TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF
DISTRIBUTIONS BASED ON FAILURE RATE
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1. Introduction. A fundamental problem in statistical reliability theory and
life testing is to obtain lower tolerance limits as a function of sample data,
say X = (X1, Xa, ---, X,). That is, if X denotes the time to failure of an
item with distribution F, then we seek a function L(X) such that

Pl —FILX)]2Z1—g 21— a

We call 1 — ¢ the population coverage for the interval [L(X), ©]and 1 — «
the confidence coefficient. Also, we want U(X) such that P{F[U(X)] = ¢} =
1 — a. Related problems are those of obtaining confidence limits on moments
and percentiles.

Parametric tolerance limits based on the normal and exponential distributions
are well known [8], [9], [14]. Goodman and Madansky [10] examine various
criteria for goodness of tolerance intervals and certain optimum properties of
the usual exponential tolerance limits are demonstrated. Recently, a great deal
of effort has been devoted to obtaining various confidence limits for the Weibull
distribution. Dubey [6] obtains asymptotic confidence limits on 1 — F(T') and
the failure rate for the class of Weibull distributions with nondecreasing failure
rate. He also studies the properties of various estimators for Weibull parameters,
[7]. Johns and Liberman [12] present a method for obtaining exact lower con-
fidence limits for 1 — F(T) when F is the Weibull distribution with both scale
and shape parameters unknown. Unlike Dubey, they do not require that the
Weibull distribution in question have a nondecreasing failure rate. These con-
fidence limits are obtained both for the censored and noncensored cases and
are asymptotically efficient.

There exist distribution-free tolerance limits, [13], based on say, the kth order
statistic X} for certain values of ¢, o, k and sample size N. However, they have
one unfortunate disadvantage. For given «, ¢, k there is a minimum sample size
N(e, q, k) such that

Pl —FXy)21l—¢qg 21—«

is true only if N = N(e, g, k). Hanson and Koopmans [11] obtain upper tol-
erance limits for the class of distributions with increasing hazard rate and lower
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tolerance limits for the class of distributions for which log F is concave. They do
not assume non-negative random variables as we do.

Assuming that the sample data arise from a distribution with monotone
failure rate (either nondecreasing or nonincreasing and F(0~) = 0) or with
monotone failure rate average, we obtain conservative confidence limits for
most reliability parameters of interest. (See [2] Chapter 2 and Appendix 2 for a
discussion of such distributions and a test for monotone failure rate.) These
confidence limits are, in part, derived as in the case of the exponential distribu-
tion. In many cases, these are optimum confidence limits when the failure dis-
tribution is actually exponential [10]. They also have the advantage that they
are convenient to compute and are not based on a strong, nonverifiable, para-
metric assumption.

It is important to note that the conservative tolerance limits we obtain are of
greatest value when the sample size is small enough so that the distribution-
free tolerance limits do not exist. On the other hand, for very large sample size,
the distribution-free tolerance limit is close to the percentile providing the
coverage desired, whereas the conservative tolerance limit we obtain is, in
general, not. A study is under way comparing the distribution-free tolerance
limits, the Hanson-Koopmans tolerance limits, and our conservative tolerance
limits for various underlying distributions and sample sizes.

Preliminaries. Throughout this paper we use the following notation and
assumptions. Let 0 = X; £ X, =-.- =2 X, (0= Y, =Y, =.--27,)
denote an ordered sample from a distribution F(G) and define X, = Y, = 0.
We assume that F is continuous, F(0) = G(0) = O and let G(z) =1 — ¢ *
for x = 0. We say that a distribution F with density f is an increasing failure
rate (IFR) distribution if its failure rate 7(¢) = f(t)/[1 — F(¢)] is increasing.
It is easy to verify that if F is IFR, G'F(t) = —In [l — F(¢)] is convex where
finite. This motivates the more general definition: We say that F is IFR if
—In [1 — F(%)] is convex where finite. Similarly, F is a decreasing failure rate
(DFR) distribution if G 'F(t) is concave on [0, « ). Barlow and Proschan [3],
[4] obtain inequalities for expected values of statistics based on the exponential
assumption when in fact the true distribution has a monotone failure rate.

We will also be interested in a considerably weaker restriction on F. If F has
a density f and failure rate r(x) such that t—lfé r(z) dz is increasing (decreasing)
in ¢, we say that F has an increasing (decreasing) failure rate average. We write
F is IFRA (DFRA). More generally, F is IFRA (DFRA) if and only
if @'F(z)/x = —In[l — F(z)]/x is increasing where finite (decreasing on
[0, «)). See [5] for additional properties of this class. If F is IFR (DFR) and
F(0) = 0, then it follows that F is IFRA (DFRA).

Perhaps a simple example will serve to motivate the IFRA class of distribu-
tions. Let

F(z) = 0,
=(1l—-e¢(1—-€¢"), =

8
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where k > 1. Then it is easy to check that F' is IFRA but not IFR. This is the
life distribution of a structure composed of two substructures in parallel, the
first having k£ components in series, the second consisting of a single component,
with component life lengths independently distributed according to the unit
exponential distribution. Any ‘“reasonable” structure built from components
having exponential or IFR failure distributions will have an IFRA failure dis-
tribution (ecf. [5]).

We say X; is stochastically smaller than X, (written X; <. X.) if
Fi(z) = Fi(z) for all z, where F; is the distribution of X; and F, is the distri-
bution of X;. We say X; is stochastically equal to X, (written X; =4 X,) if
X1 and X, have the same distribution.

2. Lower confidence limits. Let
bon(X) = 21 (n — i+ 1) Y(Xs — Xia),

let xi—a(2r) denote the (1 — a) 100 per cent point of a chi-square distribution
with 2r degrees of freedom, and let By o, = —2rIn (1 — q)/xa(2r). If

L(X) = Bl—a,q,rér,n(X),
then
Pefll — QL] z1—¢ =1—a.

See [9] for this result and tables. Also define Ci_a g, = min (Bi_a,q,,r/7).
Turorem 2.1. If F s IFR, F(0) = 0, F(&,) = q, then

(2.1) Pe{l — FlCi_agrbrnl 21 — g} 21 — q,
or equivalently,
(2'2) PF‘{EQ ; Cl—a,q,'rér.n} % 1 - .

Proor. Since (2.1) and (2.2) are equivalent, we need only show (2.1). Note
that 21 aiXs = 2.1 Ai(X: — Xiy) where A; = D _j=; a;, as in [3]. By Theorem
4.2 of [3],

FIO 1 Au(X: — Xia)] S G2 1 A(Y: — Yiy)]

when0 < A; < 1fori=1,2, ---,r.ChoosingA; = —2In (1 — ¢)(n — i+ 1)/
xi—a(2r), we have

F[—21n (1 — ¢)(xi-a(2r)) 7 220 (0 — & + 1)(Xi — Xi)]
S G[-2 10 (1 — ) (xd—a(2r)) 7 200 (0 — ¢ + 1)(¥i — Yi)]
when —2n In (1 — ¢)/xi—(2r) £ 1. It follows that in this case
Pe{l = FlBrwgbrnl 21— g 21— a
If —2nln (1 — ¢)/xi-a(2r) > 1, thenlet A; = (n — ¢ + 1)/n so that
FIn' o5 (n — 4 + 1)(Xs — Xi)] S G720 (0 — ¢ 4+ 1)(Yi — Yia)l.
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Also
Pofl — G ' 2 i (n— i+ 1)(YVi— Yiu)]Z 1 — g}
ZPell —GIL(Y)]Z21—-¢g=1—a

so that (2.1) follows. ||

COROLLARY 2.2. If FisIFR, 1 —a =1 — ¢, and1 — q = ¢ "', then

Pe{l — F[Bivgbrn]l 21— ¢ 21— a.
Proor. By Theorem 2.1 we need only show
Xi-o(2r)/2r Z —(n/r) In (1 — g).

Let H denote the chi-square distribution with 2r degrees of freedom. Since H
is IFR, H(2r) < 1 — ¢ . This implies xi-.(2r) = 2r, ie., xi-a(2r)/2r = 1
when1l —a > 1 — ¢ Sincel — ¢ = ¢ " then —(n/r) In (1 — ¢) £ 1.
The result follows.||

Theorem 2.1 can be partially extended to IFRA distributions by using in-

equalities proved in [3].
TuaroreM 2.3. If F is IFRA, F(0) = 0 and F(&,) = q, then

Pp{]. - F[Cl_a,q,:[Xﬂ = 1 — q} = 1 — a,

-

or equivalently,
Peltg = Crogg i Xy} =21 — a.

Proor. Use Theorem 3.2 of [3] as in the proof of Theorem 2.1 above.||
TaeorEM 2.4. If F is IFR and 6 = [§ x dF(z), then

Pef0 = [1 — exp (—xi-a(2r)/20)]12r/X1-a(2r)10r} Z 1 — a.
Proor. We use the bound
F(t;0) = b(¢;60) =0, i<
=1—¢", tz90

where w depends on ¢ and satisfies [ ¢ “*dx = 6 (see [2], p. 28). By Theorem
4.2 of [3],

G[ZI AV — Yi)] 2 FID 1 Ad( X — Xin); 0] 2 b[Z{ Ai(Xi — Xia); 0]

fo<Ad; = 1fori=1,2, .-, r. Choose k;_, so that
(2.3) PG T A(Y:i— Yi)l S ko =1 — a.
Then

Pr{b[ZI A‘Ii(Xi - Xi—l); 9] = kl—a} 21— a
Hence since fort > 6, b(t;0) = 1 — ¢ ** (where w(8) satisfies (1 — ¢~ **)/w = 0,
Pelw(0) £ —In (1 — ky_o)/ 2 1 As(Xi — Xia)} 2 1 — a.
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Since w(0) is decreasing in 6, using the condition just above governing w(9),
we find

Pel0 = —Fad i As(Xi — Xi))/In (1 — b1a)} 21 — a.
Now choose A; = ¢(n — ¢ + 1) where 0 < ¢ £ 1/n. Hence (2.3) becomes
Po{l —exp[—c2i(n—i+1)(Yi—Yin)] Shd =1—¢
which implies
—2¢7'In (1 — ki—a) = xi—a(2r),
or
Fi_a = 1 — exp [—exi—o(2r)/2].
Therefore,
Pp{6 2 [1 — exp (—cxi-a(2r)/2)12r0rn/X1-a(2r)} 2 1 — c.
To maximize the bound subject to ¢ < 1/n, set ¢ = 1/n.||
3. Upper confidence limits. It will be convenient to let
Char=max (Bag,, r(n —r -+ 1)™).
TrEOREM 3.1. If F is IFRA, F(0) = 0, and F(&,) = g, then
(3.1) PelFICooibrnl 2 ¢ 2 1 — q,
or equivalently,
(3.2) Pelt, < Chobon) 21 — a

PROOF Since (3.1) and (3.2) are equivalent, we need only show (3.1). Let
= D%~ a; as before. By Theorem 3.4 of [3],

FIDUIAdX: — X)) 20 Q21 Ad(Y: — Vi)l

when a; = 0and A; = 1fors = 1,2, -+, r. Hence
F{—2[ln (1 — ¢)/xX2)]1 221 (n — i + 1)(Xi — Xia)}
2 G{—20n (1 — @)/ (212 (n — i + 1)(Yi — Yia)}

when —21In (1 — ¢)(n — r + 1)/x2(2r) = 1. It follows that in this case,
Pe{F[Bagsbrnl Z2 ¢ 21— a.
—2(n —r+1)In (1 — ¢)/x(2r) < 1, then
Po{Gl(n —r+ )7 21 (n — i+ 1)(Yi = Vi)l 2 g

= Po{G[—2In (1 — @) (xa"(2r) ' i (n — i+ 1)(YVi— Vi)l 2 g =1 —a
and (3.1) follows.||

CorOLLARY 3.2. If F 4s IFRA, 1 — «a =2 1 — ¢, and ¢ = 1 —
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exp {—r/(n — r + 1)}, then
Pr{F[Bagibrnl 2 ¢} 2 1 —
Proor. By Theorem 3.1 we need only show
Xa'(2r)/2r £ —[(n — r + 1)/r]In (1 — ).

Let H denote the chi-square distribution with 2r degrees of freedom. Since
In H(z) is concave, H(2r) = ¢ by Jensen’s inequality, which implies

xa(2r) = 2r, or x.(2r)/2r £ 1, when 1 — a > 1 — ¢’ Since

1= —[(n—7r+1)/r]In (1 — ¢) by hypothesis, the result follows.||
It will be convenient to let

Car = max (2r/xa(2r), r(n — r + 1)7).
Taeorem 3.3. If F is IFR and 6 = [7 x dF(x), then
Pp{0 = Capbrn} 21 — o
Proor. We use the bound
F(t;0) < B(t;0)=1—¢" t<9
=1, t= 6.
(See [2], p. 27.) By Theorem 3.4 of [3],
I AdY:i— Vi) S P11 Ad( X — Xia) ;3 8] S B[ 201 Au( X — Xi1); 6]

ifa;=20and A; = 1fori=1,2, ---,r where A; = D_j=;a;. Choose k, so
that

PG iA(Y: —Yia)] 2 ke =1 — a

Nowlet A; = ¢(n — i+ 1) fori=1,2, -+, rwherec = (n —r + 1)
Hence as in the proof of Theorem 2.4

—In (1 — ko) = cxa'(2r)/2
and
1 — ko = exp [—cxa(2r)/2].
Case 1. ke <1 — ¢ orexa’(2r)/2 < 1. Now
Pe{BlcY . i(n — i+ 1)(Xi— Xic1); 0] > ko} > 1 — o,
which implies
Plosc-In(1—k) ' 2hi(n—i+1)(Xi—Xea)} 21—«
or
Pi{8 < 2rb,q/xa'(2r)} 2 1 — o

We now choose ¢ as small as possible subject to ¢ = (n — r + 1)7%; i.e., choose
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¢ = (n —r+ 1)~ We do this so that the exponential upper confidence bound
will be valid for as many combinations of @ and r as possible.
Case 2. ko > 1 — ¢ or xo2(2r) = 2(n — r + 1). Now

PefBlr(n — 1+ 1) n; 0l Z ko) =1 — q,
which implies
P =r(n—r+1)"%.0 21— al

Confidence bounds on 6 assuming F IFRA can be similarly derived using the
probability bounds in [1].
CoroLLARY 34. If F 4s IFR, ¢ = [(xdF(z), 1 — a > 1 — &7,
andr = (n + 1)/2, then
Pr{0 < 200, n/x2(2r)} =1 — a.

Proor. By Theorem 3.3 we need only show x.'(2r) < 2(n — r + 1). As
in the proof of Corollary 3.2, x.'(2r)/2r < 1 when 1 — & > 1 — ¢ Since
(n—1r+1)/r 2 1whenr < (n + 1)/2, the result follows.||

4. Confidence limits for DFR distributions. Confidence limits for DFR and
DFRA distributions can also be obtained using the techniques of the previous

sections.
Let

C;k:ka.q.r = max (Bi—a,¢r,(n — 1+ 1)_1)'
TaeoreMm 4.1. If F is DFRA, then
Pe{l — FICao(r)brnl 21— ¢ 21 — a

Proor. The proof is similar to the proof of Theorem 3.1 where now F'G(z)/
is increasing in = 0. Hence

GIXIAdY: — Yi)] 2a FIZ T Ad(Xi — X))
when A; = 1 for ¢ = 1, 2,---, r by Theorem 3.4 of [3]. Letting

Ai= —2(n — i+ 1) In (1 — q)/x1-o(2r) we see that
Pe{l — F[—21In(1 — @)lid_o(@)]'2i(n — i+ 1)(Xi — Xe)] 2 1 — ¢}
=1l —a

when —2(n — r 4+ 1) In (1 — ¢)/xi—«(2r) = 1. The remainder of the proof is

obvious.||
The upper tolerance limits for DFR distributions are not as useful. Let

CE¥*(r) = min (Bayg,r, 1/n).
Tueorem 4.2. If F s DFR, then
PF{F[Ci:;*("')ér,n] 2 Q} =1—oa

We omit the proof since it is similar to previous proofs.
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Let
Car = 2r/xi-a(2r), i xio(2) < 2(n —r+1)
=r(n — 1+ 1)7 exp {1 — xi-o(2r)[2(n — r + )]},
if xi_a(2r) = 2(n —r 4+ 1).
TreoreM 4.3. If F is DFR and § = [§ z dF(z) < «, then
Pr{0 2 carbra) 21 — a.
Proor. We use the bound [2, p. 31]
F(1;60) = b(t;60) =1 — ¢, t
=1—0%", t=6
By Theorem 3.4 of [3] with G and F interchanged,
GO AY:i— Yi)] 2 FID 1 A Xi— Xia); 6] 2t D21 Al( X — Xia); 6]

when A; = 1fori=1,2,---,7.
Choose k;_,, so that

PolGID I A(Y; — Yi)] S ko =1 — 0.

Let Ai=c¢(n — i+ 1) fori = 1,2, --- ,rsothat¢ = (n — r + 1) Then
it follows that

IIA
ES

—2In (1 — kie) = cxXi-a(2r)

as in the proof of Theorem 2.4.
Casel. ky_o <1 — ¢ or xi_a(2r) < 2¢7". Now

Pell —exp[—cd' 2 i(n — i+ 1)(Xi— X)) Shia} 21— q
which implies
P60 = 206, n/x1—a(2r)} =1 — a.

We want to choose ¢ as small as possible subject to ¢ = (n — r + 1) Hence,
lebc=(n—r+1)"%
Case2. k1o =1 — € or xi—a(2r) = 2(n — r + 1). In this case,

Pe{l —(m—r4+1)e'0/2  (n—i+1)(Xi— Xia) Shia} 21— a,
which implies
P> (1 — ki ner(n —r +1)"00 21— a
The bound is obtained by substituting for 1 — k. .||
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