A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM
LINEAR VECTOR FORMS!
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0. Summary. In [2] a central limit theorem [CLT] for sequences of univariate
random linear forms was proved. That result is extended in this note to a multi-
variate CLT for ¢-dimensional linear forms of constant g-vectors with real-
valued random weight coefficients. Some applications are indicated in Section 3.

1. Notation. We use the following notation which differs slightly from that
used in [2]. Let § be a (non-empty) set of distribution functions (d.f.’s) of
random variables (r.v.’s) with zero means and positive, finite variances. Let
&(F) be the set of all sequences of independent random variables (independent
within each sequence) whose d.f.’s belong to &, but are not necessarily the same
from term to term of the sequence. A generic member of §(F) will be denoted by
e = {e; k =1, 2,---} or, when we discuss sequences of members of
8(F), by e(n) = {enk sk=1,2,---},n=1,2---.

Let :

A4, = (al(n), a2(n)y Tt akn(n)) = (ajk(n))y n=12-- yj =1, » 4y

be a sequence of ¢ X k, matrices with column vectors ax(n) ¢ B, (real g-dimen-
sional Euclidean space with zero element ¢) and elements a;z(n). Let min, k, = ¢,
min, rank 4, = ¢, ax,(n) # ¢ for all n.

For ¢(n) € &(F) we consider the random linear form Y i~ ai(n)eq (a random
weighting of the vectors ai(n), as(n), - -+ with the elements €, €, - -+ of
¢(n)). A short notation for this form is the matrix product A.e(n) where in this
combination we interpret the symbol e(n) as the vector (ea1, - - - , ew,) [ denotes
the transpose].

The covariance matrix of the vector A,e(n) is

(1) B! = A.Z.A,

where =, = diag (651, - -+, o%,) is the covariance matrix of the vector (n).
B, is the unique positive definite square root of B,’. Thus, the random g-vectors
(2) ¢(n) = By 'Ane(n)

have mean ¢ and covariance matrix I, (the g-dimensional identity matrix).
2. A CLT for random vector forms. We shall prove
(3) ¢(n) =L N(O, I,)
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(—1 means convergence in distribution, N(0, I,) is the ¢-dimensional standard
normal d.f.) for any sequence of sequences {e(n)}, n = 1,2, --- , e(n) ¢ &(F),
if the following three conditions are simultaneously satisfied:

(I*)  maxe,...x, & (n)(4,4,") "ap(n) — 0
(4) (1I1) SUPg.g f|x|>c 2 dG(z) >0 as ¢c—
(I11) infog [ 2 dG(z) > 0.

In this paper all limits hold for n — « unless otherwise stated.
If the {(n) for all n are formed with one and the same sequence ¢ ¢ §(F) we
write {(n; ). We say that the summands of {(n;e) are infinitestimal if

(5) maXi,...., P(||Bx""ax(n)|| lex] > 8) =0 forall 6> 0

(|| || means the Euclidean norm in R,). We now have

THEOREM. £(n; ¢) —>. N(0, I,) and (5), both uniformly in € e &(F), < (I*),
(IT), (III).

The previous univariate result [2] is completely contained in the above theorem
for ¢ = 1. We remark that conditions (II) and (III) concern only the set & and
that (I*) requires no knowledge of the particular sequence e occurring in a given
situation. For ¢ = 1, (I*) reduces to

(I) Maxy—1,... &, |aw(n)|( 2kt di(n)) ™ — 0.
For the proof of the theorem we need a lemma on the convergence in distribu-
tion of a sequence of random g¢-vectors {{(n)}, n = 1, 2, --- . We first derive

Lemma 1 where F' denotes a g-dimensional d.f., X a random vector ~F, and S,
the unit sphere CR, .

LemMmA 1. &(n) —, F < 6, = Eexp (ib,'t(n)) — E exp (ib./X) — 0 for
all sequences {b,}, by e Sy .

Proor. (<) Choose all b, = 8 ¢ S, and apply the multidimensional continuity
theorem for characteristic functions ([1], p. 102).

(=) If b, — B in Euclidean norm, then the assertion follows from the Helly-
Bray theorem and the continuity on R, of a ¢-dimensional characteristic func-
tion. If b, does not converge suppose lim, sup [8,] = & > 0. Then §,, — 6 for a
suitable subsequencen’ T «,and b,” — 8% for {n"} < {n'},n" T «,someB* e R,,
which implies 8,» — 0 and thus yields a contradiction.

An immediate consequence is

LemMMA 2. £(n) — N(0, I,) if and only if b'(n)&(n) —1 N(O, 1) for all se-
quences of constant vectors {b(n),n = 1,2, ---} withb(n) €S, .

Another implication of Lemma 1 is the well known equivalence:
¢(n) =L F & Ni(n) =L \'X for all X € 8, (comp. [4], p. 103).

We remark, although this observation is not needed subsequently, that also the
following is true: £(n) —>. N(0, I,) if and only if v’ (n)&(n) —1 N(O, 1) for all
sequences of random q-vectors v(n) for which there exists a sequence of constant
vectors b(n) € 8, such that v(n) — b(n) — 01i.p..
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Proor or THE THEOREM. (3) and (5) hold uniformly in e if and only if both
statements hold for every sequence of sequences (1), ¢(2), --- . To prove these
modified statements we use Lemma 2 with

(6) b(n) = [Buc(n)||™ Bac(n),
{c(n)} being any sequence of vectors ¢(n) £ S, . Then
(7) '(n)¢(n) = (c'(n)Bac(n)) ¥ (n) Ane(n).

Putting ¢'(n)ax(n) = au (3) is seen to be equivalent with the normal con-
vergence of

(8) (@ IR AT A W) i I

for all {¢(n)} and (5) is seen to be equivalent with
(9) SUPe(nyes, MAKket, .. ey P(|( D521 @hjon;) tment] > 8) — 0

for all & > 0. To see the latter we write maxy_,...r, SUPsmys, instead of
SUPc(nyes, MAXk—1,...,;, and note that

(205 oinjong) e = b'(n) By ai(n),
SUPb (n)es, lb,(n)Bn_lak(n)[ = ”Bn-la"(n)”’

Hence the left hand sides of (9) and (5) [replacing here ¢ by e.4] are equal.
Now by Theorem 1 of [2], (8) and (9) are jointly equivalent to the three state-
ments (II), (IIT), and

(10) SUDkiomyes, (Gnie/ D521 oinj) = 0.
The left hand side of (10) equals
SUPkices, {(€'ax(n))"/ ('Andls')} = SuPies, {(¢'(Anda’) Har(n))’)
= max; @& (n)(4.4,") "ax(n).
Thus (10) is equivalent to (I*), and the theorem is proved.

3. Remarks. The above theorem can be applied, e.g., to determine the joint
asymptotic distribution of the least squares parameter estimates in a multiple
linear regression system with not necessarily identically distributed error ran-
dom variables [3].

In the applications of the theorem the d.f.’s of the random variable of the
sequence e are frequently unknown and consequently also their variances o, that
occur in the matrices B, . It can be shown, however, that without further assump-
tions these o;” can be replaced by ¢’ and that the statements (3) and (5) of the
theorem remain valid [3].

Conditions (I*), (II), (III) presumably remain necessary, if instead of the
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whole class &(F) only a subset is admitted. However, we do not pursue this
question further.
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