STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE
. STATE MARKOV CHAINS
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Let {X4} be an s state Markov process, generated by some s X s stochastic
matrix {a;;} with positive entries. Let {Y;} be a probabilistic function of { X}, viz:

0.1) PlY,=k|X,=5,Yer, Xea, -} = ba

where {b;} is an s X r matrix with positive entries and row sums = 1.

This paper deals with statistical estimation. We assume that the matrices
A = {a;j} and B = {bj} are unknown and we wish to recover them from an
observation {Yy, ---, Y4}.

We prove that the maximum likelihood estimate converges to the correct
value. We also show that the (x°) theory of power, estimation, and testing
applies. In passing we observe that there is a per character rate of distinguish-
ability between a correct and incorrect hypothesis. We thus carry over the
standard statistical estimation theory for independent sampling or Markov
chains to our case in which the processes are not generally Markov of any order.

A word about the proofs and their motivation. Let 6 and 6, be two hypotheses
as to the nature of a stochastic finite state process {Y:,— < ¢ < «}. Let
Py and Py, be the measure on the space of infinite sequences {Y; ,— o <t < «}
determined by 6 and 6, . If 6, is correct how does the random variable 7" log
{Po[Y1:-- Yi]/PolYy --- Y]} behave? By the Shannon, McMillan, Breiman

theorem
0.2) —T ' log Pe[Y1 -+ Y] —>a0. — H(60)

the entropy of the 6, process.
Let 6 and 6, be the hypothesis that the {Y;} process is a probabilistic function

of a Markov chain with associated matrices ((a.;(x))) and ((by(z))), z = 6
or 6, . We suppose a;;(z) > 0, b (x) > 0. Then

0.3) limz,e —T " log Po[Yy--+ Y] = —H(8)

exists a.e. Py, and H () < H(8,) if Py is not the same measure as Pg, . The
proof of this fact is strongly motivated by Khinchin’s proof of (0.2), [6]. Our
proof rests on the fact that limr,. Pe[Yo|Y_1 -++ Y_z] = f[0, Y] exists for
every Y = {Y; — o < ¢ < «}. We also show that f[f, Y] has three partial
derivatives with respect to the matrix coordinates a;;(0) and b (6). The con-
tinuity of H (6) together with a slightly stronger result than (0.3) gives us our
main theorems.
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1. Preliminaries. Our index ¢ ranges over Z the integers. Let 6 refer to an
arbitrary pair ({a:;(6)}, {b; (6)} ). All our Markov processes {X:¢ = ---, —2,
—1,0, 1, 2, --. are stationary; i.e., we take stationary distributions for X .
All the processes { Y} defined in (0.1) are then also stationary.

Rather than considering probabilistic functions { Y} of a Markov process { X ;}
it is convenient to reduce to (deterministic = lumping) functions of a Markov
process as follows. Define a new Markov process {X,} with state space 8’ =
{1, -+, s} X {1,.-+, r} and transition matrix a s, (i, ) = Gibi . Let
f:8 —{1, -+, r} be defined by f(s, k) = k. The process { Y/} where Y/ = f(X/)
is a deterministic function of the Markov process {X,} which is equivalent to
{Y}. In fact:

P(Yl =T, Y, = Toa, ", Y, = "'n)
= Zzlﬂ'z,“',in=1ai1bilrla’1112bizfz et G yiDir,
where a;, is the stationary probability that 21 = 4, , while,
P, =n,Y =mrn, ,Y =m)
= Z(izvkt)ff—l(rt)vl‘:lv"‘yn Qi doy) (g ko) * * ° Blin_1) (inkp)
= Z‘;l"‘in=1 Ay ,r)B(iq,r) (ig,re) *°° Blin_1,ra_1) (in,rs)
= D it @iybig @iyigbigry + Gip_ i Digry

The mapping $: ({a:;}, {ba} ) — {@(iy (v 4y} 18 & C* 1-1 mapping of thes(s — 1)
<+ s(r — 1) dimensional set of all s X s stochastic matrices X the set of all s X r
“stochastic” matrices onto an s(s — 1) + s(r — 1) dimensional subset of the
rs(rs — 1) dimensional set of all rs X rs stochastic matrices. We have just seen
that the set of all {Y;} processes which are probabilistic r valued functions of an
s state Markov process can be considered as a subset of the set of all r valued
processes which are deterministic functions of an rs state Markov process.

In general, for the mapping functionf: f(4, k) = k,¢ =1, --- ,8,k =1, --- ,r,
there will be an rs® — rs dimensional set of rs X rs stochastic matrices which
yield equivalent {Y processes (see [5]). However, if only rs X rs matrices
which are in the range of the above mapping 8 are allowed, since s(s — 1)
+s@r—1)+rd —rs<rs(rs —1)if s = r = 2, “in general” there will be a
unique such matrix yielding the given Y process.

In the following we will restrict our discussion to matrices {a.;}, {by} all of
whose entries are > 0. All the entries a(. x),(* 4y = @i are then also positive.
In particular the matrix {a i (i 4} yields an ergodic {X /} process. {Y§ = {Y/}
being a function of this ergodic process is then also ergodic.

In Section 2 we will consider the imbedding 8: {{a:j}, {bs}) — rs X rs matrix
space as having been made. The rs state Markov process will have state space S
and be referred to as { X} (without a prime), and the process {fX} denoted {Y;}.
Probabilities computed according to the matrix 8 in rs X rs space will be denoted
by Py . ©; will denote the set of matrices all of whose entries are 26 > 0.
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2. Lemmas. The proofs of this section are similar to [4], p. 173.

ForeachicZlet S; = Sand R; = R. Let 8 = iz Sand R® = J[i.z R.
wis a point in S” and ¥ () is the point in R* with coordinates {¥;(w) = fX;(w),
teZ}.

DzriniTioN. Let C, denote a cylinder set in R”, of the form {Y | Y,; = ky; ,
t;e T, t; = t} or a cylinder set in S of the form { XIX,, = ztj,t eT,t; = ).
We shall be considering random variables on B of the form Py[C:| X, = j,
Yi;(w),tje T] = W[Y (w)]. Define

M+[0’ C:, {Ytj(w) ‘ tie T}; d] = max; Py[C; | Xia =1, Ytj(“’): tieT]
M—[O, C/,, {Ytj(w) I 17K T}, d] = min; Po[Ct | Xiaq= ’L', Ytj(w), lje T]

We will sometimes abbreviate these respectively by M, and M.
LemMA 2.1. Py(Xep1 = j | Xe = 4, Yi;(w), tie T) > ps for some ps > 0 inde-
pendent of T, t, Y (v) and 6 ¢ @a , provided that if t + 1 e T, j e f (Vi1 (w)).
Proor. If t + 1 ¢ T let 5/, 7 be two members of ™ (V,ya(w)). If ¢ + 12 T,
let ;' and j” be any member of S. Then
PO[XH-I = j, | Xl = 7:7 Ytj("-’); ti £ T]
P X =3" | X: = 4, Yi(w), 8 e T
_ PlXun =7, Xe =4, Vi(w), t; £ T]
PG[XH—I = j”, Xt = 1‘, Yt,‘(@), t, & T]
_ PiXn =7,V (w),t;eT and t; 2t+ 1| X, =1]
PXia=7",Yy(w),tieT and 2t+1|X, = 1]

_ Do it @i PolYi;(@), ti e Tyt Z ¢ + 3| Xeva = jo]
2o Gigr Girgg Pal Y4y (w), 856 Tty Z ¢ + 3| Xeva = Jol

(where j, ranges over f~ (Y2 (w)) if t + 2 € T and over all S otherwise)

S maX; 1,55y (@G 0/ Qir@inse) ST
Therefore, if either ¢t + 1 g T,ort + 1 & T and f(j) = Yi41(w), then
PolXen =71 Xe=14Yy)teTI 2L+ (s — 1)/ = ps.

Lemma 2.2. MT16, Co, (Y, (@), tie T}, dl — M8, Ce, {Yi;(w), tie T}, d] <
0* " for some p < 1 independent of t, T, Y (), 0 € © and C, .

ProoF. Po[C; | Xia-1 = 4, Vi;(0), tie T] = Z,_l PiC:| X1 = J, Ve, (),
tie TIPoXa=j| Xoaa =1 YViw)tieT]- Min< (1 -— M)Md + uMaq
using Lemma 2.1. Similarly Mz = (1 — p)Md + uMt; thus Mgy — Mz <
(1 — 2u) (Ms" — My7). Since u > 0 we may take p = 1 — 2p.

CoroLLARY 2.3. |Po[C:|Vi(w), Yia(w) -+ Ya(w) — PoC:| Yi(w),
YVira(w) «++ Yo ()] < F’t_n_1 for any k.

ProoF. As in the proof of Lemma 1, M;—, = minje—1(r,wp PolCe | Yi(w) - -
Yor1(0), Xo =1 £ PolC¢ | Yi(w) - -+ Ya(w)] S maXjer-1ra@) PolC: | YVi(w) -«
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Vair(w), Xo = jl = M-, . Since Po[C; | Yi(w) -+ Yap(w)] is an average of
the Po[C; | Yi(w) -+ Yayi(w), Xn» = jl forj ef 1(Yn(w)), the corollary follows
from Lemma 2.

COROLLARY 2.4. |Po[Cy| Yi(w), Yica(w) <+ Ya(w)] — PolC;| Via(w) -
Ya(w)]] = o7

COROLLARY 2.5. lims—w Po[C, | Yi(®), Yia(w) -+ Yo(w)] = PolC: | Yi(w),
Yi1(w) - ] exists for all Y and is a continuous function of 8. Furthermore,

|PolC, | Yi(w), Yica(w) -+ 1 = PolCr | Yia(w) -+ 1| S p

Proor. The first statement follows from Corollary 2.3, the second from

Corollary 2.4.

COROLLARY 2.6. |PolCic1, Xiaa = J, Xeas = 1| Yiy(w), t; & T] —
PilCiat | Yiy(0), tie TPl X a1 = §, Xias = 1| Viy(@), tie T]| < P

Proor. The number in question is <| Po[Ci—1 | Xs—a-1 = J, Xt-a—2 = 1, Yi;(w),
tieT] — PolCima| Yyi(w), tieT]| which is <p*' by Lemma 2, since
PolCost | Xrmacr = Jy Xoacz = %, Ye;(@), tie T = PolCoa | X = J, Yiy(w),
t; e T] and Po[Ce | Yi,(w), t; & T]is an average of these latter quantities.

Complementary to the lemmas and corollaries we have proved is a set referring
to cylinder sets D, all of whose indices are less than or equal to . These state-
ments and proofs will be obvious to the reader. We will refer to such lemmas and

corollaries by putting primes in their lemma or corollary number.

r—k—1

3. Consistency of maximum likelihood estimators.

In this section we let © denote the space A X B where 4 is the space of s X s
stochastic matrices with positive entries and B is the space of # X s matrices
(b | 2xbix = 1,bs > 0}. We consider §, 6o & @5 = {00 |ai;(0) =6,bix(0) =
3,8 > 0}.

Introduce the following random variables on B”. Let Y = Y (w) & R”.

(1) ful6, Y1 = Pol¥o| You, Yoo, -+, Yorpl; 16, Y] = limysw fil6, Y] (see
Corollary 2.5).

@) gil6, Y1 = log fil6, Y1; g[6, Y] = limi.e gel6, Y1.

(3) H[6] = Eo,lgl6, -1l. Here expected value is taken with respect to P,
measure on R”.

(4) hn[oy Y] = n_l lOg PO[YI °c Yn]°

(5) Gr.6', Y] = supeescor.o gil6, Y1 S (6, €) is an open sphere about 6 of
radius e. gi.[6', Y] is measurable in Y because the sup over a dense countable
subset of S(8, ¢) = sup S0, ).

6) g6, Y1 = limise gr6, Y]. This limit exists because |gi[6, Y]
— g6, Y| = Cp*™" for all 6 ¢ ©; implies the same inequality with g, replacing
gi . 46, Y] is measurable in Y.

(7) Let K < ©5, 6 > 0 and K compact. 6"[Y, K| = (0eK|ha(h Y) =
maXex h, (6, Y)I.

(8) Mlbo, K] = {6 K| H(0) = H(6)}, 60 K. M[6o, K, ={06K|d(6,
Ml , K]) < ¢ where d is the Euclidean distance in 0.
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A necessary and sufficient condition for the existence of a consistent test to
distinguish between 6 and 6o is that Py L Ps, on R”. A necessary and sufficient
condition that Py L Ps, in our case is that H (0) < H (8,) and this is the condi-
tion which we find convenient for proving the consistency of the maximum

likelihood estimate.
TueoreEM 3.1. He < He, . Ho = Ho, < 0 and 6, define equivalent Y processes.

Proor.
Ho — Ho, = [1g{PolYo| Y1, -+ -1/Po[Yo| You, -1} dP[¥o, Yy, -]
< lg [{PelYo| Yo, -+ -1/Peyl¥o| Y_1, -+ -1} dPey[Yo, Y1, -+ -]
=lg [ [Pt {PolYo | Y1, -+ 1/Poy[Yo | Y1y -}
“Poo[Yo | Y1, -+ 1] dP[Y 1, - - -]

=lg [ 1dPs[Y-1, -] =0

by Jensen’s inequality. The inequality is strict unless Po[Yo|Y_1, ---1/
Po[Yo| Y1, --+] = 1 a.e. Py, . By stationarity this would imply

PO[YO;Y—I;'”;Y—llY—l—lj"']/Poo[Y(’;Y—l;"' )Y—-IIY—Z—I)"']:I

a.e. Py, ,

and by summation over all values of the coordinates Y3, -+, Y_; that
PO[YO) You,ooo, Y—kl Y—-l—17 "']/Poo[YO’ Y—I; R} Y—kl Y—l—17 "'] =1
a.e. 6 . By Corollary 2.5 we conclude Po[Yo, Y_1, - -+, Y_4] = Po,[Yo, V1, -+ -,
Y_,] for all cylinder sets; i.e., 6 and 6 define the same Y process.

By Theorem 3.1 and the heuristic discussion of Section 1 the surface
M6, K] = {0 ¢ K: Hy = Hj,} will “in general” contain the single point 6o .

TeEOREM 3.2. —n - 1g Po[Y1, -+, Yu] —ae. —H (0).

PROOF. ha(0, Y) = n ™ lg Po[Vy, -+, V] = w7t D gil6, T'Y] where
(TY)i = Yin.

|n™* Yon gil6, T*Y] — Tt Yk gle, T'Y
< 07t 2o |gule, TV — gl8, T*Y]| —0

everywhere because |gi[6, T*Y] — g[8, T*Y]| < Cp*" for every Y in R”. By the
ergodic theorem

n7t D i1 g6, TY] . Eoolglo, -1l = H(6).

THEOREM 3.3. 1" O i fu.dl8, T'Y] —ae. Eooldcl6, -11.

THEOREM 3.4. For almost all Y, 6,[Y, K] — M8, K]; i.e., for almost all Y for
all € > O there exists an N such that n > N implies 6,1Y, K] C M[6,, K, €.

Proor. We show that for each 6 in the complement of M(6., K, ], there
exists a sphere S (¢, \or) of radius \ about 8" such that A (6') = E, 16, -]) <
H (8). In fact if H(0) = H(6) — u, # > 0, and p"' < p/4 then |ga[0, Y] —
gle, Y]| < Cp™™ < u/4 for all 6 ¢ ©; and for all Y. g.[6, Y] depends only on n
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coordinates of Y. For each choice of these n coordinates by the continuity in 0
of ga[0, Y] we can choose a sphere about 6’ ag.[6, Y] varies by less than u/4 in this
sphere. Choose \¢ as the smallest of the radii obtained for the finitely many
choices of the n coordinates of Y. Then for all ¥ and 6& S(6', o), |gl6, Y]
- 9[0,; Y]I < Ig[07 Y] - gn[of Y]I + |gn[07 Y] - gn[oly Y]' + Ign[0,7 Y] - g[o"Y]l <
% 4. Thus g, 16/, Y] < g6, Y1+ S and H(6') < H(O') + $u < H(6).

Cover the complement of M[6,, K, €] which is compact, with finitely many
spheres S (6, , \:). For each of these finitely many ’s

SUPeseso; Ao Fnl0y Y] = SUpoesco; 2o w7t Y gle, TFY]
< 07t Dok Genlbi, T*Y] —a.. H(6:)

by Theorem 3.3. If sup H(9:) = H(6)) — @, a > 0 then for almost every Y,
maxg_uiog.x. bald, Y1 < H(6) — «/2 for all sufficiently large n while
SUPario &1 M8, Y1> H (80) — o/2 for all sufficiently large n; hence, 6"Y, K] C
M6, , K, € for all sufficiently large n.

4. Smoothness properties of H(6). Here © denotes the space of sr X sr
stochastic matrices with positive entries. The aim of this section is to show that
the function H (6) is differentiable with respect to the matrix coordinates a:;(6)
of 6. @5 = {0 0O:a.,;(0) = 6},06>0.

Let g«'® (6, Y) denote any dth order partial derivative of gx[0, Y] with respect
to the {a:;(6)} :

Lunuma 4.1. For all 6 £ ©; and all Y 9,16, Y] — g24[6, Y1| < aa(n) for d = 0,
1,2, 3 where D _n1aa(n) < o.

The proof is postponed until we show the consequences we want.

COROLLARY 4.2. lim, .. g ®[6, Y] = ¢%10, Y1 exists uniformly in 0 for all Y.

CoRROLLARY 4.3. HV[0] exists and limu-w b, P[0, Y] = H[6] uniformly in
fae Y.

Proor oF CoroLLARY 4.3. This follows from Lemma 4.1 and Corollary 4.2
by the line of reasoning of the proof of Theorem 3.2.

Proor oF LEmMA 4.1. Observe that

:;(3/8a,;) log Po[Yo, Yy -+ Y_nyil
= e PIX =, X = | Yoo Yol

(4.4) a,k,loaij (8°/8a4,19a.,;) log Po[Yo + -+ ¥ _n4i]
=D e PlX:=j, Xea =4, Xov =k, Xv
=1|Y0, Y Yol = 2tmnte PolX: = j, X
— | Yo+ Yoppal - PalXemk, Xoma = 1| Yo oo Yoppal.

A similar expression in terms of conditional probabilities holds for the third
partial derivatives. We prove the lemma for d = 2. The method carries over to
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the other cases. Let
Aty = PlX, =, Xea =4, Xo =k, Xoa=1|Yo, Y1+ Y_nii]
Biy = PlX; =5, Xea=4|Yo,Y 1+ Y_pii]
PoXy =k, Xpa=1|Yo, ++ Yyl
Civ =Pl Xe=§, Xen=04,Xe =k, Xeaa=10|Y,Y s Y_ni
Dfy =PlX:=j, Xen=4|Y1--+ Y_updl
PolXy =k, Xooy=1|Y_1--- Y_npil
In terms of this notation we have
010450 (8/0ar:1) (8/00:5)gn (0, Y) — (8/3ar:) (3/8a:;)gn-1(6, V)]

X (n) 0 -1 (n)
(4.5) = Zt t=—n42dt,tr — tt'=—m+ZBtt’ - tt'=—n+20t';'
(n) (n—l) n—1)
+ Zt t'=—n+ [ 2 t y=—n+ i,t Zt t'=—n+3Btt
(n—l) -1 (n—1
+ Zt t'=—n+3 tt' - t.t’——n+3Dt.';' )

We decompose the square — n + 2 < ¢, ¢ < 0 into three disjoint regions:
Ri={( 1)l —t]> n/a},
Re={(t )|t — ] = /4], ] < [n/2]},
Re={(t )1t — ] = /4, ] 2 [n/21).

The idea of the proof is to pair each positive summand of (4.5) with some
negative summand such that their difference is of order p™*. E.g., on R,
Aty — B v < p[n/“, on Ry, |Afy — A;‘,t_'l < Cp["m on Ry, |[Afy —
Crv| < p["’ﬂ by Corollaries 2.6, 2.3 and 2. 3’. In this manner we see that the
absolute value of (4.5) =<

Su, 4" = Bl + Lo, 14" — 4 + Xa, 14" - €
+ Tagers |0 = D'l + Tapwgalc” — €™
4 Yrtrzgs O — AT 4+ Do, |4 — BYTY
+ Xa, B = B + Xa, B — D"
+ Lz €7 = D" + Xaguwsa [D” — D7
+ Dnitez-nis D™ = B™ < oM - dr,

5. Parameterization and statistical applications of differentability of H(6).
Let K be a compact subset of some Euclideanspace R™ and let r be a continuous
1-1 map of K into the 6 space used in Section 3. In previous sections we have
used functions of the form W16, Y] where 6 ¢ ©. By a slight abuse of notation
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we write W[\, Y] for W[r(\), Y]. With this in mind we let M) = NeK|H®)
= H(\o)} wheref = 7(\o), M\, ] = (Ae K |d(\, M\ < ¢ whered is the
Euclidean metric in K and A,[Y] = Ae K | ha(\, Y) = maxyex R[N, Y1)

According to Theorem 3.4, for almost every Y sequence and for every ¢ > 0,
Aq[Y] © Mo, € for sufficiently large n.

Assume moreover that interior K is open in R™, that \o ¢ interior K and
reCy.Define M'\) = [\ eK|gradisH[\] = 0}. Then interior K N M\ C
M'[\o. Let AJTY] = (A e K | grada=shal\, Y] = 0}.

TasoreM 5.1. For almost all ¥, A, Y] — M "Ml

Proor. This is an easy consequence of Corollary 4.3. Theorem 5.1 gives a
practical method for obtaining M[\o]. We hope to investigate the nature of
M) M ‘o] in a future paper.

Let us assume that = ¢ C* and introduce the additional local assumption that
the matrix

oxe = (0w o)} = (8/0NudNs) ol (V)

is nonsingular. We are then able to prove

TaEOREM 5.2. There ewists a consistent solution of the maximum likelihood
equations.

Proor. The proof follows the route used in Billingsley [1] p. 11 using Corol-
laries 4.1, 4.2 and 4.3 and replacing Billingsley’s g. (e, Tott 5 00)y Guo (a5 Tet1 s
00) and guvw (xk y Th+1 00) by our ugk[)\o ) Tkn; uvgk[)\ﬂ ) Tkm, uvw[gk>\0 ) TkY]o

We will next prove a central limit theorem for the Y process which together
with the line of reasoning in [1], pp. 13-23, allow us to conclude the useful
statistical theorems for the ¥ process which are obtained in [1] for Markov
processes.

TueoreM 5.3. The random vector whose components are n 3 (9/9\,) log PYy
e o+ Y,llan, converges in law to 9 (0, o o))

Proor. We will apply the following theorem of [2].

TurorEM. Let 4y, Uz , - - - be random variables with moments of order 2 and

let 3o, 31, - - - be a non-decreasing sequence of Borel fields such that Efun | 3-1]
— 0 with probability 1,n = 1,2, -+ - . Suppose thatlita.. Y or Elus’ | Sd]
= @ with probability 1 where 8% is a non-negative constant. Then n? Z,:;luk
—e m(o’ ﬂz)

In order to show that the random vector w3 s uge Qo , T'Y) converges
in law to 9(0, o (Ae)) it suffices to show that for any set of t1, -+ , tm Of real
numbers the random scalar n > o w —e (0, 8’) where

U = Z:;l tvgk ()\0 ) TkY) and Bz = ,:,v=1tutvouv ()‘0)

by the standard Cramér-Wold result [3].

The cited theorem of [2] is applicable to the u; and the Borel fields 35 generated
by Y1, -++, Y as follows:

(i) Eta | 3a—1] = 0 because
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Z:;l toElugalMo , T7'Y] | 3l (Y)
= > it v, ((8/N)PAY s | Yoot o+ Yihoro/PaolYn | Yoot - -+ Yil)
PrlYn | Yoo --+ Y
= Dty 2or(8/N)PAY A | Yoy -+ Yihey = 0

since Dy, PA[Ys | Yoot -+ Yi] = 1. Now we show that

(ii) liMpow 7" D imBlu’ | Semt] = 62 = D _tutoous -

Observe that Elluge |, T%-1-.gilo, T 1| Secal = Eluogilho, T -1 | B
since

wgilho, TY] = wPr[Yi | Yt -+ Yi{Pr[Ye | YVies - - - VA |
—{uPal Y | Yier -+ Yi] oPao[Vie | Yier -+ - Yl
APAYe | Yia -+ YilPa[Ye | Yoy - -+ Yal} ™
and
> vilwoProlYe | Vit -+ Yil/Po[Yi | Vi1 -+ Yi)P[Yi | Yia oo+ Y4] = 0.
Hence, we need to prove that
(6.3) 1M 70 Dot D mrumt tutoBluogilho , T —1| Bia] = B2

(We have defined f[\, Y] = Pi[Yo | Y_1,Y 2 -+ ].) Define Gu.[A, Y] =
> vof, Y1 wgl, Y]. By the ergodic theorem

liMaw 7 S Guolho, TFY] = Eo[Guslho, 1]
= [ Xrowglho, YIPA[Yo | Yoy -+ Vo] dPy[Voy -+ - Y]
= [ wglho, Y1dP\[Yo, Yoy -+ Y] = EngluglAdl.
Then:
limpe 7 D i1 Eoglusgilho , T -1 | 5eal(¥)
= liMpsw 7" D2oi=1 2wy welilho, T'YIPIYy | Vi -+ 1]
= liMnao 0" Dopes Xovg uogelho, TYIP[Y | Vi -+ Vi, Yoo Vol
by Corollary 2.5,
= Lilpee 0 Dot Gulho, T*Y] = Eoylgusho, -1l = 0un(Mo).

We state the principal application of Theorem 5. Define L,(\, Y) = nH,()\, Y)
= log PAlY: -+~ Yul. y(n) = {wu(n)} = (n7}(8/0N.) log PalY:1 -+ Yal [aaro}-
LetI(n) be the random vector with components [,(n) = (A" — (No)u). (For
large n \" is a single point if we assume no other \ defines the same Y process as
No.) If u, and v, are random vectors u, ~ v, means P lim,(u, — v,) = 0.

TaEOREM. y(n) ~ o(N)U(n), U(n) ~ o (No)y(n), y(n) —e9U0, ¢ (\o)), (n)
—£90(0, (M), 2(La(A", ¥) — La(o, ¥)) ~ (e(No)l(n), U(n)) ~ (y(n),
a_l()\o)y(n)) and 2[Ln($‘”7 ') - Ln()‘o ’ ')] —e sz .
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