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1. Introduction and summary. Let H be a set and {T,,n = 1, 2, ---} a
sequence of transformations of H into itself. Let X; and {U,} be random elements
in H and generate the sequence {X,} by

Xn+1 = Tn(Xn) + Un .

Theorems giving conditions under which {X,} is ‘“stochastically attracted”
towards a given subset of H and will eventually be within or arbitrarily close to
this set in an appropriate sense, are called Dvoretzky stochastic approximation
theorems. The main results of this paper (Theorems 1, 2 and 3) are of this type.
They generalize the work of Dvoretzky [6] and Wolfowitz [12] for the case H
equal to the real line, of Derman and Sacks [4] for the case H a finite dimensional
Euclidian space and Schmetterer [11] for the case H a Hilbert space.

2. Preliminaries. We assume throughout this paper that H is a real separable
Hilbert space with inner product (-, -) and norm ||-||.

Let 3C be the o-field of subsets of H generated by the open sets. Let (2, @, P)
be a probability measure space; the elements of Q are generically denoted by w.
A random element X (or Y, Z, U, - --) in H is a measurable mapping of (Q, @)
into (H, 3¢). For the theory of such random elements we refer to [9], [5], [7]. We
state here a few facts needed below.

If X, Y are random elements and 4 a fixed element of H, then | X|, (X, Y),
(h, X) are real-valued random variables in the usual sense. Denoting by E the
expectation operator, if E || X|| < o, then EX is defined by the requirement
E(h, X) = (h, EX) for all h in H. Similarly, if ® is a sub-o-field of @, then the
conditional expectation of X given ®, denoted by E[X | ®], is defined by the re-
quirement E[(h, X)| ®] = (h, E[X | ®)]) a.s. (almost surely P), forall h in H. This
conditional expectation operator has the usual properties. If ¥ is measurable
with respect to ®, then it is true that E[(Y, X)| ®] = (Y, E[X | ®]) a.s. If ® is
induced by the random elements X, ---,X, then we will also write
EX| Xy, -, X, for E[X | ®).

The transformations 7', will be more general than indicated in Section 1. For
the purpose of formulating our conditions we will write H ™ H® for the n fold
and denumerable cartesian products of H with itself and H™ x @, H*” x Q for
the cartesian products of H™, H with Q respectively. In order to avoid un-

Received 8 February 1966.

1 Parts of this paper are taken from the author’s Ph.D.-dissertation (1963) at the Uni-
versity of Chicago. This research was supported in part by Research Grant No. NSF-
(21058 from the Division of Mathematical, Physical and Engineering Sciences of the Na-
tional Science Foundation.

1534

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

42

The Annals of Mathematical Statistics. MIKGRN

Www.jstor.org



ON DVORETZKY STOCHASTIC APPROXIMATION THEOREMS 1535

necessary repetition all transformations, functions, ete. to be introduced will be
assumed measurable with respect to the appropriate o-fields without this being
explicitly stated.

We denote by D° the complement of a set D in @ and by I, the indicator func-
tion of D. K1 , K;, - - - will denote fixed positive constants. The following lemmas
will be needed.

LEmMA 1. Let {b,}, {ca}, {da} be real sequences such that

(1) D> b, converges, Dbl < »
(2) =0 and Y ¢, = o
(3) doz20 and Y. d, < .

(a) If {&} is a sequence of non-negative numbers such that, for some integer no
and for allm = ng,

(4a) a1 = max [a, (1 + ba)én + dn — ci
where a > 0, then
(5) lim sup,.« & = a.
(b) If instead of (4a) {£.} satisfies
(4b) fnrn = max [a, (1 + bn)én + dal,

then we can still conclude that the sequence {&,} 7s bounded.
LeEMMA 2. Let {£,} be a sequence of non-negative numbers such that for all n large

enough

(6) b1 = (1 — n7%,) 8 + dn P

where d > 0 and ¢, — casn — «. Then

(7) £ = 0(n™"), if ¢>p>0,
(8) £ = 0(n " logn), i c=p>0,
(9) £ = 0(n™), if p>c>0,
asmn — o,

LemMa 3. Let (2, @, P) be a probability measure space, {V,} a sequence of real-
valued random variables and {®.} a sequence of sub-o-fields of @ such that

{Vi, -, Vaci} is measurable with respect to ®, for n > 1. Then, if
(10) D EV.)< »

and

(11) D E[V.|®. converges a.s.,

1t follows that
(12) > V. converges a.s.
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REMARKs. Lemma 1 is an extended version of a result in [4] and its proof is
quite similar. Lemma 2 is similar to results in [3]. Lemma 3 is a slight extension
of Theorem D, p. 387 of [8]. We will not prove these lemmas here.

3. Main results.
TaEOREM 1. For each integer n, let T, be a transformation of H™ x Q into itself.
Let 9 ¢ H. Let N be a (finite) integer-valued random variable on Q@ and suppose that

for each sequence {x.} in H and for weQe @ with P(Q) = 1, we have, for
n > N(w),

(13) ”Tn(ilh y "ty Tn,y w) - 0”2 = max [OL, (1 + Bn)“xﬂ - 0"2 - 'Yﬂ]

where

(1) « s a positive constant;
(ii) B s @ non-negative real-valued function on H™ x Q such that

(14) ﬂn(zly"')xnyw)éKl and Sﬁn(xly"',xn)w)<°°

for all sequence {x,} in H and for all w & Qo
(iil) 7, s a real-valued function on H™ x Q@ such that for all {x,} in H,

(15) Ya(Zry oot 5@, w) 20 3f n> N(w)

and if w & Qo , while, if

(16) Sups ||z.|| < «,

then

(17) Y vn(@, e, T, @) = @,

Let X, be an arbitrary random element tn H and let the sequence {X,} satisfy
(18) Xon(w) = Tu(Xy(w), +++, Xa(w), ®) + Un(w)
where {U,} is a sequence of random elements satisfying the conditions
(19) TE|U <

and

(20) 2 BU. | &l < o as.

where {®,} is an increasing sequence of sub-o-fields of @ having the properties that
the random elements {X1, -+ , Xn, To(X1), «++ , Ta(X1, -+, X.)} are measur-
able with respect to ®, forn = 2,3, - -+ and that

(21) [we@:n > N(w)]e®, .
Then
(22) lim SUPpaw [ Xn — 0] < @ aus.

Proor. We reduce the theorem to an a.s. pointwise application of Lemma 1. It
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involves no loss of generality to take § = 0. We abbreviate T,(Xi(w), -« - ,
Xa(w), @) to Tw(w) and drop the » where convenient. Define

(23) A, = [weQ: |Ta(w)| < al.

From (18), forn > N and on 4, ,

(24) IXnsal < o + [T

Also from (18)

(25) [ Xnsall* = [Tall® + | UWl* + 2(Tw, Ua).

From (13), forn > N and on @ n 4,°,

(26) a < |Tull” = (1 + B)IXal® = 7a .

Substituting in (25), we have forn > N and on Qo n 4,°,

(27) [Xnnall” £ (1 + BIIXall® = v + |Ual* 4+ 2(Ta, Un).

Define

(28) Vo =2(Ta, U)|IX.[”  on 4.°n[n > NJ
=0 otherwise.

We note that V, is well-defined a.s. since from (26) for n > N and on 4,°,
(29) 1Xa0° 2 (@ + ¥a)(1 +82)" Z (1 + K1) > 0

where we have used (14) and (15).
Substituting (28) into (27) and taking the result together with (24), we have
for n > N and on @

(30) [ Xanall® < max [(o! + [T, (1 + B + V)| Xall* = ¥ + [|Ua].
Now (19) implies that

(31) DU < »  as.
We also show that
(32) > V. converges a.s.

From (28) and Schwarz’s inequality

[Val* £ 410" 1 Tall® 1 X0l ™ Lapel tnsm -
From (26) and (15), (29) and (14)
(33) (Tl 1Xal ™ Lyl mom S (1 4 K™ = Ks .
Hence E |Va|* < 4K,E |U,|* and by (19)
(34) DEIV,) < .
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Further, substituting for U, from (18) into (28) we see that V,_; is a function
of X, , Ti(X1, -+, Xaa1) and In1>n1 and hence measurable with respect to
®, . Varying the index n, it follows that Vi, ---, V,_; are measurable with re-
spect to ®, . From (28), (21), the Schwarz inequality and (33),

|EVa| ®ull = 2|(Tn, ElUA | ®al)| | Xul|™ Lanel tnom
2 (| Tall |1 Xl ™ LI tnsmy | ELUR | &l
< 2K: ||E[U., | ®]||.

From (20) it follows that ) E[V, | ®,] converges a.s.. Applying Lemma 3 we
conclude that (32) holds. It also follows from (34) that

(35) VA< o as..

Now fix a point w & Qo for which (31), (32) and (35) hold simultaneously. Let
e > 0. Since |Ur(w)|| > 0asn — =, t}xere exists an integer N1(w) = N(w) such
that for alln > Ni(w), [|Un(@)|* 4 20* || Un(w)|| < e. From (30), forn > Ni(w),

(36) [ Xnn(w)]” = max[a + ¢ (1 + Bu(w) + Va(w))||Xn(w)]*
— Ya(®) + [ Un(@)]|].

Applying Part (b) of Lemma 1 to (36), we find that the sequence {||X.(w)]|*}
is bounded and by (17) then

22 (@) = 22 va(Xa(w), -+, Xa(0), 0) = .
Applying Part (a) of Lemma 1 to (36), it follows that

i SUPne [ Xa()* < @ + ¢

IIA

and since € is arbitrary and the set of w points under consideration has probability
one, the theorem follows.

ReMARKS. (i) If (20) is changed to D, ||E[Unlwsn | ®al|| < « a.s. then (21)
can be dropped.

(ii) The theorem gives conditions under which {X,} is stochastically attracted
towards the sphere with centre 6 and radius o* and will eventually a.s. be within
or arbitrarily close to this sphere. Under somewhat stronger conditions we also
prove that {X,} will eventually be within or close to this sphere in a mean square

sense.
TuroreM 2. Consider the set-up in Theorem 1 and let the conditions be strengthened

as follows: N is a fixed finite integer and B3, a fixed sequence of non-negative numbers
such that

(40) 2B < .
{U,} satisfies (19) and instead of (20),

(41) > (E |ElUa| &ll")! < .



ON DVORETZKY STOCHASTIC APPROXIMATION THEOREMS 1539

Other conditions remain unchanged except in so far as they are changed by the new
conditions just introduced. Thus e.g. (21) becomes redundant. If

(42) E Xy <
then
(43) im SUppse B | X — 60| £ o

Proor. (41) does imply (20), for E |E[U, | ®.)|| £ (E |E[U. | ®.|*)}; hence
(41) implies

(44) 2 E|EU.| &l <

which implies (20). The conclusion of Theorem 1 therefore holds in the present
case. We also note that

(45) E|X." < =
for each n, since, from (18), (13) and (15) we have

[Xnnall” < 2(|Tull* + 2 [T

< 2(1 4 B Xal* + 22 + 2 [UL[

a.s., and hence taking expectations, noting (42) and applying induction on =,

(45) follows.

Now, there is no loss of generality in supposing that § = 0 and N = 1. We will
write 7* = max [0, r] for any real number r. Let a > o'. Then ||X,|| < o +
(I X.] — a)*. Hence writing

(46) Yo = (|Xa] —a)*
we have
(47) 1X.° < & + 2aY, + Y.,

We will show that
(48) EY,)—0 as n— .

Since EY, < (EY,5)} (47) and (48) will imply lim sup... E || X.|* < o’ and
since o’ is arbitrarily larger than «, the theorem will follow.
Our first step in proving (48) is to obtain a bound for Y% .1 in terms of Y,°. Let

(49) W, = T, if |7 £ e
ol | T\ if || Ta] > e

Il

Then
(50) 17w — Wall = (ITull — a)*
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and |W,|| £ a. Hence, from (18),
[Xonall — @ = [|Xnnll — [[Wa]

= ”Xn+1 - Wn”
= |70 — Wu + Ul
Using (50),
(51) Y31+1 = [( ”Tn“ - a) +]2 + “Un”2 + 2(Tn - Wn ) Un)-

From (13) and (15), || T.||* < max [&, (1 + B.)||X.|*] a.s.. On the set || T|° <
we have

(52) (ITall — @) =0
and on the set |7.]° > @, |7 < (1 4+ 38.)||X.|| a.s. and hence
(53) (Tl — &)* = (1 4+ 38.)Ys + 3aB. ass..

Using the inequality (p + ¢)* < (1 + ¢)p” + ¢(1 + ¢) which holds for ¢ = 0,
(53) yields

(54) [(ITal] — &) = (1 4+ 8))Y" + & as,
where 8, = (1 + $aB.)(1 + 36.)" — 1, 8," = 2a8.(1 + %aB.) so that
(55) B.,6 20 and DB < o, D8 < .

Substituting (54) into (51) we obtain the required bound, viz.
(56) Yam = (1+ B)Y + & + U + 2(Tw — Wa, U), as..

Now, let b be a positive number and M an integer to be specified further below.
Define sets B, in © by

(57) B, = [infyc;<. ¥Y; >0, n=M.

Since 15, and T, — W, are measurable with respect to ®,, we get from the
Schwarz inequality, (50) and (53)

|EIs,(Tn — Wa, Ua)| = |E{Is,E(Tn — Wa, Ua)| ®ul}|
= |E{I5,(Tn — Wau, E[Us| &1}
S E{ls, |Ta — Wall | E[Ux | &4lll}
= B, (|Ta]l — )" | EU. | &1}
< (1 + 3B.)EIs, Y, ||E[U, | &l
+ 3aB.E |E[U. | &l

Using t}le Schwarz inequality in the first expectation here together with
(EI Y5 <1+ EIL Y, we get

(58) |EIs (Tn — Wo, Un)| < 8. EI Y. + 6,
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where
B = (14 36.)(E ||E[U, | &)}
8" = B + 3aB.E ||E[U. | ®.]|
so that
(59) B 8. =0 and X B, < oo, D6 <

in view of (41) and (44).
Hence, taking expectations over B, on both sides of (56), we have

(60) El3 Y0 < (1 + b,)EIsY," + d,
(61) < (14 b)EIs,_ Y. +dy, n>M,
where

bo =B + B

do = 8+ 8" + B UL’
so that
(62) Dba<w, Xdi<w.
Iterating (61) back ton = M + 1 and using (60) forn = M, we get
(63) Els,Yni1 S (TLisw (1 + 0By yon ¥ s’ + Xisu djl.
Now we turn to B,’. Define Cy = [V < bl and forn > M

Co=[Yu>b,Yupu>b -+, Y1>b Y, <0

Then, agreeing that B3_; = &, the empty set, forn = M

(64) B =Cu+ Cupr+ -+ Co =By + Cn.
Also,let Dy = [0 < Yy < bland forn > M
(65) Dy=[Yu>bYyupu>b -+ ,Ys1>b0<Y, <0
Then

Co=Dn+[Yu>bYun>b -+ ,Y,1>b7Y,=0]
Hence
(66) El.Y,’ = EI, Y.’ < b’P(D,).

1541

Taking expectation over B,’ on both sides of (56) and using (58) with B, re-

placed by B’ (which does not invalidate it), we get
El5,.Y5 < (1 + b,)EI.Y,2 + d,
< (1 + b)[Els, oY, + b°P(Dy)] + da,
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having used (64) and (66). Iterating this inequality back to n = M we get
(67)  BlseYnia S [ILisw (14 b)IOP(Di) + «+ + BP(D) + 2 s ds).

Noting that the sets Dy, ---, D, are disjoint and that Dy + -+ + D, C
[infy<j<n ¥; > 0] = F, , say, it follows from taking (63) and (67) together that

(68) EYnu = [[Lizs (1 + 0)IE iy yon ¥l + BP(F) 4+ 2 52 djl.

Now let ¢ > 0. Then choose and fix M so large that [[;sx (1 +b;) < 2,
D i=md; < e This is possible in view of (62). Also, from (45) and (46) it
follows that Y, is integrable so that b can be chosen and fixed large enough so
that Ely, >y Y < e Finally, from Theorem 1, P(F,) — 0 asn — «. Hence
there exists an integer M such that for all n > M, we have b’P(F,) =< e Thus,
from (68), forn > M,

EY% < 2e + € + 2¢] = Se.

Since € is arbitrary (48) and the theorem is proved.

Remarks. If a can be chosen arbitrarily small, Theorems 1 and 2 give con-
ditions for a.s. and mean square convergence of {X.} to 8. Most applications of
these results are of this type. In addition the transformations {7} are often of

the following special type:
(69) Tn(xly :x":w) = Tn — Sn(mn:w)

where S, is a transformation of # x @ into H. Our next theorem gives conditions
under which {X,} will converge to 0 in this case.

TuEOREM 3. Let T', be specified by (69) and suppose that S, satisfies the following
conditions. For each x ¢ H and w € Qo € @ where P(Q) = 1,

(70) 184(z, @)I* < Ba lle — 6l + 5

for all n, where {B,}, {8} are non-negative real sequences such that
(71) 2Ba< w, D28 < .

Also, for each ¢ > 0, define

(72) tn(e @) = infezgesyzer 20z — 0, Su(z, )

and suppose that there is a finite integer-valued random variable N ¢ such that for all
n > Nw) and for all w € Qp,

(73) cu(e, w) = 6,
whale also
(74) > eale, @) = .

Define {X,.} by (18) with {U,} as given in Theorem 1 and suppose also that (21)
holds with N replaced by N . Then

(75) X,—0 as.as n— .,
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In addition, if N is degenerate and {U.,} is as given in Theorem 2, then
(76) E|X,—60°—>0 as n— .
Proor. As before we may take § = 0. Let & > 0. If [[z]|* £ o, then
[Tz, o) = |z — Sulz, @)
2 |lz]* + 2 [1Su(z, @)
2(a + affn + 8)
4o

I\

I\

(77)

I\

I\

for all » > mo, a certain integer. For w & & we also have

(78) [ Ta(z, @) = llz]* 4+ [Sa(z, @) — 2(z, Sa(=, @))
= (14 Ba)all + 8 — 2(z, Sa(z, @)

Define

(79) v, @) = —80 + 2(z, Sulz, @) if 2" > @

- it J2f? £ e

[

Substituting into (78) and taking the result together with (77) we have, for all
n > moand w e Qo

(80) | T(z, o) < max [4e, (1 + Ba)llz]* — val-

Now, let {z,} be any sequence in H such that sup, |za]] = Ks < . Put
¢ = min [o}, KiY]. Then, for n > N(w), from (79), (72) and (73),

(81) Yo(Zn , @) = min [1, —8, + ca(e, @)] = 0,
while from (79), (72), (74) and (71)
S Au(@n, @) = Domin[1, —8 + cale, ©)] = .
Letting N = N. + no, then (80) and (81) are certainly satisfied for alln > N
and we also have
[n>Nl=[n—n>NJ]e®Brn C G

Hence the conditions of Theorem 1 are satisfied completely and we conclude that
Jim SUPnae [ Xn — 0] < 4a a.s. and since a is arbitrary, (75) follows. (76) follows
from a similar application of Theorem 2.

RemARKs. More explicit results on the order of magnitude of E || X, — 0]|* can
be obtained under stronger conditions than those specified in Theorem 3. For the
sake of completeness we indicate some of these. If (72)—-(74) is replaced by

(82) 2(z — 6, Sa(2, ©)) Z e |z — 6|
for each n and all z ¢ H, w £ Qo , where {c,} is a sequence of constants such that

(83) 20 and D ¢ = ,
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while (41) is strengthened to

(84) ElU,|®)] =0 as,

then it follows readily from (18), (69), (70), (82) and (84) that
(85) EllXan — 0fF = (1 + B0 — a)E[X. — 6f° + & + E||U.J"

Tteration of this inequality yields a bound for E||X,.1 — 6|* in terms of {8.},
{ca}, {8,} and E||U,||>. We mention some asymptotic results in this connection.
Suppose that ¢, — B, ~ ecn™" and &, + E|U.|* ~ O(n™"*”) asn — o, then

E|X, — 0> = 0(n7?), ife>p>0,
E|X, — 0]" = O(n""logn), ifc=p>0,
E|X. — 6| = 0(n™), ifp>c>0.

These results follow immediately from Lemma 2 and (85). We refer to [11] for
further results under these assumptions.

4. Concluding remarks. Theorem 3 is at the same time sufficiently general
and simple to make applications to the standard stochastic approximation pro-
cedures such as the Robbins-Monro [6], [1] and Kiefer-Wolfowitz [6] procedures
and especially their multi-dimensional extensions [2], [10] routine. These appli-
cations do not use the generality of our theorems; applications to more compli-
cated procedures requiring this generality will be given in a forthcoming paper
by the author.
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