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1. Summary. This paper deals with some aspects of nonparametric confidence
intervals for shift and scale parameters which may be obtained from a cele-
brated class of rank order tests for the location and scale problems. This also
provides a distribution-free method of estimating asymptotic efficiency of a
class of tests and estimates (point as well as intervals) that may be derived from
the same class of rank order statistics. Further, the proposed method is also
applicable for estimating certain functionals of the distribution function which
may not be otherwise estimated in a simple manner.

2. Introduction. Let X, -+, X, and Y1, ---, Y, be two independent
random samples of sizes m and 7, drawn from populations with absolutely con-
tinuous cumulative distribution functions (cdf) F(xz) and G(z), respectively.
For testing the null hypothesis of the identity of F and @, a class of non-para-
metric tests can be represented in terms of Chernoff-Savage [1] type of test-
statistics of the form

(2.1) mTy = ZiLl ExniZyi, N =m + n,

where Zy; = 1, if the 7th smallest observation from the combined sample is from
the first sample, and Zy; = 0, otherwise; { Ex:}’s are N constants, which we may
represent in the Chernoff-Savage form as

(22) Ezvi = JN(l/N), 1 é ) é N,

where the function Jx(H) has the limit (as N — « )J(H) for all0 < H < 1,
and where Jy(H) satisfies all the four regularity conditions of Theorem 1 of
Chernoff and Savage ([1], p. 974).

Statistics of the type (2.1) are known as rank order statistics and they play
a very important role in the theory of nonparametric inference. First, for testing
the null hypothesis of identity of F and G against translation or scale type of
alternatives that may be put in the form

(2.3) G(z) = F(z — 0), 0#0
and
(2.4) G(z — u) = F([x — ul/0), g #1,
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the tests based on such rank order statistics are known to possess various desirable
properties (cf. [1], [2], [3]). Second, Hodges and Lehmann [4] have shown that
these rank order statistics can also be used to attach a translation invariant
point estimate to the shift parameter  in (2.3). Subsequently, Lehmann [7]
has also obtained a confidence interval for 6, based on Wilcoxon’s statistics.
Both the point and interval estimates are also obtained by Sen [13] in connec-
tion with a problem in bioassay. It follows from these results that the relative
asymptotic efficiencies of these estimates are the same as the corresponding
Pitman-efficiencies of the tests which derive them.

The present investigation attempts to generalize the above findings in two
directions. Firstly, it generalizes Lehmann’s [7] and Sen’s [13] method of deriv-
ing confidence intervals for a shift parameter to a wider class of rank order
statistics. It also deals with the problem of point as well as interval estimation
of the scale parameter ¢, in (24), which may be obtained from a similar class of
rank order tests. Secondly, it provides a method of estimating relative asymptotic
efficiency of the class of tests and estimates referred to earlier. This we sketch

briefly as below.
If we consider the sequence of translation type of alternatives, viz.,
(2.5) Hy :G(z) = F(z — N%),

where 6 is real, and if the cdf F(z) satisfies the regularity conditions of Lemma
7.2 of Puri [8], then for two sequences of tests {T'v} and {T»*} both of the type
(2.1) with limiting functions J and J* respectively), the asymptotic Pitman-
efficiency of {Ty} with respect to {Tx*} for testing Hy : F = @ against {Hy} is

(2.6) e(tm. oy = [A*(F)B(F)/A(F)B*(F)[,
where

(2.7) ANF) = [3J%=) dz — [[+J(z) dal’,
(2.8) B(F) = [Z, (d/dz)J[F(x)] dF (),

and A*(F) and B*(F) are obtained by replacing J by J* in (2.7) and (2.8),
respectively. It may be noted that A(F) is a distribution-free constant, while
the functional B(F) depends explicitly on the cdf F. Again, if F(x) possesses
a finite variance ¢*(F), then the Pitman-efficiency of {7y} with respect to the
Student’s ¢-test is

(2.9) eimim = lo(F)B(F)/A(F)T.

Puri [8] while extending the Chernoff-Savage theorem to the ¢(= 2) sample
case, has observed that the same expressions for the asymptotic efficiency (i.e.,
(2.6) and (2.9)) also hold for the c-sample case, (where, Student’s ¢-test has to
be replaced by the classical analysis of variance test).

Hodges and Lehmann [4] have observed that the asymptotic relative efficiency
of any two point estimators of 9, in (2.3), would be the same as the corresponding
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Pitman-efficiency of the two sequences of tests based on the same rank order
statistics, provided the latter exists. Lehmann [7] has shown that the asymptotic
efficiency of the confidence interval for 6 obtained by using Wilcoxon’s test is the
same as that of the test itself, and we shall see later on that this statement applies
to the general class of rank order tests and estimates.

Further, if we consider the sequence of scale type of alternatives, viz.,

(2.10) Ky :G(z — p) = F([z — p]ll — N ")),
where 6 is real; then under similar conditions

(2.11) eitm izyn = [A*(F)-C(F)/A(F)C*(F)T,
where

(2.12) C(F) = [Z,2(d/dz)J[F(x))] dF (),

and C*(F) is obtained by replacing J by J* in (2.10). Finally, if F(z) has finite
fourth order moment, so that 8:(F), the usual Pearsonian measure of kurtosis of
F(z), exists, we have for the classical variance ratio (F-) test,

(2.13) ern.irm = Bo(F)[C(F)/A(F)]*/4.

It now follows from (2.6) (and (2.11)) that if we want to study the com-
parative performance of two Chernoff-Savage type of tests for location (or scale),
we require the knowledge of the functional B(F) (or C(F)), and the comparison
with the parametrically optimum tests, deems further the knowledge of o*(F)
(or Bo(F)).

Now in non-parametric situations, the parent cdf F(z) is not explicitly stated,
and as a result, the functionals B(F), C(F) and B:(F) are all unknown. This
makes the study of the exact expression for the power-efficiency impracticable,
and the current literature on this topic contains various studies relating to
(2.6), (2.9), (2.11) and (2.13) for various common types of cdf’s, and in some
situations with the universal bounds for the same, valid for all F (cf. Hodges and
Lehmann ([2], [3]), Klotz [5], Sen [12], among many others). This study un-
doubtedly supplies some information about the relative performance of two rival
tests under suitable sequences of alternative hypotheses and for typical parent
cdf’s, but it fails to provide us with any idea as to how to compare two tests
when nothing is known about F(z).

The object of the present investigation is to propose and study a general
method of estimating the functionals B(F) and C(F), without assuming the
nature of the cdf F(z), and with the aid of these estimates to provide means of
estimating the efficiency-factors when really F(z) is neither known nor is as-
sumed to be specified even under the alternative hypotheses.

Incidentally, the proposed method can also be readily applied to estimate
certain functionals of absolutely continuous cdf’s, and the same has been briefly
illustrated in Section 6.
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3. Nonparametric confidence intervals for a shift parameter and estimation of
B(F). Here we propose to estimate B(F), defined in (2.8), when J , defined in
(2.2), satisfies all the regularity conditions of Theorem 1 of Chernoff and Savage
[1], and when F(z) is absolutely continuous and it satisfies the regularity condi-
tions of Lemma 7.2 of Puri [8]. Looking at (2.8), we observe that (d/dz)J[F(z)]
depends explicitly on the unknown F(z), and hence, the usual methods of estima-
tion may not be applicable.

We will use a technique by Lehmann [7] and Sen [13] of attaching a distribu-
tion-free confidence limit to the shift parameter, 6 in (2.3), to derive our estimate

of B(F).
Let us first consider the problem of interval estimation and write
(3.1) X» = (X1, -+, Xn), Y. = (Y1, -+, Ya), IL=(, - ---,1),
and rewrite (2.1)
(3.2) Ty = hw(Xn, Ya),

where Ay depends on the ranks of X, and Y, in the combined sample of size N
We shall assume further that Jx is such that

(3.3) hv(Xp + aln, Y,) is T ina, forall X, and Y,.

It may be noted that almost all the location tests based on Chernoff-Savage type
of test statistic T , satisfy (3.3); and hereafter, in this section, it will be assumed
that for the estimation of B(F), (3.3) holds i.e., J(F) is non-decreasing in F:
0 < F < 1. Let now

(3.4) W=m/N—=Ax0<N<1l as N— o,
(3.5) p=[0J(z)de and A® = [3J%x)dz — i’

Since J(F) is known, both u and A® are known. Then, under the hypothesis
H:GQ(z) = F(z — 0), it follows from elementary considerations that

(3.6) Zy = {Nay/AX (1 — M) {hw(Xe + 6L., Ya) — 4}

is a strictly distribution-free statistic, and it follows from Chernoff-Savage
theorem [1] that asymptotically Zy has a normal distribution with zero mean and
unit variance. We shall now apply Lehmann [7] and Sen’s [13] method of determin-

ing the confidence limits for 6 based on Zy . Let Zy® and Zy® be such that
(3.7) PolZy = Zx"} = a1, PolZy = Zx®} =z, o1+ & = a;

(ideally oy and oy are equal). Then the values of Z +* and Zy® can be computed
from the known distribution of Zy (independently of F'). For large N, we take
a = az = a/2, and get the following

(3.8) I + Zy® =0,  ZyP = 1ap,

where 742 is the lower 100 a/2 % point of a standardized normal distribution.
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Let now
(39) éu.N = Sup {0 ZN < 7 (2)}
GLN = Inf {0 ZN > ZN(I)},

and let Iy = {6: 0.y < 0 < by.»} be an interval in 6 whose width is

(3.10) by = Bow — b
Then {§..y < 0 < 8y.»} supplies a 100(1 — a) % confidence interval for 6, and
the width of the confidence interval is equal to 5y .

It may be noted that the estimates y.» and ..y are both translation 1nvar1ant
(which may be proved on the same line as in [4], p. 605); and as a result, Sy is
also translation invariant. Further, proceeding precisely on the same line as in
Lemma 1 of Lehmann [7], it readily follows that the asymptotic relative efficiency
of any two such sequences of confidence intervals derived from two sequences of
rank order statistics {Tv} and {T»*} (having the limiting functions J(F) and
J*(F), respectively) will be the same as in (2.6).

Let us now consider the following theorems which generalize Theorem 1 and
Lemma 4 of Lehmann [7] to a more general class of rank order statistics.

TueorEM 1. If F(x) in (2.3) satisfies the regularity conditions of Lemma 7.2
of [8], and Tw in (3.2) satisfies (3.3) in addition to the regulamty conditions of
Theorem 1 of [1], then under (3.4), the joint distribution of N ((OU .~ — 0),
(br.y — 8)) converges in law to a normal distribution on the plane concentrating on a
line

(3.12) Né(bo.w — 0) = No(bw — 6) + 2A|rapl/B(F),
where No = N x(1 — \x), and B(F) and A are defined in (2.7) and (2.8),
respectively.
OvuTLINE OF ProOF. Let a be any real and finite quantity, and we define
(3.13) He(z) = WF(z) + (1 — \)F(z 4+ Nota).

Then, under the stated regularity conditions, it can be shown precisely on the
same line as in the proof of Theorem 1 (as well as Corollary 2) of [1] that for
any real and finite a

(3.14) [Nd/A(1 — M){ha(Xw + (8 + NoZa)Ln, Ya) — 4}

= aB(F)/A + (N¢/A)[Bix — BiRl + 0,(1),
where p is defined in (3.5), and
(315) B = [, [Gu(z + Nota) — F(z + No'a)J'(Hw(z)) dF(z),
(316)  B§Y = [Zu[Fu(z) — F(2)V'(Hw(2)) dF(z + Ni'a),
(3.17) Fn(z) = m [Number of X; < z],
(3.18) Gu(z) = n [Number of (¥; — 6) < z].
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Further, the proofs of Theorem 1 and Corollary 2 of [1] imply that for any real
and finite a, (No'/A)[B% + B4l converges in law to a normal distribution
with zero mean and unit variance. Hence, using the same technique as in Theorem
4 of [4], we get from (3.9) that

(319) limy—w Po{No(fu.v — 6) < a} = ®(1app + aB(F)/A); (rap) = /2,
where @ is the cdf of a standardized normal variate. (3.19) implies that
(3.20) ING(by.y — 8) + 7apA/B(F)| is bounded in probability.

Similarly, it can be shown that

(3.21) IN(bo.y — 6) — 74124 /B(F)| is bounded in probability.

Now, if (a, b) be any two real and finite quantities, then it can be shown using
(3.15) and some simple but somewhat lengthy algebraic manipulations that

(3.22) E(B{% — B&) =0,

(3.28)  aB{IBial} = 4"+ o(1),  nE{[B{RF} = A* + o(1);
(3.24) nEB{B{%-B% = A% + o(1).

Thus, from (3.22), (3.23) and (3.24), we get that

(3.25) nE{[Biy — BiRl}) = o(1),

and hence by Chebyshev’s lemma, we get that

(3.26) In'[Bi — Bixl| = o,(1).

Similarly, we have

(3.27) |m'[Bw — Biwll = o,(1).

Consequently, from (3.14), (3.15), (3.16), (3.26) and (3.27), we get that for
any two real and finite (a, b)

(3.28) [No'/A(1 — M\)l{hw(Xm + (8 + Nola)L, Ya)

— hw(Xm + (8 + No)La, Ya)} = (a — b)B(F)/A + 0,(1).
Thus, from (3.3), (3.9), (3.20), (3.21) and (3.28), we may conclude that
(3.29) No'(bp.ne — br.x)B(F)/A = 2rap| + o0n(1),

which asserts the truth of (3.12). The rest of the theorem follows directly from
(3.14), (3. 28) (3.29) and the asymptotic normality of (No'/A)[(B{% — Bs%),
(B& — B®)).

Hence, the theorem.

THEOREM 2. Under the conditions of Theorem 1,

(3.30) [INAw(1 — M) —p 24 rar|[B(F)]™.
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The proof follows readily from Theorem 1 and hence is omitted.
Consequent on Theorem 2 we arrive at the following estimate

(331) B(F) = {(Zv® — Zx®)/5xINNa(1 — M)}
~p {2474l /SnINAR(1 — M)}

Since, 8y has been shown to be translation invariant, we get from (3.16) that
B(F) is also so. This property of B(F) ensures its consistency even when the
null hypothesis Hy : F = @ does not hold. Again, substituting (3.16) in (2.6),
we observe that the estimated value of (2.6) reduces to

(3'32) é(TN)-(TN‘) = (3N*/$N)2'

From (3.30) and (3.22), we readily arrive at the following:

THEOREM 3. If corresponding to a given confidence coefficitent 1 — «a, {In} and
{Ix™} be two sequences of confidence intervals for the shift parameter 6 in (2.3),
based on two sequences of rank order statistics {Tx} and {Tx"} both satisfying the
conditions of Theorem 1, then the asymptotic ratio of squared lengths of the con-
fidence intervals is equal to the relative efficiency of the test which generates them.

The above results can be easily extended to the one sample location problem.
As these will follow as the direct generalizations of the results of Lehmann
([7], p- 511) and along the lines of the previous three theorems, the details are
omitted.

4. Nonparametric confidence intervals for a scale parameter and estimation of
C(F). In the scale problem there are two main difficulties which make the use of
Hodges and Lehmann [4] type of point estimates and Lehmann [7] and Sen’s
[13] confidence limits somewhat dubious in small samples. The first difficulty is
caused by the value of u in (2.8) (no matter, known or unknown), as a result of
which the distribution-freeness and monotonicity of T» (in (2.1) or (3.2))
under scale change usually do not hold simultaneously; (usually we require
hy(60Xn , Y,) (referred to (3.2)) to be distribution-free when G(z — u) =
F((z — p)6) and also we require hy(6Xm , Y) to be T in 6). For a class of tests
based on generalized U-statistics, however, this difficulty can be removed by an
approach by Sen ([13], p. 542), but usually the rank-order tests can not be
tackled in that manner. The second difficulty is that the estimate of C(F)
should be valid even when the null hypothesis F = @ is not true, (as is the case
with B(F)). This imposes some further restrictions on F.

The confidence interval for ¢ in (2.4) and the estimator of C(F'), considered
here, are also based on all the assumptions regarding Jx and F, as stated at the
beginning of Section 3. Besides, it requires an additional assumption on F,
namely that F(z) is symmetric. We also assume that J(u) is symmetric about
w = %, and

(4.1) J(F(x —t))f(x —t) < T(z) forall 0=t <c<

where T'(z) is quadratically integrable with respect to F(z). If (4.1) holds,
obviously the conditions of Lemma 7.2 of Puri [8] also hold.
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Let now X and ¥ be some estimate of the location parameters (p; and ps) of
X and Y respectively, and are such that X and ¥ are scale invariant and

(4.2) INNE — m)| = 0(K), IN(? — w)| = 04(K),

where K is a finite constant and where (3.4) is assumed to hold. We then con-
sider a rank-order statistic of the form (2.1) but based on observations centered
at the respective estimated locations, and write it as

(4.3) 'y = hy(Xp — X1, Y, — PL),
where J y is such that
(4.4) hy(aXn — XL,), Y, — 1) is 1 ina.

It may be noted that (4.4) is the usual characteristic of the rank-order scale
tests. Defining then Ay, » and A as in (3.4) and (3.5), it can be shown precisely
on the same line as in Raghavachari [10] that under H: G (z — p2 ) =
F(07'[x — pal)

(45)  Zy = {N /A1 — M)} {hw(0Xm — XL, Yo — PL) — 4}

is asymptotically distribution-free and has a normal distribution with zero mean
and unit variance. We then define the estimates fy.x , 0..x and 8y as in (3.9)
and (3.10), and for the point estimation of o, we essentially use Hodges and
Lehmann’s ([4], p- 599) technique. The details are omitted for the intended
brevity. Further, Theorem 1 will also hold for the scale problem and for Theorem
2, the only change that has to be made, is to replace B(F) by C(F) defined by
(2.12). A similar change is necessary with (3.31), and again Theorem 3 will
hold in this case.

It is also easily seen that the interval estimates as well as the estimator of
C(F) derived by this technique are all scale invariant.

5. Estimation of B(F) and C(F) in the ¢ sample case. In this case, there are ¢
independent samples of sizes n1, « -+ , n.. We define N = D i1 ni, and for the
kth sample, we define T'x as in Puri ([8], p. 103), with {Ey:} defined in (2.2).
Also, we define (following Puri [8])

(5.1) Sy = g Tws — ul/4%

where p and A” are defined in (3.5). It may be noted that T, -+, Tw,are
subject to a single constraint, and hence, only (¢ — 1) of them are linearly inde-
pendent. Let us now denote the ¢ cdf’s by Fi(z), - -+, Fo(x), respectively, and
take F; = F, while

(5.2) Fu(z) = F(z — N¥%,) or F(z[l — N7')),

according as translation or scale alternatives, where 6. , - - - , 6. are all real. In this

case, the asymptotic power-efficiency of the £x-test with respect to a similar
£ -test or with respect to the classical analysis of variance test (for location) or
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the classical homogeneity of variance test (for scale) is independent of ¢(=2)
and becomes identical with the expressions in Section 2, in the various cases (cf.
Puri [8], [9]). Thus, here also we require to estimate B(F) and ¢(F') only.

One possible method of estimation is to consider all possible ¢(¢ — 1)/2 differ-
ent pairs of samples, and for each such pair of samples, to employ the methods
used in Sections 3 and 4 to estimate B(F) or C(F); finally to pool all these
C(c — 1)/2 estimates into a single measure, having some optimum properties.
Alternatively, we may use £y in (5.1) to derive suitable estimates of B(F) and
C(F). We consider here the second approach and only the case of B(F); the
estimation of ¢(F') will follow precisely on the same line. In this case, we write

(5.3) Xp = (X, -, Ximg), k=1,---,c¢
as the ¢ sample observation vectors, and rewrite £y as
(5.4) v = Liamlhy® Xy, -+, Xo) — /A

where hy® depends only on the ranks of X, (k = 1, ---, ¢) in the combined
sample, and
(5.5) hN(k)(X1 g Tty X1 ) X, + akI,,k ) Xk+1 y Tty Xc) is T in (073

forall X;,---,X,and allk = 1, ---, ¢. As, we can rewrite £y in (5.4) as a
positive definite quadratic form in hx®, - -+, hy?, we consider the following
(¢ — 1) equations

(5.6) X, X+ iy, o, X Faldn,) =4, k=2 ,c

solving which along with the convention of Hodges and Lehmann ([4], p. 599;
(2.3)), we get the extended Hodges-Lehmann estimates;, - -+ , 6, 0f 61, -+ , 6,
respectively, in the model

(57) Fk(.’l!) = Fl(x - 0k), k= 2, cre,C

All these estimates are translation invariant. Further, under (5.7), it follows from
Puri’s [8] extension of Chernoff-Savage theorem that

(5.8) iinilhn® (X1, Xo + 0oL, , -+, X, + 6L,) — ul/A ~ X3,

where x2_; has the chi square distribution with (¢ — 1) degrees of freedom (d.f.).
Now extending Theorem 4 of Hodges and Lehmann ([4], p. 608) in a more or less
straight forward way to the c-sample case, it follows after some essentially simple

steps that under

(5.9) My = M0 < M <1, (i =1), as N — oo
(5.8) reduces to

(5.10) [B(F)/AT{ 2ice 2ogm2 Me(Bg — NN (B — 0) (8 — 0)} ~ Xer

where 8, is the Kronecker-delta. Let now x%.._1 be the 100(1 — &) % point of a
x* distribution with (¢ — 1) d.f.,, and let 8 = (62, --- , 6.) be a point in the
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(¢ — 1) dimensional Euclidean space. We equate the left hand side of (5.8)
to xe...1, and solve for the values of hy® k= 1,---,c Let hy* =
(hy*®, -+, hy™) be any solution of this equation. Then the set of points {hy*}

describe an ellipsoid in a ¢ dimensional space, whose origin is u = (g, «- -, p).
Given any hy™* we consider again the (¢ — 1) equations
(511) hN(k)(XI-; X; + azInz ) Ty X, + acInc) = hN*(k); k= 2; cee,C

Solving these, we get the estimate 6* = (6,%, - - - , 6.*) of the model (5.7), where
we adopt a convention similar to (3.10) i.e., we take 6* as farthest away from
6, in the given direction, for which (5.11) holds. Then from (5.11), we get that

(512) [B(F)/AP{ 2 ie 2 ama M(Bkg — NN (6™ — 8) (6, — 8)} ~ Xawoms -

Thus, if we compute & and 6* (in any direction), we can estimate B(F) from
(5.12). To eliminate the arbitrariness of the direction of 6*, we may estimate B(F)
along each of the (¢ — 1) principal axes of the ellipsoid in (5.12), and combine
these (¢ — 1) estimates into a single measure (preferably with weights
Nyttt s Ne)e

The estimation of ¢(F) follows precisely on the same line, and hence, is not
considered.

6. Estimation of certain functionals of distribution functions. Often, in many
situations, we come across certain functionals of the form

(6.1) 0(F) = [Z.glF(x)] dF (z)

for which it may be considerably difficult to find an unbiased estimator; the
density function of any absolutely continuous edf at any specified quantile being
one of the examples of such functionals. Incidentally, if in such a case, g(F)
satisfies the following conditions:

(i) g(F) 2 0forall0 = F £ 1,

(ii) g(F) = (d/dz)G[F(x)], where G(F) satisfies the conditions of Lemma 7.2
of Puri [8], then it readily follows from our results in Section 3 that if we work
with a rank order statistic Ty of the type (3.2) whose weight-function J(F) is
G(F), then the estimate (3.16) will be a translation invariant consistent estimator
of 8(F) in (6.1).

Let us now consider, in brief, how our technique provides a simple method of
estimating the density function of any absolutely continuous distribution at any
quantile £, : 0 < p < 1. We shall consider here both the one sample and two
sample procedures. For detailed study of nonparametric estimation of density
functions, the reader is referred to Rosenblatt [11] and Leadbetter and Watson
[6], and the relation of our method with these will also be indicated here.

We consider first the one sample situation. In a sample of size n drawn from a
population having a continuous density function f(z) in the neighbourhood of
the pth quantile £, : 0 < p < 1, we require to provide an estimate of f(£,). It
is well-known that we can always find two values of 7, and s, , satisfying
Ta = [np] + 1 = s, , ([s] being the largest integer contained in s), such that
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(62) P{X(s,,) é é,, é X(Tn)} = 1 - Q,

« being any preassigned quantity and X () being the rth smallest observation in a
sample of size n. The confidence interval (6.2) is obtained by using the sign-test
statistic

(6.3) Tow= 2 iacXi— &), c(u)

1, if w=0,

0, otherwise;
and the confidence interval for 7', is given by
(6.4) Plsy S Th <1 |F(&) =p} =1 — a

Further, it is well-known that for the sequence of alternatives H, : F.(z) =
F(z + n%0), n}(T. — p)/Ip(1 — p)]! has asymptotically a normal distribution
with mean 6f(£,)/[p(1 — p)] and unit variance. Thus, if we use the result in
Theorem 2 (as adapted in the one sample case), we may conclude that'_"the
following

(65) fn(gp) = (’I’n — 8y — 1)/n[X(rn) - X(s,.)]

is a translation invariant consistent estimate of f(£,). This estimate has a close
analogy with Rosenblatt’s estimate. He considered a nonnegative weight func-
tion w,(u) such that

(6.6) [Zewa(w) du =1,  [|uice wa(u) du — 1,

for any ¢ > 0, and his estimate is

(6.7) F2(y) = [Zowa(y — ) dFa(2) = 07 2 i wa(y — X;).

In order that f.(y) has a negligible bias, he further showed that w,(«) should
satisfy

(6.8) [Z uwa(u) du = 0.

If we rewrite (6.5) in the form of (6.7) then it can be easily shown that the weight
function corresponding to f.(£,) in (6.5) has stochastically the same properties
as a Rosenblatt weight function.

Finally let us consider the two sample problem. We consider a statistic of the

form (2.1), where we take
(6.9) Eyi=1 if ¢1<r=[Np]+1,
=0 otherwise,

so that u and A® defined in (3.5) reduce to p and p(1 — p), respectively. In this
case, it is easily shown on using Theorem 2 that the estimator (3.31) is nothing
but a translation invariant consistent estimator of f(£(,). By varying
r(=[Np] + 1) over the range of p: 0 < p < 1, we can estimate f(£,) for various
values of p.
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