MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS
BY ITERATION'
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1. Introduction and summary. For the general statistical decision problem,
Wald suggested the minimax solution as one possible choice of an optimum solu-
tion. Sufficient conditions for the existence of minimax solutions are well known.
However, minimax solutions have been calculated only for isolated problems.
A drawback of the methods that have been used to obtain minimax solutions is
that there is no guarantee that they will yield a minimax solution when they are
applied to a specific new problem. An exception to this is M. N. Ghosh’s method
[2] of approximating minimax estimators for a certain class of problems. Since
his method differs from the method presented here, no further mention of his
work will be made.

Presented in Section 3 is an iterative method of calculating minimax solutions
that is applicable to a class of problems. The method is based on the result that,
under certain conditions, if, for a sequence of a prior: distributions on the param-
eter space, the corresponding sequence of Bayes risks converges to the supremum
of all Bayes risks, then the corresponding sequence of Bayes decision functions
converges to the minimax decision function and the corresponding sequence of
risk functions converges uniformly to the minimax risk function. A method for
iteratively constructing such a sequence of a prior: distributions is given.

The derivation in Section 3 of the iterative method of calculating minimax
solutions depends on some well-known results of Wald [5]. These results are
stated in Section 2 for convenience of reference and are proved for the sake of
completeness, although many of the proofs are available in [5] or elsewhere.
Also, previously no exposition of the results of Section 2 was available in the
literature with the mathematical presentation used here. The assumptions used
here to obtain Wald’s results are weaker than those used in [5] and are similar
to Wald’s Assumptions 5.1 through 5.6 in [6]. However, in [6] Wald did not give
all of the results of Section 2. Also, the results hold for a larger class of problems
than Wald indicated. Wald’s restriction to fixed sample size problems is un-
necessary; the results apply to sequential problems with prescribed sequential
experimentation rule of the type considered by Wald in [6]. In [6], Wald treats
discrete and continuous random variables separately. Here the results are given
in a generality that includes discrete and continuous random variables as special
cases.
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2. Assumptions and preliminary results. Let X be a chance variable with
outcomes z in a sample space X and let B(%) be a o-field of subsets of . The
outcomes are not necessarily numerical. For example, for an experiment with
fixed sample size n, an outcome is an n-tuple of observations, and, for a sequential
experiment with a choice of experiments at each stage, an outcome is a sequence
of experiments, each with a corresponding observation.

AssumprioN 1. The unknown distribution of X is a member of a given
parametric class {P, : » in @} where Q is a compact subset of a finite dimensional
Euclidean space.

Let & denote the class of all a prior: distributions ¢ on the o-field B(Q) of
Borel subsets of Q.

AssumpTioN 2. (i) There is a o-finite measure 4 on B(X) such that, for every
win Q, P, has a density p(z | w) with respect to u. (ii) p(- | -) is jointly measur-
able on the product o-field B(X) X B(Q).

(For discrete random variables, u is counting measure, and for continuous
random variables with Euclidean sample space, u is Lebesgue measure.)

(iii) For each z in &, p(z | +) is continuous on L.

This and the compactness of @ imply that p(x | -) is bounded and uniformly
continuous on © for each z in .

AssumpTioN 3. The set D of allowed terminal decisions d is a compact sub-
set of a finite dimensional Euclidean space.

D and © are not necessarily the same set, nor do they necessarily have the
same dimension.

Assumprion 4. The loss function L(-, -) is real-valued, non-negative, and
jointly continuous on the Cartesian product D X ©. L(d, w) is the loss incurred
if decision d is taken and the distribution of X has parameter w.

This and the compactness of D X @ imply that L(-, -) is bounded and uni-
formly continuous on D X Q.

AssumptioN 5. The class A of allowed terminal decision functions § consists of
all measurable functions mapping (%, B(%)) into (D, B(D)) where B(D)
is the o-field of Borel subsets of D.

AssumpTION 6. Let £ be any a prior: distribution in E. Then, for any outcome
x in &, except possibly on a set of u-measure zero, there is at most one decision d
in D that minimizes [ L(d, w)p(z | w) d&(w).

Because of this assumption, randomized terminal decision functions need not
be considered. Some well-known conditions that are sufficient for this assumption
and that are satisfied in many estimation problems are: D is a convex set,
L(-, w) is a strictly convex function on D for each w in @, and, for almost all x,
p(z|-) > 0.

Ignoring for the moment all questions of existence, measurability, and integra-
bility, we introduce the terminology and notation.

To judge a decision function 8, we use its risk function (expected loss) defined by

Rs(w) = [ L(5(z), w)p(z | @) du(z)
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for each w in Q. Let § be a decision function. Then, if there is a decision function
&' such that Ry (w) < Rs(w) for all w in @ w1th strict inequality for at least one
w, we say that § is inadmissible. If no such &' exists, we say that & is admissible
In view of wanting to minimize the risk function, we require that only admissible
decision functions be used.

A decision function 6™ is called minimaz if, for any decision function 5,

sup, Re(w) = sup, Rs(w).

f Ri(w) di(w) is called the average risk of the decision function & with respect
to the a priori distribution £ A decision function §; satisfying

| Ri(w) di(w) = infs [ Ry(w) d&(w)

is called Bayes relative to £, or, simply Bayes(£). Rs, is called a Bayes(£) risk
function and is also denoted by Rg r(§) = fRae(w) df(w) = inf; f Rs(w) dé(w)
1s called the Bayes risk for £. r* = supgr(£) is called the ma:mmum Bayes risk.
£* is called a least favorable a priori distribution if r(£*) = r* = sup; r(£).

The main results of this section are that, under the assumptlons, a unique and
hence admissible minimax decision function exists, and it is Bayes relative to
any least favorable a priori distribution. We now prove the preliminary results.

Lemma 1. The family of all risk functions {Rs(-): & in A} is equicontinuous
on Q.

PROOF Following the definition of equicontinuity in [4], we show that, given
any o’ in @ and any € > 0, there exists an n > 0 such that if lo — «| < 7 then
IR:(w) — Rs(w')| < efor all §in A.

|Rs(w) — Ra(')| = | L(8(2), w)p(z | ) du(z) — [ L(8(x), o' )p(z | ') du(=)]|
| L(8(2), 0)p( | @) du(z) — [ L(3(x),w)p(z|e") du(z)|
+ 1 L(8(z), w)p(z | ') du(z)
— [ L(8(2), o")p(z | &) du()|
SM[lp(z|w) — p(z|) du(z)

+ [ 1L(8(x), 0) — L(5(x), &) |p(z | &) du(z)

where M is a finite upper bound for L(-, ).

By the uniform continuity of L(-, -) on D X , there is an " > 0 such that
if o — &'| < #, then |L(+, @) — L(-, »’)| < ¢/2. This implies that the last
integral on the right is less than ¢/2.

For any sequence {w;} in @ such that w; — o', p(z | wi) = p(x|w "y for all z by
Assumptlon 2(iii). Then, by Scheffé’s theorem [3], p. 351, [ Ip(x | w,) -
p(z| )| du(z) — 0. So there is an 1" > 0 such that 1f o — | < 7" then
[ Ip(2 @) = p(2 | )| du(z) < e/2M. Letn = min (n',1"). Then, if |o — '] < ,
|Rs(w) — Rs(w')| < e for all & in A.

LemmA 2. Let £ be any a priori destribution in E. Then, for any x in X, there is

lIA
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a d in D that minimizes
(1) J L(d, ©)p(z | ©) di(w).

Proor. Assumptions 1, 2, and 4 imply that the integrand is measurable and
bounded. So (1) exists for any « in % and d in D.

We show that, for any z in %, (1) is continuous in d on the compact set D.
This implies there is a d in D that minimizes (1). Let any = in & and any ¢ > 0
be given. p(x | -) is bounded and L(-, -) uniformly continuous imply there is
an g > 0 such that if [d — d’| < g then |L(d, 0)p(z | 0) — L(d’, w)p(z | )| < €
for all w in Q. Hence

[J L(d, 0)p(z | w) di(w) — [ L(d, w)p(z | w) di(w)| < e

for |d — d’| < 7, and (1) is continuous in d.

A Bayes(¢) decision function &; is said to be essentially unique if, for any other
Bayes(£) decision function &', 8 = 8; a.e. u.

TurorEM 1. For any a priori distribution & in Z, there exists a 6 tn A that s
Bayes(£). It is essentially unique and hence admissible.

Proor. For each z in X, define §(z) equal to a d in D that minimizes (1). By
Lemma 2, § exists and, by Assumption 6, is uniquely defined a.e. x. The definition
of 6 on the set of u-measure zero is of no consequence. We show that & satisfies
the theorem.

We show that 6 is measurable, i.e., in A. Denote (1) by f(d, z). Since the
integrand of (1) is jointly measurable on B(X) X B(2), f(d, -) is B(X) measur-
able for each d in D by Tonelli’s theorem [4]. Let {d;} be a dense subset of D.
By the last proof, for each z in X, f( -, ) is continuous on D. Thus inf; f(d, ) =
infy f(di , ) for all z in X. inf; f(d, -) = infy, f(di, -) is B(%)-measurable since
f(dy , -) is measurable for each k. Then g(d, -) = f(d, -) — infs f(d, - ) is measur-
able for each d in D. Also,g = 0, g(8(x), z) = 0 for all z in X, and, for almost all
x, 8(x) is the unique decision in D that minimizes g(d, z).

To show that 6§ is measurable, we construct a sequence of measurable functions
that converges to 8. Let {e.} be a sequence of positive numbers such that e, — 0
and define A, = {z:9(di, ) < €}, which is a measurable set for each » and k.
FOI' each n, the sets Bn1 = Anl y Bng = Anz bt Bnl y T, Bnk = Ank —_ Ulj;i Bni y

- are disjoint and measurable. z is in B, implies g(dy, , ) < €, . We show that
U B.r = X for each n. Let any z in & be given. Since f( -, «) is continuous and
{di} is dense in D, there is a di such that g(di, *) < € ; 50 T is in An; . Hence
UkAnk = and Uank = Uk Ank = .

For each n and each z in X, define 8,(z) = dy if z is in Bu , that is, 8.(:) =
Zk diI5,,(+) where I is the indicator function of B. Thus é, is measurable.
Also, forall 2 in &, g(8.(x), 2) < e, for each n. For almost all z, g( -, z) is uniquely
minimized by 8(z). Then it follows from the continuity of g( -, ) on D which is
compact and from g(8,(z), ) — 0 that 8.(z) — 8(x) for almost all z. Hence § is
a measurable function.

For the well-known proof that § is Bayes(£), see the proof of Theorem 4.2 in
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[5]. We will denote & by 6; hereafter. A slight modification of the proof of Theorem
4.2 in [5] yields the essential uniqueness of 8; . Admissibility of an essentially
unique Bayes decision function is well known.

Because the Bayes(£) decision function is essentially unique, we let 8; be a
generic notation for any member of the equivalence class of decision functions
equal a.e. p to the Bayes(£) decision function given above.

We say that the sequence {£;} of a prior: distributions on Q converges weakly
to the a priors distribution & if and only if, for every bounded continuous func-
tion g on @, lim [ g(w) dti(w) = fg(w) déy(w). We denote this by & — & .

Levmma 3. Let {fi} be any sequence of real-valued functions on Q that converges
uniformly to a continuous function fo . Let {£;} be any sequence of a priori distribu-
Zons on  that converges weakly to an a priori distribution & . Then

lim [ fw) dé(w) = [ folw) déo(w).

Proor. The proof is immediate and will be omitted.

TureoreM 2. Let {£} be a sequence of a priori distributions on @ that converges
weakly to the a priori distribution & . Then

(1) lim 55,- = 550 a.e. u,
(i) lim R, = Ry, uniformly on Q, and

(iii) Lim r(&) = r(&).

Proor. (i) Use proof by contradiction. Assume that for all z in a set M of
positive y-measure the equality does not hold. Let M;, 7 = 0,1, 2, --- | denote
the null set on which &, is not given uniquely by Theorem 1. U; M; has u-measure
zero, so M = M — U; M, has positive u-measure. Let = be any point in M ’,
By the assumption above, lim sup; [8;,(z) — 8 (2)| > 0. By the compactness of
D, there is a subsequence {j} of {7} and a dy in D such that lim &;,(z) = do #
8¢, (). By Assumption 6,

(2) [ L(do, @)p(a | @) di(w) > [ L(8e(2), @)p(x | @) dio(w).

The boundedness of p(z | -) and the joint continuity of L( -, -) imply that the
sequence {L(8:;(z), w)p(z|w)} converges uniformly in w to L(ds, w)p(z|w)
which is continuous in w. By Lemma 3, this implies

(3) lim [ L(8(2), 0)p(z | w) d&(w) = [ L(ds, 0)p(z | @) dé(w).
Since L(8,(z), -)p(z| -) is continuous on £,
(4) lim [ L(8;(x), 0)p(z| @) di(w) = [ L(34(2), 0)p(z | ©) di(w).
(2), (3), and (4) yield

lim [[ L(8;,(2), 0)p(x | @) d&(w0) — [ L(8,(2), @)p(z | @) déi(w)] > 0.

It follows that the expression in brackets is positive for some j. This contradicts

the definition of &;,(x) and completes the proof of (i).
(ii) By (i), lim 8;, = &, a.e. p. Thus the bounded convergence theorem and

the continuity of L( -, -) imply
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lim R,(w) = lim [ L(5,(2), )p(2 | @) du(z)
= [ L(85(2), 0)p(z | ©) du(z) = Rey(w)

for each w in Q. Since L( -, -) is bounded, all risk functions are uniformly bounded
on Q. This with Lemma 1 and the compactness of @ implies that the convergence
is uniform on @ by Ascoli’s theorem [4].

(iii) This follows from (ii), the continuity of R, , and Lemma 3, since

lim r(&) = lim [ Ry,(w) déi(w)
= [ Riy() dio(w) = (k).

THEOREM 3. There exists a least favorable a priori distribution.

Proor. Since L(-, -) is bounded, r* = sup; r(¢) is finite, and there is a se-
quence {£;} of a prior: distributions such that lim r(£) = r*. By Helly’s weak
compactness theorem and the compactness of @, there is a subsequence {£;} of
{£} and an a priori distribution £* such that & — £*. By Theorem 2(iii)

r(g%) = limr(g) = r*
Hence £* is least favorable. It is not necessarily unique.

THEOREM 4. (i) An a priori distribution £* is least favorable if and only if
max, Res(w) = (£%).

(ii) If £* is least favorable, then §* is minimaz if and only if 8* is Bayes(t*).

Proor. By the compactness of @ and the continuity of B; for any £, max, Ry(w)
exists. Let £ be any a priors distribution. Then the “if”’ part of (i) follows from

r(£) = inf; [ Ry(w) di(w) £ [ Res(w) dé(w)
< max, Ru(w) = r(£%).
For the “only if”’ part of (i), use proof by contradiction. For any &,
max, Be(w) 2 [ By(w) di(w) = r(£).
Let £ be least favorable and assume that
max, R:(w) > r(£).

Above we saw that there is an »* in Q that maximizes R;. Let ¢ denote the
a priort distribution that puts probability one on w*. For0 < \ £ 1, the mixture
() = N(+) + (1 — N)E(-) is an a priors distribution on ©, and & — £ as
X — 0T. We show that there is a \* such that

(5) r(Ee) > r(£),
which contradicts that £ is least favorable and completes the proof. We prove
(6) limyo+ {[r(&) — r(E)I/N} >0

which implies (5) holds for some positive A*.
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r(&) = [ Ry(w)Ndi(w) + (1 — ) di(w)]; so
r(&) — (/N = {[ Ru(w) di(w) — [ Ry(w) dé(w)}
+ 27 { [ Ry (w) di(w) — r(8)} .

The second expression in braces is non-negative for 0 < X\ = 1, since r(§) =
inf; f Ri(w) di(w). & — £ as A — 0 implies, by Theorem 2(ii), limy.o+ Bz, = Ry
uniformly on Q. This and the continuity of R; imply that the first expression in
braces goes to {Re(w™) — 7(£)} > 0 as A\ — 07. Hence (6) is true, and the “only
if”” part of (i) is proved.

Use proof by contradiction for the “if” part of (ii). Assume that 8™ is not
minimax. Then there is a decision function é such that

@) max, Rs(w) < max, RBs(w).
Since 8* is Bayes(£*) and £* is least favorable, (i) implies
max, Rp(w) = (&%) = [ Rys(w) dE*(w).

Thus the support of £* consists only of w points that maximize Rs+ . This and
(7) imply [ Rs(w) d£*(w) < [ Rss(w) d&*(w). This contradicts that 6™ is Bayes
(¢*) and completes the proof.

Use proof by contradiction for the “only if”’ part of (ii). Assume that 8 is
not Bayes(¢*). Then r(£*) < f Rp(w) dE¥*(w) = max, Rse(w). Let 6 be
Bayes(£*). Then by (i) max, Rs+(w) = 7(£%) < max, Rs+(w). This contradicts
that 8 is minimax and completes the proof.

COROLLARY. £* is least favorable and b« is minimaz if Ry, is constant.

Proor. This follows from Theorem 4, since

max, Ry (w) = [ Rope(w) di*(w) = r(£").

TuEOREM 5. There exists a minimazx decision function; it is essentially unique

and admissible. The minimaz risk function R* is unique and max, R*(w) = r* =
supg 7(£).

In view of this result, we call #* the minimaz risk.

Proor. Existence and admissibility of a minimax decision function follow
from Theorems 1, 3, and 4(ii). To prove essential uniqueness, assume that 8"
and 6** are minimax. Let £* be a least favorable a priori distribution. Then, by
Theorem 4(ii), 6* and 8** are Bayes(£¥). Therefore, by Theorem 1, oF = o™
a.e. u. The uniqueness of the minimax risk function R* = R; follows from the
essential uniqueness of 8*. max, R*(w) = r* follows from Theorem 4.

3. The iterative method. The following convergence theorem provides an itera-
tive method of obtaining a minimax decision function for the statistical decision
problem of Section 2.

THEOREM 6. If &, &, - -+ 15 a sequence of a priori distributions on Q such that
the corresponding sequence r(%1), r(%2), - - - of Bayes risks converges to the minimaz
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risk r*, then the corresponding sequence R, , Ry, , -+ of Bayes risk functions con-
verges uniformly on Q to the unique minimax risk function R™.

Later we show how to construct such a sequence of a prior: distributions. An
immediate consequence of this theorem is the following corollary which is im-
plied by the uniform convergence of the sequence of risk functions.

COROLLARY. If &, &, - -+ 1s a sequence of a priori distributions on Q such that
the correspondmg sequence r(£1), r(ﬁg), -+ of Bayes risks converges to the minimax
risk ¥, then lim,. sup, R, (w) = r*.

The corollary says that we can get a decision function with maximum risk
arbitrarily close to the minimax risk »* if we take a Bayes decision function
far enough out in the sequence &, , 8z, , - - - . For example, if “close” means that
& satisfies max, Ry (w) — r* < e where e is given, then it is sufficient to terminate
the iteration with the first &, that satisfies max, Ry, (w) — r(&) = e

Proor oF THEOREM 6. By Theorem 5, the minimax risk function R* is unique.
We assume that the sequence {R;,} does not converge uniformly on @ to R*
and arrive at a contradiction. Then there is an € > 0 and a subsequence {£;} of
{£;} such that

(8) supa |[Ry;(0) — R*(w)] Z e

or all j. By Helly’s weak compactness theorem and the compactness of €,
{&;] has a subsequence {%} that converges weakly to an a priori distribution,
say, £*. By Theorem 2(iii), lim r(£&) = r(¢*), and, by hypothesis, lim r(&) = r*.
So 7(£*) = r* and £* is least favorable. Then, by Theorem 4(ii), 8+ is minimax,
and, by Theorem 5, R+ = R¥, the unique minimax risk function. But by Theorem
2(ii), lim Ry, = Res = R™ uniformly on Q. This contradicts (8) and completes
the proof.

The next theorem gives the convergence of the constructed sequence &, , o, ,

- of Bayes decision functions to the minimax decision function §* under a
stronger version of Assumption 6. The stronger assumption is satisfied (1) if
% is countable and u is counting measure or (2) if D is a convex set, L(-, w) is
strictly convex on D for each w in @, and p(- | -) > Oforallz in X and w in Q.

Because we judge a decision function solely by its risk function and seek a
decision function having a risk function with as small a maximum as possible,
the next theorem is of less interest than the corollary above.

TuroREM 7. If Assumption 6 is satisfied for every x in X and if &1, &, -+ - is a
sequence of a priori distributions on Q such that the corresponding sequence r(%1),
7“(232) -+« of Bayes risks converges to the minimaz risk r*, then the sequence o, 652 ,

- of Bayes decision functions converges to the unique minimaz decision function 8" .

Proor. The hypothesis that Assumption 6 be satisfied for each x in 9 implies
that the results of Section 2 hold with “a.e. u” replaced by ‘“for each z in o¢.”
Use proof by contradiction. Assume that there is an z in & such that {6;,(x)} does
not converge to (), which is unique since §* is Bayes relative to any least
favorable distribution. Then there is a subsequence {j} of {7} and an ¢ > 0
such that
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(9) 6g;(z) — 8%(z)| 2 e> 0

for every j.

By Helly’s weak compactness theorem and the compactness of @, there is a
subsequence {k} of {;} and an a priori distribution ¢* such that & — £*. By the
reasoning used in the proof of Theorem 6, £* is least favorable and d;+ is minimax.
Hence &+ = 8*. By Theorem 2(i)

lim 8;,(z) = ope(z) = 8™(z).

This contradicts (9) and completes the proof.

We now give an iterative method of constructing a sequence of a prior: dis-
tributions satisfying the hypothesis of Theorems 6 and 7 that the corresponding
sequence of Bayes risks converges to the minimax risk 7*. We first show that we
can construct a sequence & , &, - - - of @ priors distributions such that correspond-
ing sequence of Bayes risks is strictly increasing r(&) < r(%) < --- . Since the
sequence of Bayes risks is bounded above by r* = sup; 7(£), it converges to a
number less than or equal to 7*. We then show that, under the conditions of
Theorem 8, the sequence of Bayes risks does indeed converge to ™.

To start the iteration we choose an arbitrary initial a prior: distribution & .
An initial distribution that is in some sense close to a least favorable distribu-
tion should speed the convergence of the iteration.

We now present the general iterative step. Let & denote the distribution ob-
tained in the last iteration. Theorem 4(1) is used to determine if & is least favor-
able. Suppose & is not least favorable, for if it were least favorable, the iteration
is terminated. To simplify notation, denote the corresponding Bayes decision
function by &, its risk function by Ry, and the Bayes risk by r . From & we
construct a parametrized a priore distribution &(N\, -), 0 = N = 1, with corre-
sponding Bayes decision function §i(\, -), risk function Ri(}, :), and Bayes
risk 7,(\). By Lemma 4 thereis a A, , 0 < Ny = 1, such that r, < re(Mg). &(Ns, +)
is then relabeled as £41( ), and we have r, < 7441 as desired. Also, then &41(-)
= 6(M, +) and Rpqa(+) = Re(Ne, +)-

We now construct (N, - ). Let { by any a priors distribution on € that satisfies

(10) [ Ri(w) dtw(w) > 1.

Such a {, must exist when & is not least favorable. One such ¢ puts probability
one on w’ in Q such that Rk(w') > 7, . If such an o’ did not exist, then Ry(w)= 1
for all w in @, and, by Theorem 4(1), this implies & is least favorable, contradict-
ing that & is not least favorable.

For the moment, regard an a prior: distribution &, as a strategy played against
the statistician by antagonistic Nature, whose payoff is the Bayes risk 7, . Since
| Ri(w) d¢i(w) > m, Nature should gain a higher Bayes risk by playing ¢ in
addition to & . That is, Nature should do better by playing a mixture of {; and
& . For 0 < N\ = 1, define the a prior: distribution

&N, 0) = Naw(-) + (1 = N&(+)
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which is a mixture of { and & . As X — 0", &(\, ) = &( - ). As mentioned before,
for the mixture £&(, - ), we denote the corresponding Bayes decision function by
(N, +) and its risk function by Ri(), -). The corresponding Bayes risk is

re(N) = ka()\, w) d&(\, @)
= N Ru(\, @) dia(e) + (1 =) [ R\, o) di(w).

We now show that there is a mixture with Bayes risk higher than r .
Lemma 4. There is a N, 0 < N = 1, such that 1, < 1(M\e).
Proor. This lemma follows from

limaaot [(7(N) — 1)/N] > 0

which is proved in the same manner as the corresponding inequality (6) in the
proof of Theorem 4(i).

The following well-known result aids in a numerical search for a A, that satisfies
7o(Me) > 75 . Also, it aids in a numerical search for a A\, that satisfies condition
(2) of Theorem 8.

LemMaA 5. Let £\, -) = N(+) + (1 — N)&(-), 0 < N £ 1, be a mixture of
any two a priori distributions ¢ and & Then the corresponding Bayes risk r(\) is a
continuous concave function for 0 < N < 1.

Proor. It is well known that, under assumptions weaker than the ones here,
7(\) is concave for 0 < N < 1, which implies that 7(\) is continuous for0 < \ < 1.
Continuity at the end-points 0 and 1 follows from Theorem 2(iii).

We now prove a theorem giving conditions that guarantee that the sequence of
Bayes risks of the iteratively constructed a prior: distributions converges to the
minimax risk. If one of the & is found least favorable by Theorem 4(i), then the
iteration is terminated and is trivially convergent. So we need to consider only
the case with no & least favorable fork = 1,2, --- .

THEOREM 8. At the kth stage of tteration (k = 1, 2, ---), if & is not least
favorable and

(1) the chosen distribution { satisfies

[ Ri(w) dti(w) — m = a(max, Ri(w) — )

where o is any fixed number satisfying 0 < o < 1 and
(2) the chosen Ny satisfies

(re(Ne) — 716)/(maxoaac17s(N) — 1) = 8

where B is any fived number satisfying 0 < 8 < 1, then lim r, = r*.

Condition (1) requires only that the chosen distribution {; put its probability
on those w in @ that come close to maximizing R, . The « and 8 can be chosen
arbitrarily, but are fixed throughout the iteration. By Lemma 5, maxo<x <1 7%(\)
exists, and, by Lemma 4, the denominator of condition (2) is positive. Condition
(2) requires that, for each k, the increase in the Bayes risk (r:(\z) — %) achieved
with the chosen \; be at least a fraction 8 of the maximum possible increase
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(maxo<a<1 76(N) — 1%). Lemma 6 provides a means of checking whether condi-
tion (2) is satisfied.

Proor. A priori distributions {5 satisfying condition (1) exist; for example,
one such { puts probability one on an « that maximizes Rj. Since
max, Ry(w) > 71, condition (1) implies that ¢ satisfies (10) and can be used
to iterate on & . By Lemma 4, the constructed sequence & , & , - - - has a strictly
increasing sequence of Bayes risks 71 < 72 < - - - bounded above by r* = sup; 7(£).
Thus the sequence of Bayes risks has a limit that is less than or equal to r*.
We assume that lim 7, = 7o < r* and derive a contradiction to condition (2).

By Helly’s weak compactness theorem and the compactness of Q, there is a
subsequence {j} of {k} and a priori distributions ¢ and % such that {; — &
and ¢ — & . By Theorem 2(iii),

(k) =limr; =1 < r%.

Thus & is not least favorable and the iteration can be used on it. We use o
to iterate on & ; so we must show that {o satisfies (10). By Theorem 2(ii),
lim R; = R, uniformly on @ where Ry, is continuous by Lemma 1. Lemma 3
and condition (1) imply

J Rey(w) dgo(w) = 1o

lim (f Ry(w) dii(w) = 1)
> o(lim inf max, Rj(w) — 7o) = a(r® — 1) > 0

since max, Rj(w) = r*,7 = 1,2, --- . Hence {, satisfies (10).

By Lemma 4, there is a mixture Ao of ¢, and & such that ro(Ne) > 7. Let
e = (ro(h) — 70) > 0.8ince &(No, +) = Mofi(+) + (1 — N)&(+) = &N, +),
Theorem 2(iii) implies that lim r;(N) = 7o(No). Thus there is a J such that
[ro(Mo) — 7i(No)| < %€ for all j > J. This implies that (r;(No) — 7o) > %e for all
j > J.limr; = r, implies there is a J' such that (ry — r;) < B forallj > J'.
Then for all j > max (J, J'),

(ri(\;) — r3)/(maxosa<17i(N) — 15) = (10 — 15)/(1i(No) — 710) < B.

This contradicts condition (2) and completes the proof.

The following example of the iterative method was chosen for its computa-
tional simplicity. The result is well known. [1], Section 11.2, contains the results
used in the example to obtain Bayes estimators.

ExampLE. Let X be binomial with one observation and parameter w, that is,
p(z]w) = o*(1 —w)'™, £ =0, 1. We use the iterative method to calculate the
minimax estimator for w with squared error loss L(d, ) = (d — w)’. Here @ = D
= [0, 1]. Assumption 6 is not satisfied here for a priors distributions that put
probability 1 on 0 or on 1. More generally, for binomial problems allowing more
than one observation, Assumption 6 is not satisfied for a priors distributions
that put probability = on 0 and 1 — 7 on 1. However, it is proved later that, under
Assumption 7 which is satisfied here, the iterative method works.

Because of the symmetry of the problem, we work only with a prior: distribu-
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tions that are symmetric about w = 4. Let the distribution that puts probability
lonw = %bet .Thendy(z) = i forz = 0and 1, Ri(w) = (0 — %)% andr = 0.
R; has maxima at 0 and 1. Let the distribution that puts probability % on 0 and
on 1 be {1 . Then £(X, - ) puts probabilities 37, 1 — N\, 3\ on 0, 1, 1, respectively,
0 = )\ = 1. The corresponding Bayes estimator is

(N z) = 31 —N) for
=314 for =

0

Its risk function is
R\ 0) = B(1+N) — ofo + B(1 =) — of(1 = 0)
and_Bayes risk is
n(\) = [ Ri(\, o) daa(N, @) = IN(1 = ).

This is maximized by M = 2. Then & = #(\1, -) puts probabilities 4, 3,  on
on 0, 1, 1, respectively. Also,

(z) = (M, z) = % forx =0
=3 forx = 1,
Rz(w) = Rl()\l , w) = -llg, and r, = 113'.

By the Corollary of Theorem 4, §; is the minimax estimator. The iterative method
converged in one step here because of a fortuitous choice of £ and because the
chosen mixture A\; maximized ().

In the example, an explicit expression for r,(\) was obtained and a \ satisfying
condition (2) of Theorem 8 was found easily. However, for many problems,
rw(\) does not have a manageable explicit expression and a \ satisfying condi-
tion (2) must be found by trial and error computation. The Bayes risk must be
calculated for different values of A until a X is found that satisfies condition (2).
The concavity of rx()\) is used in the obvious way to aid in the search for such
a N\. If B is an upper bound for maxo<a<i 7:(\) and if r(\') is calculated
and satisfies

(n(\) — 1) /(B — 1) 2 B,

then N clearly satisfies condition (2). Lemma 6 provides such an upper bound.
LemMA 6. Let 7(\) be a continuous, concave function for 0 = N = 1. If r(b) =
r(a) and r(b) = r(c) where0 = a <b < c = 1, then

(11) maxemagir(N) = max {[r(b) + [(r(b) — r(a))/(b — a)l(c — b)],
[r(b) + [(r(b) — r(¢))/(b — ¢)](a — b)]}.

In applications, a, b, and ¢ correspond to three mixtures for which the Bayes
risks 7(a), 7(b), and r(¢) have been calculated.
Proor. Since r(\) is continuous on the compact set [0, 1], there exists a
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\* that maximizes 7(\). We first show there is such a \* satisfying a < \* < ¢.
Suppose ¢ < A* < 1. (The proof for 0 < \* < a is the same.) Clearly r(\*) =
7(b). Assume 7(\*) > r(b), then a weighted average of them gives

[(c = B)/(N* = D)Ir(N*) + [N = ©)/(N* = B)]r(B) > r(b) Z r(c).

This contradicts the concavity of 7(\), so #(\*) = 7(b). Thus we can choose
' =b.

Let \* satisfying @ < \* < ¢ maximize r()\). Suppose b < \* < ¢. (The proof
for @ < \* < b is the same.) Assume that (11) is not satisfied. Then

(12) r(\*) > {r(b) 4 [(r(b) — r(a))/(b — a)](c — D)}.
Here ¢ — b = \* — b, and, by hypothesis, (r(b) — r(a))/(b — a) = 0. So
[(r(d) — 7(a))/(b — @)(¢c — b) = [(r(D) = r(a))/(b — a)](\* — D).
Substitute this in (12) to get
r(N) > r(b) + [(r(b) = 7(a))/(b — a)](\* —b)
= [(\* = a)/(b = &)Ir(b) — [(\* — b)/(b — a)Ir(a)
or, rewritten,
[(b = a)/O* = a)r(\*) + [(\* = B)/(\* — a)]r(a) > r(b).

This contradicts the concavity of r(\) and completes the proof.

In the example above, Assumption 6 is not satisfied by all of the a prior: dis-
tributions. Given below is an additional assumption, satisfied in the example,
that guarantees that the iterative method works there. The assumption guar-
antees that the a priors distributions that do not satisfy Assumption 6 do not
appear in the iteratively constructed sequence and so cause no difficulties.
This works for binomial, multinomial, and Poisson problems.

AssumptioN 7. For any a prior: distribution ¢ in the class Z of a prior: dis-
tributions not satisfying Assumption 6, 7(¢) = 0, whereas r* = sup; 7(£) > 0.

The results of Sections 2 and 3 hold if all of the a prior: distributionsappearing
in the results are restricted to the class & — Z of a prior: distributions satisfying
Assumption 6. Thus it is necessary to insure that the a priori distributions {£}
and {&(\, - )} appearing in the iteration are in the class & — Z and that the limit
of any weakly convergent subsequence of {£} is in & — Z. We assume that & is
chosen so that r, > 0. This and the concavity of r1(\), which does not depend on
Assumption 6, imply that ri(A\) > 0, which implies &(), -) is in E — Z for
0 = X\ < 1. In particular, s = 7(M) > 0 and &(-) = &(\, ) isin E — Z.
Hence by induction, the a priors distributions {&} and {&(X, )} areallin & — Z.
It remains only to show:

Lemuma 7. Under Assumption 7, if {£:} is a sequence of a priori distributions in
E — Z such that im r(&;) > 0, then the limat of any weakly convergent subsequence 1s
mE — Z.
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Proor. Let {£} be a weakly convergent subsequence of {£} with limit
& . Assume that & is in Z. By Assumption 7, the Bayes risk satisfies
f Ry (w) déo(w) = 0. Since Ry, is continuous, £; — & implies lim f Rey(w) dti(w)
= [ R¢y(w) dto(w) = 0. Then

0 < limsup; [ Re,(w) dii(w) < limsup; [ Ry(w) dii(w) = 0.

This contradicts the hypothesis lim r(£;) > 0.

The following example shows that Lemma 7 need not hold if Assumption 7 is
not satisfied. It is on binomial estimation with absolute error loss.

ExampLE. Let X be binomial with one observation and parameter w; that is,
p(z]w) = (1 — )™, z = 0, 1. Use absolute error loss L(d, w) = |d — o].
Here @ = D = [0, 1]. General results for this loss function are given in [1],
Section 11.2. The sequence £(0) = £(1) = (1 + (—%)")/4 and £(}) =
(1 — (=H)"/2,2= 1,2, ---, of a priort distributions on the points 0, %, 1 has
the limit distribution {(0) = ¢(1) = %+ and (%) = %. Each &; satisfies Assump-
tion 6, but ¢ does not. Also, { does not satisfy Assumption 7 since r({) = 3 > 0.
Moreover, ¢ is least favorable and

z) = z=0

-

rz=1

Bo B
-

is Bayes ({), though not unique, and minimax. The unique Bayes(£;) estimator
is

8:(0) =1 —106,1) =0 for ¢ even

=1 for 7 odd.

The corresponding risk function and Bayes risk are
Ri(w) = 2w(1l — w) for ¢ even
= |w — & for 7 odd,
(&) = (1 = (3))/4.
Thus £ — ¢ in Z and lim r(&;) = r(¢) = $ > 0, but lim §; and lim R; do not exist.
Thus Lemma 7 and results of Section 2 need not hold when Assumption 7 is not
satisfied.
The iterative method of Section 3 has been extended to obtain minimax
truncated sequential procedures for certain sequential decision problems with a

finite sequence of independent identically distributed chance variables and con-
stant cost per observation.

Acknowledgment. The author expresses his sincere appreciation for the guid-
ance of Professor Colin R. Blyth, who helped formulate and initiate this work,
and of Professor Robert A. Wijsman, who carefully directed the major portion
of it. The author takes great pleasure in acknowledging their considerable con-
tribution to this work. The author thanks the referee for kindly suggesting the



MINIMAX SOLUTION BY ITERATION 1657

present version of condition (1) of Theorem 8 which is more satisfying than the
author’s.

REFERENCES

[1] BracrwELL, D. and GirsHICK, M. A. (1954). Theory of Games and Statistical Decisions.
Wiley, New York.

[2] Grosr, M. N, (1964). Uniform approximation of minimax point estimates. Ann. Math.
Statist. 35 1031-1047.

[3] LeaMaNN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

[4] RoypEN, H. L. (1963). Real Analysis. Macmillan, New York.

[5] WaLp, A. (1945). Statistical decision functions which minimize the maximum risk.
Ann. Math. 16 265-280.

[6] WaLp, A. (1950). Statistical Decision Functions. Wiley, New York.



