LIMIT THEOREMS FOR STOPPED RANDOM WALKS III'
By R. H. FARRELL

Cornell Unaversity

1. Introduction. This paper explores asymptotic properties of certain first
passage problems in several dimensions. Throughout we consider a function kb
which is a homogeneous function of degree one in k variables defined throughout
Euclidean %-space Ej . Under consideration are random walks constructed from
a sequence of random k-dimensional column vectors {X,, n = 1}. Set
S,=X1+ -+ X,,n=1landS =0.Ifn = 1let H, = h(S,). Givent > 0
define a stopping variable M/ (t) to be the least integer n such that H, = ¢, with
M(t) = o ifforalln = 1, H, < ¢ Study of the asymptotic behavior of M (¢) as
t — « in the multidimensional case was started in Farrell [8]. Related results
have appeared in Bickel and Yahav [2]. A slightly different random variable,
M’'(t), is used in Section 3. See (3.6).

As indicated above, although the random walk is k-dimensional the quantities
of interest here are definable in terms of the one-dimensional point process
{H,,n = 1}. It is the main purpose of this paper to show that results like an
analogue of Blackwell’s theorem in renewal theory still hold here. See [2], [3]
and [6].

Some elementary results, given in Section 2, can be obtained whenever the
random variable sequence { X, ,n = 1} obeys the strong law of large numbers (the
limit need not be constant and this is noted in the statements of lemmas and
theorems,) lim,.o Sn/n = p. Usually in renewal theory one assumes up = EX; .
Unless explicitly stated in hypotheses this is not assumed here. To distinguish
cases we write at the start of each theorem in parentheses the appropriate
hypotheses.

In the cases where we assume {X, ,n = 1} are independently and identically
distributed we will always assume the existence of finite first moments for the
component random variables of X; and we will write y = EX; . We will suppose
throughout that the components of u are positive (even in the case u is allowed to
be arandom variable.) Problems for which u > 0 and this is not so can, by a
rotation of coordinate axes, be brought to this form. We will call
{z | mini<ick : > 0} = Q the open first quadrant and will call the closure of @
the first quadrant (of Ex). We will always suppose that 4 is continuous as a func-
tion on @ but for special reasons discussed later we will suppose in Section 3 that
if 2@ then h(z) = 0. This restriction is special to Section 3. Unless otherwise
stated we will suppose that & is positive everywhere on Q. Some of our results use
the assumption that & has continuous first partial derivatives throughout Q. We
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do not in general assume this. Throughout we will use a for the column vector
of first partial derivatives b'(z) evaluated at z = u. Using a superseript T for
transpose we note u’e = h(p) (Euler’s identity). Further, in some applications
of the law of large numbers we need the remark that the first partial derivatives of
h are homogeneous functions of degree 0.

In Section 3 we prove a generalization of Blackwell’s theorem for the sequence
{H,,n = 1} assuming that {X,,n = 1} are independently and identically dis-
tributed and assuming continuous first partial derivatives for 4. It will be ob-
served that although the argument of Section 3 uses the existence of derivatives
the statement of the value of the limit depends only on the value of A(x). Using
this observation along with an additional assumption of finite second moments
we obtain generalizations in Section 4. Bickel and Yahav [2] consider the case
k = 2 and homogeneous functions which are norms and for which {z | h(z) = 1}
is a (convex) polygon.

Section 5 represents a first attempt to find more terms in the asymptotic ex-
pansion of EM (t) ast — . The results of Section 5 are basically about H,— ¢,
where H; = h(Suw)-

For purposes of abbreviation we use ‘“Ind” for “Independently” and “Id” for
“Identically.”

2. Elementary properties of M (t).

TurorEM 2.1. (Strong law, p ¢ @ a random variable). Assume that with prob-
ability one, h(u) > 0. Then with probability one, lims. M(t)/t = 1/h(u).

Proor. For preciseness we suppose that all random variables considered are
functions on a space € with points w. By the law of large numbers we may find an
integer valued random variable R, a real random variable sequence {e, , n = 1},
and a null set @ C Q, satisfying if w £ 2 then limy.« (@) = 0, and if w £ 2 and
n = R(w) then

(1 — ea(@))h(n(w)) £ n7h(Sa(w)) < (1 + en(w))(u(w)).

Then M(n(1 — en(w))h(u(w)))(w) = nand M(n(1 + e(w))h(u(w)))(w) > n
provided n = R(w) and w £ Q. Set s.(w) = n(1 — ex(w))h(u(w)) and tp(w) =
(1 + e(w))h(pu(w)), n = 1. Then it follows that if w £ Q then

lim SupPsw M (8a(w) ) (@)/sa(w) = 1/h(p(w));
Hm infpe M (ta(w))(@)/ta(w) Z 1/h(u(w)).

For all we®, M(-)(w) is a nondecreasing function, and since if wezQ,
liMpoew 8n(w)/ta(w) = 1, the theorem follows.

TueoreM 2.2 (Ind and Id). Suppose there is a real number § > 0 such that if
z & Q then 6h(x) = mimci<k i . Then if t > 0, EM(t) < « and

lime.o E | M(t) — 1/h(n)] = 0.

(A proof of this result is given in Farrell [8].)
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In view of Theorem 2.2 it is natural to ask if the hypothesis of independence is
needed in order that EM (t) < <« should follow. It is easy to construct stationary
sequences {Y,, n = 1} of random variables for which EM(t) = <« for some
values of ¢ > 0. We do not know, however, if an additional hypothesis of metric
transitivity would be sufficient to guarantee EM () < oo for all {. We mention
one example of potential interest. The random variables {Y,,n = 1} take only
the values 0 and 1. Let {v, ,n = 1} be a real number sequence satisfying, yo = 1,
ifn=0thenl = v, = 0, a1 — ¥n = 0, and v» — 2vn41 + Yni2 = 0. Then prob-
abilities for a stationary random variable sequence may be constructed in such a
way that if n =2 1 then P(Y, =0, --- , Y, = 0) = v, . We omit the calculations
which show that this is possible. In these examples

EM(%) = 22 P(M(3) 2 n)
= 1+ Z:=1P(Y1: 0)“' yYn = O) = Z:L:O'Yn-

Consequently any example of a convex sequence satisfying the stated restrictions
and for which D a0 v» =  gives an example for which EM(3) = .

The following type of lemma is well known. See for example Hsu [10]. Theorem
2.3 follows Feller [9].

Lemma 2.1. (Ind, Id, and continuous first partials). Assume EX:"X1 < « and
et a® = " (EXiX\")a — a"wu’a. Then

liMp P03 (R(Ss) — nh(p)) < t) = [te (1/0(21)F) exp (—2*/26°) da.
TuroreM 2.3. (Ind, Id, and continuous first partials). Assume X1 ¢ Q and that

on Q the function h is a positive function with positive continuous first partial deriva-
tives. Let o” be as in Lemma 2.1. Then

limew P(s 3 (M (s) — s/h(w)) = ot(h(p))™) = [Le (2n)Fexp (—27/2) da.

Proor. P(h(S.) 2= nh(n) + nlot) = P(M(nh(p) + nlot) < n). Let
tn = nhip) + nlst and solve for n. Elimination of n in favor of ¢, together with
use of Lemma 2.1 gives

J7 (2m) 7 exp (—2%/2) do = limpsw P(t (M (ta) — ta/h(n)) S —ot(h(p))™).

Using the facts that limg.e tri1/t, = 1 and that M( ) is a nondecreasing function
the argument is easily completed.

LeMmMA 2.2. Suppose the components of X, are nonnegative, n = 1, and on the set
Q the functional h is a positive nondecreasing function of each of its variables. If
b—a>e>0then

(M(b) — M(a+e) < [a(M(t+ e — M) dt
< «(M(b 4+ €) — M(a)).

Proor. M(t + ¢) — M(t) is the number of times H, falls in the interval
[t, t + €). As t goes from a to b, each point z in the interval [a 4 ¢, D) lies in all
intervals [t, ¢ 4+ ¢) for a length of time { + ¢ >  to ¢ = «, that is, a length of time
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e. Therefore the first inequality above follows. A similar argument establishes the
second inequality.

THEOREM 2.4 (Strong law, p a random variable). Assume if n = 1 then X, € Q
and let p = lim,.,, Sp/n. Suppose h(p) > 0 with probability one. Suppose h is a
positive nondecreasing function of each of its variables on Q. Then with probability
one,

limyuw ¢ [6 (M(s + €) — M(s)) ds = ¢/h(n).
Proor. Use Lemma 2.2 and Theorem 2.1.

3. Blackwell’s theorem. In this section we use the norm |z|| = (z"2)! for
vectors z ¢ By . We make the following specific assumptions:

(3.1) The function h is defined everywhere in E;. On @ the function is
positive and continuous. If z ¢ @ then h(z) = 0.

(3.2) There exists a constant K1 > 0 such that if z ¢ @ and y ¢ @ then
Wz + y) = h(z) + K|yl

(3.3) If yeQ then inf,e (h(z + y) — h(z)) = h*(y) > 0. There exists
a constant K, > 0 such that if x ¢ @ then th*(x) = ming <k T -

(3.4) On Q the function 4 is continuously differentiable. We write h'(z)
for the column vector of partial derivatives of 4 evaluated at z. We
suppose A’ is a uniformly continuous function on {z |zeQ and
h(z) = 1}.

(3.5) {X.,mn = 1} is a sequence of independently and identically dis-
tributed random vectors taking values in Ej, . As noted in Section 1 we
suppose E || X1|| < «, and that @ = h'(4). We assume the random
variable a”X; is not a lattice valued random variable.

In this section it is convenient to use a random variable M.

(3.6) Ifa > 0then M'(a) — 1is the number of integers n = 1 such that
h(S.) < a.

We begin by making some remarks about the assumptions. We wish to include
the case where with positive probability X; £ @. Without some assumption about
second moments it follows from results of Erdos [7] that the expected number of
sums S, which fall outside @ may be infinite. Specifically for the purpose of
eliminating from consideration in this section the problem of sums falling outside
Q we have required in (3.1) that if 2@ then A(z) = 0. Thus if ¢ > 0 and
Sa 2Q then 0 = h(S,) < a. Each such sum is counted by M’(a) — 1 which is the
number of sums S, not in @ plus the number of sums S, in @ satisfying
0 < h(8S,) < a. Since we suppose u ¢ @ the law of large numbers requires that if
a > 0 then M'(a) is finite almost everywhere. It does not follow that EM "(a)
is finite. We will see below that if a > 0 and b > 0 then E(M'(a + b)
— M'(a)) < «; that is, the expected number of sums falling in the set
{x|ze@Q and a £ h(z) < a + b} is finite. Finally it should be noted that the
random variable M'(a) is not the same as M(a) considered in Section 2 unless
X, € Q. Consequently later in this section we make the identification of M "(a)
and M(a) after reducing the case P(X12Q) > 0 to the case P(X1¢Q) = 1.
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Assumption (3.2) implies that the partial derivatives of h are in value <K,
everywhere in @ and thus that if z £ Q then ||h'(z)|| < Kik!. On the other hand
(3.3) requires the components of k'(z) to be positive if ¢ Q. Therefore on Q the
function A is a strictly increasing function of each of its variables, and on @ the
function A is uniformly continuous.

TraeorEM 3 (Ind, Id, and continuous first partials). Under assumptions (3.1)
to (3.5),ifa>0and b > 0 then

E(M'(a +b) — M'(a)) < o
and
liMasw B(M'(a + b) — M'(a)) = b/h(n).

The remainder of this section contains a series of lemmas which lead to a proof
of Theorem 3. Lemma 3.1 establishes a uniform integrability result needed for
positive random variables. After proving Lemma 3.3 the remainder of the section
is concerned with the case of nonnegative random variables. We will remind the
reader of this by putting X; ¢ @ in parentheses at the start of each lemma.

Lemma 3.1. Suppose {Y, ,n = 1} is a sequence of independently and identically
distributed random variables, that Y1 e Q, and E || Y1]| < . Lett & Ei and let R(t, a)
be the least integer n such that h(t 4+ Y1 + -+ 4+ Y,) = a. Let R*(a) be the least
integer n such that K*(Yy + -+ 4+ Y,) = a. Then

(3.7)  [irtarm-rtozm (R(t, @ + b) — R(t, @) dP = [izs@yzm R¥(b) dP

Proor. It follows from (3.3) and Theorem 2.2 that if @ > 0 then ER*(a) < «.
Let R*(q, a) be the least integer 7 such that 2*( Y41 + -+ 4+ Yg4n) = a. Then
ift+ Yy+ -+ 4+ Y, eQ we find by use of (3.3) that

B (Yar 4+ oo 4 Yarg) S Y14 o+ Yarg +8) = (Y1t - + YVt o).

Therefore if ¢ = R*(n, b) and if n = R(t, a) it follows that a + b <
MY1+ -+ 4+ Yarg+t)sothatn + ¢ = B(t,a + D). Therefore R*(R(t, a), b)
> R({, @ + b) — R(t, a). From this we obtain ER*(0, b) = E(R(t, a + b)
— R(t, a)).

For brevity let R(t, a,b) = R(t,a +b) — R(¢,a). Leta > 0 and b > 0. Then

{R(t; a) =n, R(t; a, b) = m} c {R(t’ a) =mn, R*(n7 b) = m}
Further, the event {R(t, @) = n} is independent of the random variable R*(n, b).
Therefore
(3.8) f(R(t,a)=n,R(t,a.b) =m} R(t; a, b) dP é f(R(t.a)-=n,R‘(n,b) =m)} R*(n; b) dP

= P(R(t,a) = n) [meonzm R*(0,b) dP.
Sum both sides of inequality (3.8) to obtain (3.7).
LemMa 3.2. Suppose Theorem 3 holds if the additional hypothesis X1 € Q s made.

Then if t € Ex, and b > 0,
limg.o BE(R(t, @ + b) — R(t,a)) = b/h(p).
(R as in. Lemma 3.1 with the identification X, = Y ,n = 1.)
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Proor. Let S, e@Q and S, + ¢¢e Q. Then the line segment joining these two
points is also in Q. If we set f(a) = h(at + S.), 0 < a = 1, then by the mean
value theorem i(t + S,) — h(S.) = f(1) — f(0) = &'(at + 8.)"t where
0 < a < 1. Since h'(ait + 8,) = h'((at + S,)/n), by the law of large
numbers, with probability one, ¢ = A'(g)"t = liMp.w &' ((act + S,)/n)7t =
lima.e (A(t + S») — A(S,)). If the random variables are functions on @ then
there exist a null set @ and a function §( -, €) such that if w g2 and if ¢ = §(w,
¢) then

R(0,a+ ¢ — ¢)(w) £ R(t,a)(w) £ R(0,a + ¢ + ¢)(w).

Using the uniform integrability established in Lemma 3.1 and the hypothesis
Lemma 3.2 we have

(b — 2¢)/h(p) < lim infere [ (R(t, @ + b) — R(¢, a)) dP
< lim SUpssw [ (R(t, @ + b) — R(t, a)) dP < (b + 2¢)/h(w).

Since ¢ > 0 is now arbitrary, the conclusion of the lemma follows.

We now prove that the case of signed random variables follows as a conse-
quence.

Levmva 3.3.Ifa > 0and b > Othen E(M'(a +b) — M'(a)) < . If Theorem
3 holds whenever (3.1) to (3.5) hold and X, € Q then Theorem 3 follows from (3.1)
to (3.5).

Proor. We use an argument very much like that of Blackwell [4]. The argument
is a random variable argument. We now define the necessary notations.

Continue the usage So = 0 and define No = 0. If £ = 0 and n» = 0 define
Zng = Swogt--+Nptn — Swot---+a , and define Ny to be the least integer n such
that Z, 1 € Q, Npya =0 if forallm = 0, Z, 1 £ Q. Since p € @, by the law of large
numbers, with probability one if £ = 0 then N < . {N;, &k = 1} is a sequence of
independently and identically distributed random variables and ENy < . See
for example Farrell [8].

Let {X,*, n = 1} be a sequence of independently and identically distributed
k-dimensional random vectors such that X; and X;* have the same distribution.
Let Zo* = Oandifn = 1, Z.5 = X+ -+ 4+ X,.,*. Define N* to be the least
integer n = 1 such that Z.5eQ N* = wifforalln = 0,72, 2Q.If A is a
k-dimensional Borel set then we define forn = 0, Fo(4) = P(Z,* ¢ A,n < N*).
Then Yo Fa(+) is a finite measure of total mass EN *,

If & ; 1, let, Yk = SN0+~-+Nk - SN0+"'+NIc_1 . Then if a >0 and b > 0,

E(M'(a +b) — M'(a))
(39) = 2 naP(a=h(S:) <a-+b)
= Yro i P(@ S h(Yi+ - 4 Yi+ Zop) < a4 bn < Npw)
=>ra[PlaSh(Yi+ -+ Yid1t) <a+b)(XnaFaldt)).
Let R(t, a) and R*(a) be as in Lemma 3.1. Then E(R(t, a + b) — R(¢,a)) =
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DiaP(a S MYyi+ -+ Yy +t) < a+b) < ER¥D). It follows that
E(M'(a+b) — M'(a)) < =».

Using Lemma 3.2, the boundedness just established, and the bounded con-
vergence theorem, we obtain from (3.9) that

(3.10) liMgae B(M'(a + b) — M'(a)) = bE(N*)/E(N*)h(n).

This is the assertion of Lemma 3.3. We have used in the last step an identity due
to Wald [11] in the same way that it was used by Blackwell [4].

Throughout the remainder of this section we suppose X € @, and hence make
the identification M'(a) = M(a), a > 0.

Levwma 3.4. There exists a nonincreasing function fy : [0, ) — [0, ) such that
lima.w fi(@) = 0 and with probability one

limpe (f1(n)) 7 [[(Sa/R(8n)) — (w/B(u))| = 0.

Proor. By the law of large numbers, with probability one, lim, .« ||(Sa/k(Sx))
— (p/h(u))|| = 0. Choose a real number sequence ¢, | 0 such that

P(supnzm [[(Sa/0(8a)) — (w/h(w))|| Z en) = 1/m.

Then let fi be a nonincreasing function such that if » = 1 then fi(n) = (en)?.
Then fi satisfies the conditions of the lemma.

By hypothesis (3.4) the function A’ is uniformly continuous on {z |z e @
and h(z) = 1}. Therefore there exists a bounded nondecreasing function

fo 1[0, ©) — [0, ©) such that if z € @ and y € @ then
IW'(z) — &' (y)| = flll(z/M(x)) — (y/W(y)]])-

We use here the facts that 4’ is homogeneous of degree zero and that the com-
ponents of &" are bounded by Ki . By the assumed uniform continuity we may
suppose lim, o+ fo(a) = 0.

Using the functions fi and f, we define a function é: [0, ) — [0, « ) by

(3.11) 8(a) = min (", (fu(a™)) 7, (R(fu(a))7).
We define an integer valued random variable by
(3.12) N(a) = M(a — 8(a)).

LemmA 3.5. The following relations hold:
b 1s a nondecreasing function such that
(3.13) limg,w 6(a) = oo;
limg., 8(a)/a = 0;  lima.e 8(a)fa(fi(ea)) = 04f € > 0;
limg,. 8(a)fo(ed(a)/a) = 0 if € > 0.

Proor. Each of the three functions entering into the definition of § are non-
decreasing functions with limit « as a — «. Therefore the first part of the lemma
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follows. Since 0 = &(a)/a = ¢ limg.e é(a)/a = 0 follows. Similarly
lime. (@) /a’ = 0. If ed(a) < a! then 8(a)fa(ed(a)/a) < da)fu(a ™ =

(f2(a7™))" so that lime.., 5(a)fa(ed(a)/a) = 0. Last, if ea = o then fi(ea) <
A(d) and d(a)fu(filea)) = 8(a)fa(fila)) = (falfi(a))))? which implies
lima.. 3(a)fe(fi(ea)) = 0.

Lemma 3.6. (X1¢Q). Assume that X1 e Q and that (3.1) to (3.5) hold. For any
real number a let [a] be the greatest integer < a. There exists a constant K; >0
such that

(3.14)  P(M(Suw) —a 2 v) = Ks [Ty P(Ku|| X4]| = 5) ds < .
Proor.
P(M(Su@) Z a+7) = 250 P(h(Su1) = a + v, h(Sa) < a)
S 20w P(K|Xal| 2 a 4+ v — h(S,), h(Ss) < a)
= [T PKWIX)| 2 a + v — 1) d X5 P(W(S,) < 1)

Note that EM(t) = D woP(h(8,) < t). From Lemma 3.1 we find that
E(M(t+ 1) — M(t)) < ER*(1) = K;. Since PKhi|Xy| 2 a4+ v —t)isa

nondecreasing function of ¢, we find
P(h(S8u@) Z a4+ 7v) £ K2 W P(KY|X4|| = a + v — n)
< Koo PKA|X| 2 [a] + ] — )
= K32 W7 PR X = n)
Ky [Ty P(K|X4|| = s) ds.

This completes the proof of Lemma, 3.6.

Lemma 3.7. (X16Q). Let e > 0 and let {a;, 7 = 1} be a nondecreasing positive
real number sequence such that lim;,. a; = o. Then with probability one,
0 = limi.e P(maxne+1zisueqs (S;) — h'(Sven)™Si| > €| Svap , N(a:)).

Proor. We will use the random variables R*(b + 8(a)) and R*(q,b + 5(a))
defined in Lemma 3.1 and its proof. Let

%

lIA

%k
Ta,b =X+ - + XR‘(b+6(a)) and Ta,b = XIV(a)+1 + -+ XN(a)+R'(N(a),b+6(a)) .

Since M (a +b) < N(a) + R*(N(a),b + 6(a)) it follows that Xy + -+« +
Xyl = ||Tas|. Further,
B|Tosll = El|Tap| < E(IXA| + -+ + [[Xneossn]])

= (E|IXi)(ER*(b + &(a))).
We have used Wald’s identity. See [11]. By virtue of Theorem 2.2 there exists
a constant K > 0 such that B[ T5,|| < K.é(a) if a = 1. Therefore P( (ITa]] = v)

=< Ki(a)/y.
We now use the fact that X; ¢ Q to compute certain inequalities. Since h(Sw@y)
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= 1 (Sxw) Sy , since for some §; with 0 < 6; < 1, h(S;) — h(Svw) =
h(Oj(Sj”_ Svw) + Sva)"(S; — Svw), and since [|S; — Svw| = IS 3¢ at®)
— Svall,

|R(S;) — B (Swe)"Si|
= lh(Sj) - h(SN(a)) + h,(SN(a))T(SN(a) - Sj)l
< I/ (0;(8; — Svw) + Sww) — B (Sya)ll 185 — Swwll

0.8 — Swew) + Sww  Swe |>
< FAN) (@) @ _ N (a) _
= fa ( (S = Seoy F Svey WS} WS = Swal

S; — Sww| Sww (B(Sy@) — h(0;(S; — Sww) + Svw))
=4 ( W) | T B (Sw)? “)

18u @ty — Svll

Sutry — Sy ( ISyl
< 1 ([P =l (1 + Kaygs) ) Iwcem = Svol

s () (1 lgzy) s

Let v > O be given and let Ay be a real number, By be the event
infj;A., h(SN(aj)/aj) = % and SUpP;=4, ”SN(aj)/aj” = 2||M”/h(#)-

Suppose Ay satisfies P(B+) = 1 — 7. Such a choice is possible by virtue of the
law of large numbers and Theorem 2.1. Then we calculate

[ 1im SUPssw P(maXney ssicassn [1(S;) — B (Swan) Sl > €| vy , N(a:)) dP
< v + limiw PUR((| 75 2l /00 (2 + SEallull/B(w) DI T all > €)-

From Lemma 3.5 together with the first paragraph of the proof of this lemma it
follows that

0 = limiseo P(fo( (| Tassll/ai)(2 + SKillull/A(s)N || Tasall > €.

Therefore with probability one
0 = Lim Supise P(MaXy@) sisaei+n (S7) — W (Swvan)"Sil > €| Swap , N(ai)).

This is the conclusion of the lemma.
LevMa 3.8. (X1€0). Let € > 0 and let {a:, ¢ 2 1} be a nondecreasing positive

real number sequence. Let A be the event
{maX: <j<mastnr—nan |(B (Svan) — B (1) (Swa@p+i — Swan)l > ¢
Then with probability one,
0 = limiw P(Aie | Swan » N(a:)).
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Proor.
Max g su@ad-n@) (B (Svap) — h' (1)) (Xnvaon + -+ + X))l
< M (Swwp) — KWl 1 Xrveosr + -+ + Xneoreewensrsan|l
< Fu 18w/ M(Swawp) — w/h(w)|) (| Z5=0EHHET D X))
Since the function f; is bounded the expression above is integrable and we find
by the Tchebychev inequality that
P(Ai.e| Swap , N(ai))
< Yol ISven/M(Swan) — w/h(w)|)(ER*(D + 8(a:)))(E||IX]).
Since (E||X1||)(ER*(b+ 8(a:))) < K.d(as), using the definition of f; and using
Lemma 3.5 we find that with probability one for all large values of ¢ that
18x@i/h(Sww@n) — w/h(w)|| £ fi(a:/2h(n)) so that with probability one for all
large values of <,
P(Ai. | Svap , N(a:)) £ € Kifao(fi(ai/2h(n)))8(as).
As the right side tends to zero as ¢ — « the conclusion of the lemma follows.
LemMma 3.9. (X1€Q).
E(R*(b))’ = E(R*(N(a), b))’ < o i b>0.
Proor. Order the elements of Q by > y if and only if z — y £ Q. Let 20 £ @
be a vector such that P(X1 > x) > 0. Let Y, = 2 if X, > mandlet ¥, = 0
if X, » %, n = 1. Then if exactly j of Y1 = 2, -+, Y» = 2 hold,

R¥(Yy + - + YV,) = jh*(x0). Thus we have the special renewal problem
considered by Doob [6], page 425. Lemma 3.9 follows at once from Doob’s

results.
Let M(q, t, a, b) be the number of integers n = 1 such that h(¢ + X¢1 +

-+« 4 Xg4a) falls in the interval [a, a + b). Let L(q, a, b) be the number of
integers n = 1 such that B'(u)"(Xen + -+ + Xgin) falls in the interval
[@, a + b). Let A(a) be the event that
L(N(a),a — h(Swvw) + € b — 2¢)
(3.15) < M(N(a), Svw , a, b)
< L(N(a),a — h(Swvw) — € b + 2¢).

Lemma 3.10. (X. e Q). Let Xaw be the indicator function of the set A(a). If
{a;, 7 = 1} is a nondecreasing positive real number sequence such that lim;,» a; = «
then with probability one

limi_.go E(l - xA(a,') l SN(ai) ’ N(a1)) = 0.

Proor. This is an immediate consequence of Lemmas 3.7 and 3.8.
Lemma 3.11. (X1 Q). Given the hypotheses of Lemma 3.10, with probability
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one,
0 = lim; .o E((l - EX:A(G’.))M(N(G,;), SN(ai) y Qi b) ' ‘SN(G.‘) ’ N(al))’

0 = limsse B((1 — Xu@n)L(N(ai),a — M(Svap) + &b — 2¢) | Sy , N(a:));
0 = limi,o B((1 — Xa@n)L(N(a:), 0 — M(Sway) — € b + 2¢) | Svay , N(as)).

Proor. We give a proof of the first of these three relations, the other two
following by similar arguments. Observe that M(N(a:), Sy , @i, b) =<
R*(N(a:), b). Therefore, using this inequality and the Cauchy-Schwarz in-
equality we find that

E((1 — Xa@y)M(N(as), Svay s @i, b) | Svayn , N(as))
S (B((1 = Lawn) | Svan » N(a:)))(ER*(b)*)%

The assertion of Lemma 3.11 now follows by an application of Lemma 3.10.

Lemma 3.12. (X1¢Q). If {a:, 2 = 1} s a nondecreasing posttive real number
sequence such that lim;,, a; = o then lim.., @ probability E(M(N(a:), Svap ,
ai, b) | Svwy , N(ai)) = b/h(u).

Proor. Take conditional expectations of the three terms in (3.15) and apply
the one-dimensional renewal theorem. The one-dimensional theorem says that
there exists a function f: [0, © ) — [—1, « ) such that EL(q, a,b) = b(1 + f(a))/
h(u). f satisfies the condition lim... f(@) = 0. Therefore

(3.16) EL(N(a), @ — MSvw) + € b — 2¢) | Sy , N(a))

) = (b —2)(1 + f(e + a — h(Sxw))) /()
an

(3.17) EL(N(a), & — h(Sy@) — & b + 2¢) | Sxw), N(a))
= (b + 2¢)(1 + fla — h(Svw) — €))/h(n).

By Lemma 3.6, since N(a) = M(a — 6(a)) and lim,.,, 6(a) = «, it follows that
the functions in (3.16) and (3.17) have limits in probability respectively (b — 2¢)
/h(u) and (b + 2¢)/h(u). If we now apply Lemma 3.11, Lemma 3.12 will follow
since ¢ > 0 becomes arbitrary.

Proor oF THE THEOREM OF SECTION 3 ON THE HyroTHESIS X; € Q. By Lemma
3.3 it is sufficient to suppose X; € Q. Since {S, < a, N(b) = n} is independent
of the random variable R*(n, b’) we obtain with probability one E(M(N(a),
Sx@ , 8 D) | Sy , N(a)) < ER*(0,b). Therefore we have a uniformly bounded
set of random variables such that if {a;, ¢ = 1} is a nondecreasing positive real
number sequence satisfying limi,o @i = o« then E(M(N(a:), Sva , @i, b) |
Sv@ s N(a;)) converges in probability. By the bounded convergence theorem

limi,o. E(M(a; + b) — M(ai))
= hm,_mE(E(M(N(a,), SN(a,-), a;, b) |SN(0£)7 N(a1))) = b/h(l‘)'
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This holds for every choice of a nondecreasing positive real number sequence.
The proof is complete.

4. Blackwell’s theorem with corners. In this section we will continue to assume
{X.,n = 1} is a sequence of independently and identically distributed random
k-dimensional vectors. We will assume throughout Section 4 that the distribution
of X; is non-degenerate and that E[Xi]> < . Using these hypotheses we may
prove an analogue of Blackwell’s theorem for functions like, for example, h(z) =
max; <<k %; - That is, we will consider functions A that do not have continuous
derivatives everywhere, and especially, not having a continuous derivative at u.

The assumption that Xi ¢ @ is made and used throughout this section. It is
an unessential assumption and may be removed by an argument like that used
to prove Lemmas 3.1 to 3.3. We omit a discussion of the details. Under the
assumption of finite second moments, if C is a cone in k-dimensional space which
contains p in its interior then the expected number of sums S, ,n = 1, which fall
outside C is finite. This follows from a direct application of results in Erdés
[7]. Therefore in obtaining an analogue of Blackwell’s theorem one need only
consider a cone C generated by some set like {z | ||z — u| < €}.

In many examples the function % can be pieced together from parts of smooth
functions A1 , - - - , he . Thus for example, if k;(z) = «; then maxi<i<i 2: = hi(x)
on the appropriate cone. One place in which this section will lack generality
is in the description of such decompositions. We consider only the simplest de-

compositions.

In k% dimensions we will describe a cone C' by linear functionals wi, -+, wq
such that
(4.1) wi(u) =0, 1=i=gq
and define the cone C by
(4.2) C = {z|foralli,1 £ 7 = ¢, wi(z) > 0}.

On the set C' we consider the restriction of & and suppose that there exists a
function h, satisfying (3.1) to (3.5) such that

(4.3) if xeC then h(z) = h(z).

In the sequel we will consider only this one piece of a decomposition.

We will want to assume that ( 3.2) and (3.3) hold for the function k. For
example, for all », ¥y, maxi<i<r ¥i = MaXigi<e (T + ¥i) — MaXigigk (Ti) =
min; < <k ¥ . Therefore (3.2) and (3.3) hold for (z) = max; <<k @i -

In order to properly state the result, define a set B*(a) as follows:

(4.4) If @ > 0 then B*(a) is the event that Suw € C.

TaeoreEM 4. (Ind, Id, and second moments). Suppose (4.1) to (4.3) hold and
the function h satisfies (3.2) and (3.3). Then lima,e P(B*(a)) exists and

(4.5) liMgsw [ze@ (M(a + b) — M(a))dP = (b/h(n)) lima.. P(B*(a)).
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The remainder of this section consists of a sequence of lemmas leading to a
proof of Theorem 4. If the cone C is empty then Theorem 4 is trivial. Therefore
we assume for the remainder of this section that C is not empty. We observe that
C is an open set.

LemMMA 4.1. lim,. P(B*(a)) exists.

Proor. Sinceif 1 = 7 = ¢ then wi(u) = 0, we find that Sye € C if and only
if To = (Su@ — M(a)u)/M(a)! e C, as follows by substitution in the definition
(4.2). Further, by Theorem 2.1, with probability one, lims.. M(a)/a = 1/h(u).
It follows from the multivariate analogue of results of Anscombe [1] that as
a — o, T, is asymptotically normally distributed. Since we assume that X; has
a nondegenerate covariance matrix, the limiting normal distribution is non-
degenerate. Since C is an open set whose boundary has k-dimensional Lebesgue
measure zero the indicator function %, is lower semi-continuous and
limgee P(B*(a)) = limg.e EXc(T,) exists. The proof of Lemma, 4.1 is complete.

Let 6: [0, ) be the function defined in (3.11). Since 0 < 8(a) < o'’ it
follows that 0 < o*(a)/a! < a™"°. Therefore
(4.6) limg.. 8*(a)/a* = 0.

Let N(a) = M(a — 8(a)). The basic idea of the remainder of the proof is
that if Sy € C then with high probability S; ¢ C forj = N(a), -+, M(a + 1),
provided only that a is large and b + 6(a) is small compared with a’. Therefore
given that the random walk is in C, conditionally we may consider the problem
relative to the smooth function A; .

To make this precise, let M(q, ¢, a, b) be as defined in the last part of Section
3 and let Mi(q, ¢, a, b) be the corresponding quantity for the function A; .

LemMma 4.2. If a > O then

(47) M(N(a)’SN(G),a’ b) = M(07 0’ a, b)’

if in (4.7) inequality holds then h(Syw)) = a.
We have assumed that h satisfies (3.2). A consequence of Lemma 3.6 is:
LemMma 4.3.

(4.8) limgeew P(A(Sy@) = a) = 0.

The next lemma says that without loss of generality we may consider the
process as starting at Syw) . It is a consequence of applying (4.7) and (4.8)
together with Lemma 3.1.

LemMmA 4.4. If b > O then

lim,.. E|M(0, 0, a, b)) — M(N(a), Svw , @, b)| = O.
For later reference, if @ > 0 we define sets as follows:
A(a) is the event that S; ¢ C for all j such that
N(a) < j =< M(a + b); B(a) is the event that Sy € C.
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LevMMma 4.5.
(4.9) limg, P(B(a) — A(a)) = 0.

Proor. Since we suppose % is continuous on @ by Theorem 2.1, with proba-
bility one, lim,. N(a)/(a — 6(a)) = 1/h(u). Since by Lemma 3.5 lima. 6(a)/
a = 0, with probability one lim,,, N(a)/a = 1/h(n).

As observed above, as a — T, is asymptotically normal and therefore also
wi( T,) is asymptotically normal. Therefore if ¢ > 0,

(4.10)  limase P(|0i(Svw)| = °(a))
= liMasw P(Joi( Ta)| = e6’(a)/(N(a)})) = 1,

since by (4.6) and the remarks above, with probability one, limg .. (8*(a)/d’)-
(a/N(a))%L = 0.

Let R*(q, a) be as in the proof of Lemma 3.1. Then we recall that M(a + b) <
N(a) + R*(N(a), b + 8(a)). Then

1img e P(maX: <j<ar@iy-v@ 8 (0)|0i(Sv@+i — Swvw)| <€)
2 liMae P(MaX1 gj<rei@ srs@n 0 (@)]@i(Sy@+i — Swv)| <€)
= limesws D2n-1 P(N(a) = n,
maxi <j<rempri@) 8 (0)]wi(Snyi — Sa)| <e)
= liMaae Do P(N(a) = n)P(maxig;jgreosrsan § (@)|wi(S)] < ¢)
= 1.
The last step follows since with probability one,
limase B¥(0, b + 8(a))/8(a) = 1/h*(u).

(4.10) and (4.11) together show that (4.9) must hold.

From Lemma 4.4 we may consider the process as starting with Sy . From
Lemma 4.5, if this starting point is in C then we may consider that the process
continues in C until M(a + b). Under the event A(a), if n = N(a) then
M(n, Sn,a,b) = Mi(n, 8., a, b). Finally Lemma 4.4 holds also for the function

M, . Therefore
liMaso [ 5@ M(0, 0, 8, b) dP = liMasw [ 4@ M(0, 0, a, b) dP
= limesw [ 4@ My(N (), Svea , @, b) dP
(4.12) = limesws [ 5@ Mi(N(a), Sxw , a, b) dP
= liMaseo [ @) E(M1(N(a), Svw, @ b)|Swvw, N(a))dP
= (b/M(n)) limerw P(B(a)).
This limit exists since by Lemma 4.1, lim,. P(B(@)) = lima.e P(B*(a)) exists

(4.11)
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and by Lemma 4.5, lim,,, P(A(a)) = lim,.o P(B(a)). In order to complete
the proof of Theorem 4 we need the following observations:
Repetition of the first part of the proof of Lemma 4.5 will show that

(4.13) limgse P(|0i( Suwy)| = €’(a)) = 1.
This together with (4.11) suffices to establish that
(4.14) limg. P(B*(a) — A(a)) = 0.

This in turn implies that
(4.15) limg..o P((B*(a) — B(a)) U (B(a) — B*(a))) = 0.
(4.15) together with Lemma 3.1 suffice to show that

1iMae [ 5@y M (0, 0, @, b) dP = limgse [ 5e@ M(0, 0, a, b) dP.

Therefore the conclusion of Theorem 4 holds and the proof is complete.
The author is indebted to H. Kesten for suggesting the broad outline of the
argument of this section.

5. Asymptotic average life. In this section we will always suppose that (3.1)
to (3.7) hold and that X; ¢ Q. In addition we will assume % has continuous second
partial derivatives defined everywhere on Q. Let

(5.1) H, = h(Suw), and EM(t) = (¢ + 8(¢))/h(p), t> 0.
('This is a new usage of 8.) Define constants by
pii = B(Xu — p)(Xy — 1), 1=4,j =k;
(5.2) Bi(0) = (8°h/dz:dz;)(6), 1 =475k
Bii = Bi(n), 1=4,j=k

We show in this section that under suitable restrictions,
(5.3) limew 8(t) = B((a"X1)*/2h(k)) — D 2 51 Bumtss -

In the sequel we use the notation (B;;) for the k¥ X k matrix with the indicated
entries, s0 We may write D i1 2 -1 Bumis = tr (Bi)(is)-

Were we to replace h by its tangent plane and calculate the limit correspond-
ing to (5.3) then, of course, the B;; for the tangent plane are all zero, and we
obtain the well known answer E(a"X1)’/2h(r). The other term in (5.3), when
divided by h(u), therefore represents the signed expected number of observations
falling between the surface h(z) = t and the plane o'z = t.

In order to make our calculations go through we have found the following
assumption convenient:

(5.4) There is a constant & > 0 such that 6 = Xy, = 1/5, 1 =4 = k.

This assumption implies that M (¢)/¢ is uniformly bounded away from zero and
infinity as ¢ — o, which is the main reason we make this assumption. In addition
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we assume the functions B;;(6) are bounded on the set {6 | (6) = 1}. We assume
throughout this section that the hypotheses (3.1) to (3.5) hold for A and that
h has continuous second partial derivatives throughout Q.

In order to abbreviate we introduce the new random variables Y(t),t > 0by
means of the following equations.

(5.5) If ¢t>0 then (M())'Y(t) = Suwy — M(t)p.
Then using two terms of a Taylor series expansion,
(5.6) Hy/M(t) = h(n) + «"Y(2)/(M())* + Y()"(B:i(6:)) Y (t)/M ().

The vectors 6,; lie on the line segment between p and u + Y (¢)/(M(¢))*. There-
fore, from (5.5) and the law of large numbers, as t — o, 6,; tends to u with prob-
ability one.

Using the identity M(¢)h(n) + (M(t))*a"Y(t) = a"Suw , We obtain from
(5.6) the formula

(5.7) He — t = &"Suwy — t + Y(8)"(Bii(6:))Y(2).

Formula (5.7) is the formula from which we derive our result, Theorem 5,
stated below. By results due to Anscombe [1], as t — o, Y (¢) is asymptotically
normally distributed. By showing that the family of random variables
{Y(¢)"(Bii(8:))Y(t), t > 0} is uniformly integrable we will obtain

(5.8) lim, BY (8)"(Bi5(0:)) Y () = tr (Bi) (wij).

On the otherhand, by showing the family {H, — ¢, ¢ > 0} to be uniformly in-
tegrable and using results of Section 3 we will obtain

(5.9) lim;, E(H; — t) = E(a"X1)?/2h(u).

Taken together these results will prove

TrEorEM 5. (Ind, Id and continuous second partial derivatives). Given
assumptions (3.1) to (3.5), given (5.4), and that the functions B,; are bounded on
{z|h(zx) =1, 2¢Q}, the family {a"Suw — t, t > 0} is uniformly integrable, and

(5.10) limeww B(a"Suy — t) = E(a"X1)*/2h(s) — tr(Bi)(pi)-

The remainder of this section consists of a proof of Theorem 5. We observe
first that by Wald’s identity, see [11], E(a"Suw) = EM(t)a"us = h(p)EM(t).
This gives part of the formulas necessary to verify (5.10).

In the proof of the theorem we will need to know that the (8:;(6:;)) are bounded
as t — oo. Since the second partial derivatives of & are homogeneous functions of
degree minus one which are assumed continuous, it is sufficient to show the
9.; are bounded away from the origin. Let e be the vector having all components
equal to one. From (5.4), if ¢ > h(e/s), then all components of Sy /M (¢)
are = 8. Since 6,; is on the line segment between u and Su /M (t), it follows that
the components of the vector 6,; all exceed min (8, min;<i<x pi) = 8 > 0. There-
fore all the vectors 6, lie in the set {x | A(z) = 8'h(e)}. By our hypothesis on the
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second partial derivatives of h it follows that there exists a constant K5 such that
(5.11) if ¢t > h(e/s) then |Bi;(6:)] < Ks, 1=4j =k
We now prove {H, — t,¢ > 0} is a uniformly integrable family. If we integrate
the inequality in (3.14) with respect to v then we obtain at once
[SPH: ~t > v)dy = K [T dy [Tn2 (KX 2 5) ds,

which is finite since E|| X1 ||* < . Therefore the family {H, — ¢, ¢ > 1} is
uniformly integrable. A direct calculation using Theorem 3 shows that

(5.12) lime,o B(H, — t) = E(a"X1)%/2h(u).

In order to treat the last term of (5.7) we now prove several lemmas. A close
reading will show that the proof of Lemma 5.2 uses Lemma 5.1. The casen = 1
of Lemma 5.1 may be written ES,” = ¢’E(M), a result of interest in applica-
tions of the Cramér-Rao inequality to sequential analysis. Since submission of
the original version of this paper a proof of Lemma 5.1 together with other
results has appeared in Chow, Robbins, and Teicher [5] so we omit a proof.

LemMa 5.1. Let {Z,,n = 1} be a sequence of independently and identically dis-
tributed random variables. Let N be a stopping variable (i.e., P(N = 0) = 1, N s
integer valued, and if n = 1 the event {N = n} is independent of the random variables
(Z;,i=n+1}.) If EZ, = 0 and EZ" = o and EN < « then

Zm—n f(N—n) (Zl—nz) dP = ¢ =n P(n z 7).

Lemma 5.2. Given the hypotheses of Lemma 5.1, if n = 1 is an integer then
B(XM0Zi — 20420 = CEIN — 1.
Proor.

B(X iz — X1aZ:) = [ivem (Xiwi1 Z:)" dP + [iwzmin (2i-nss Z:)'dP
= 2ot [iwem (Ximi1 Z:)* + 6" 2omenis P(N = m)
= 2nai (n —m)d®P(N = m) + "2 nnta P(N 2 m)
=n’P(N £n —1) — ) nimP(N = m)
+ > mamP(N = m + n)
= ’E|N — n|, which is the desired result.

LemMa 5.3. Suppose {N,,n = 1} is a sequence of stopping variables such that
ifn = 1then EN, < . Suppose lim,w E|(Na/n) — 1] = 0. Then

0 = limnao B(( D% Zs — Dora Z:5)/n})

Proor. Apply Lemma 5.2.

We now complete the proof of Theorem 5. Let Z(t) = Y(t)M (1)) By (5.4)
it follows that there is a constant Ks > 0 such that if ¢ > h(e/s) then t/M(¢)
< Ks . Asnoted in (5.11), |8:,(6:;)| < Ks,1 = 4,j < k. Hence to prove uniform
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integrability of {¥(¢)"(B:i(6:))Y(t), t = 1} it is sufficient to prove uniform
integrability of the components of {{"Z(#)Z(t)", ¢ = 1}, or equivalently, the
uniform integrability of {¢*Z(t)"Z(t), t = 1}. By Lemma 5.1,

supis1 ¢ 'EZ(t)"Z(t) < supizi (EM(8)/t) tr (ui) < oo.

If we define v, to be the least integer n such that n = t/h(u) then with probability
one, lim;,, M(t)/y: = 1. From Theorem 2.2 we obtain the convergence in L,
required for the application of Lemma 5.3. Thus we find

limyse By (Z(2) — 2204 (X — w))(Z(2) — 2 M (X —u)) = 0.

Therefore to prove uniform integrability it is sufficient to prove {£ (Sy, — vm)”-
(Sv, — vw), t = 1} is a uniformly integrable family. But since we suppose that
X has compact support this follows at once from the Cauchy-Schwarz inequality.

Finally, lime.e (ve/M(2))}(8:(6:7)) = (B:;) with probability one, so that from
the asymptotic normality of Y(¢)7(8:(8:;))Y(t) the result now follows.
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