$ for all sequences of random q-vectors v(n) for which there exists a sequence of constant vectors $b(n) \in S_q$ such that $v(n) \to b(n) \to 0$ i.p..

PROOF OF THE THEOREM. (3) and (5) hold uniformly in ϵ if and only if both statements hold for every sequence of sequences $\epsilon(1)$, $\epsilon(2)$, \cdots . To prove these modified statements we use Lemma 2 with

(6)
$$b(n) = ||B_n c(n)||^{-1} B_n c(n),$$

 $\{c(n)\}\$ being any sequence of vectors $c(n)\ \varepsilon\ S_q$. Then

(7)
$$b'(n)\zeta(n) = (c'(n)B_n^2c(n))^{-\frac{1}{2}}c'(n)A_n\epsilon(n).$$

Putting $c'(n)a_k(n) = \alpha_{nk}$ (3) is seen to be equivalent with the normal convergence of

(8)
$$(\sum_{k=1}^{k_n} \alpha_{nk}^2 \sigma_{nk}^2)^{-\frac{1}{2}} \sum_{k=1}^{k_n} \alpha_{nk} \epsilon_{nk}$$

for all $\{c(n)\}\$ and (5) is seen to be equivalent with

(9)
$$\sup_{c(n) \in S_q} \max_{k=1,\dots,k_n} P(\left| \left(\sum_{j=1}^{k_n} \alpha_{nj}^2 \sigma_{nj}^2 \right)^{-\frac{1}{2}} \alpha_{nk} \epsilon_{nk} \right| > \delta) \to 0$$

for all $\delta > 0$. To see the latter we write $\max_{k=1,\dots,k_n} \sup_{b(n) \in S_q} \text{instead of } \sup_{c(n) \in S_q} \max_{k=1,\dots,k_n} \text{and note that}$

$$(\sum_{j=1}^{k_n} \alpha_{nj}^2 \sigma_{nj}^2)^{-\frac{1}{2}} \alpha_{nk} = b'(n) B_n^{-1} a_k(n),$$

$$\sup_{b(n) \in S_q} |b'(n) B_n^{-1} a_k(n)| = ||B_n^{-1} a_k(n)||.$$

Hence the left hand sides of (9) and (5) [replacing here ϵ_k by ϵ_{nk}] are equal.

Now by Theorem 1 of [2], (8) and (9) are jointly equivalent to the three statements (II), (III), and

(10)
$$\sup_{k;c(n)\in S_q} \left(\alpha_{nk}^2 / \sum_{j=1}^{k_n} \alpha_{nj}^2 \right) \to 0.$$

The left hand side of (10) equals

$$\sup_{k;c \in S_q} \left\{ (c'a_k(n))^2 / (c'A_nA_n'c) \right\} = \sup_{k;c \in S_q} \left\{ (c'(A_nA_n')^{-\frac{1}{2}}a_k(n))^2 \right\}$$
$$= \max_k a_k'(n) (A_nA_n')^{-1}a_k(n).$$

Thus (10) is equivalent to (I^*) , and the theorem is proved.

3. Remarks. The above theorem can be applied, e.g., to determine the joint asymptotic distribution of the least squares parameter estimates in a multiple linear regression system with not necessarily identically distributed error random variables [3].

In the applications of the theorem the d.f.'s of the random variable of the sequence ϵ are frequently unknown and consequently also their variances σ_k^2 that occur in the matrices B_n . It can be shown, however, that without further assumptions these σ_k^2 can be replaced by ϵ_k^2 and that the statements (3) and (5) of the theorem remain valid [3].

Conditions (I*), (III), (III) presumably remain necessary, if instead of the

1828 F. EICKER

whole class $\mathcal{E}(\mathfrak{F})$ only a subset is admitted. However, we do not pursue this question further.

REFERENCES

- [1] CRAMÉR, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.
- [2] Eicker, F.(1963). Central limit theorems for families of sequences of random variables.

 Ann. Math. Statist. 34 439-446.
- [3] EICKER, F. (1965). Limit theorems for regressions with unequal and dependent errors. Proc. Fifth Berkeley Symp. Math. Statist. Prob. Univ. of California Press.
- [4] RAO, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York.