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1. Statement of the Problem. This paper is a presentation of some results in
the study of random processes which arise as functions of finite, continuous
parameter Markov chains. For reference purposes throughout this paper the
definition of such processes is contained in:

Hyporugests H: The processes X (¢) and Y (¢) will be said to satisfy hypothesis
H whenever X(t) is a basic Markov chain (Definition 2.1) with state space
9 = {1,2, ---, N}, there is a function f mapping 9% onto M = {1,2,---, M},
where M < N, and the process Y(t) is equal in joint distribution to the process
JIX (D]

The process Y (t) is termed a function of a finite Markov chain. The process
Y () need not be Markov and in fact the question motivating this research is that
of finding necessary and sufficient conditions for Y (¢) to be Markov. Such con-
ditions are given in Theorem 2.5. The conditions given are in terms of expo-
nential type processes (Definition 2.2) which arise as functions of basic Markov
chains (Theorem 2.3), and their order (Definition 2.4).

Aspects of this problem have been considered previously by C. J. Burke and
M. Rosenblatt [1], M. Rosenblatt [11], J. Hachigian and M. Rosenblatt [8] and
J. Hachigian [7]. Burke and Rosenblatt [1] gave necessary and sufficient con-
ditions for Y (¢) to be Markov when X (¢) was a discrete parameter reversible
Markov chain. They also gave necessary and sufficient conditions for Y(¢) to
be Markov whatever the initial probabilities in the case when X () was a con-
tinuous time parameter Markov chain. J. Hachigian and M. Rosenblatt [8] ex-
tended the results of [1] to reversible, continuous time parameter Markov
processes with arbitrary state space. Related questions concerning functions of
discrete time finite Markov chains have been considered by Gilbert [6], Dharmad-
hikari [3], [4], [5] and most recently by Heller [9] who completed the problem of
characterizing processes which arise as functions of Markov chains.

This paper is organized in four main sections. Section 2 is introductory and
contains a statement of the main theorem. The theorem of Section 3 has interest
of its own, in that it identifies regeneration states (Definition 3.1) for certain
exponential type processes. The results in Section 4 are special ones needed for the
proof of Theorem 2.5 which makes up Section 5.

2. Basic Markov chains and exponential type processes. Let X({) be a
standard [2, p. 123] Markov chain with a stationary transition matrix P(¢) =
(Pi(t)), and initial column vector P = (P;) whose state space is
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9 = {1,2, .-+, N}. One may express P(t) as P(t) = exp (At) where A = (\;;)
is a matrix whose elements satisfy the conditions N;; = 0 fors > 7, D 7= Aij = 0
foreach?,1 <7 < N.

DeriniTION 2.1. A finite standard Markov chain will be called a basic Markov
chain whenever the eigenvalues of A, »;, »2, -+, vy, are real and distinct and
the initial probabilities of X (¢), P; , are non-zero.

For a basic Markov chain since A has distinct eigenvalues there exists a non-
singular matrix C = (¢;;) such that C”'AC = D = (7.8;;) where1 £ 4,j < N,
and é;; is the Kronecker delta. Thus one can write:

(2.1) P(t) = Cce”'c.

For an arbitrary random process Z(f) with parameter set [0, ) if
z2=1{21,2, - ,2s} is asequence of n states for Z(¢) and s = {s;, 81 + 82, - - -,
81 + s+ - -+ 4+ s.} is a corresponding sequence of n parameters, (z, s) is termed

a sequence pair of length n for Z(t). Define the joint probability function for
Z(¢) by

pz(2,8) = Prob [Z(7:) = 2;,1=1,2,---,n],

where 7; = Z/i=1 Sk .

Suppose X (¢) and Y (¢) satisfy hypothesis H. Let (y, s) be a sequence pair of
length n for the process Y (¢), wherey = {y1, ¥z, - - - , ¥»} and s isasabove. Then
py(y, s) = 2 px(z, s) where the sum is extended over all sequences of states of
X(t),z = (21, + -+, x,) for which flz;] = y:. In terms of N X N matrices and
N -vectors

(2.2) pr(y, s) = P'P(s)A(%1) -+ P($n-1)A(Yn1)P(50)A(Yn)

where P’ is the transpose of P. Define the matrices A(m) for each m in 91 by
A(m) = (aii(m)) = (ai(m)d;) where a,(m) = 1if f(4) = m and 0 otherwise.
Define A(m) = (a:(m)).

Whenever m ¢ 9 define the matrix B(m) = (bi(m)) = CA(m)C where
C is as in (2.1). The first column of C is taken as the eigenvector corresponding
to »1 = 0 and is normalized to be a column of ones. The remaining columns of ¢
can be normalized to make the vector B’ = P’C an N-vector of terms, the first of
which is one and the remaining of which are either zero or one. Finally note
C'A(y,) is the first column of the matrix B(y,), so this vector will be written
as B(y.). With these conventions and using (2.1) and (2.2), py(y, s) takes the
form ‘

(2.3) pr(y, s) = B'e®B(y1)e™ - - > B(yn).

The discussion above motivates the definition of an exponential type chain.
DerinNITION 2.2. A finite random chain Y (¢) with state space ® = {1,2, - -- R,}
is an exponential type process if for some finite positive integer K there exist K
distinct non-positive real numbersv; = 0, v, , - - - , vg and a set of K X K matrices
B(r),1 £ r £ R such that for any sequence pair (y, s) for Y (¢), pr(y, s) can be
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expressed as
(2.4) p¥(y, s) = B'e”B(w1) - - - ""B(ya)

where the K-vector B = (b;) is of the form b; = 1,b; =0or1,2 < j < K, the
K-vector B(y;) is the first column of B(y;), and D = (8:;7;)1 < ¢,j < K.

The discussion thus far forms the proof of Theorem 2.3.

TrEOREM 2.3. Let X(t) and Y(t) satisfy hypothesis H. Then Y (&) is an ex-
ponential type chain.

Clearly, a basic Markov chain is an exponential type process. Note that (2.3)
can be written in terms of the elements of the vectors and matrices as:

(2'5) pY(y7 8) = Z§1=l e 5,(=1 [ba1 II::&=1 bam.am+1(ym)]r(a7 S)
where
(2.6) T(a,s) = [exp (D_miVa,sm)], and an = 1.

DeriniTION 2.4. The K of Definition 2.2 will be termed the order of Y (¢) if
there exists no K’ < K for which the representation (2.4) is possible for all
sequence pairs of finite length for Y (¢).

The main theorem can now be stated.

Tueorem 2.5. Let X(t) and Y (t) satisfy hypothesis H and let Y (t) have order
K. Then Y (t) is Markov if and only if K = M.

3. Regeneration states.

DEeriniTION 3.1. Let Z(¢) be a random chain. If there exists a state m for the
process Z(t¢) with the property that

PlZ(t) = k| Z(t) = m] = P[Z(t) = k| Z(t,) = m,2(r) forall 7 < ¢
for all states k of the state space for Z(t), the state m is termed a regeneration
state for the process Z(¢).

This definition is related to that of Smith [12, p. 13] for a regeneration point.
The emphasis here is on the states rather than the time epochs at which aprocess
exhibits a regenerative behavior. A set of K X K idempotent matrices
H(r),1 £ r £ R, each of which has only zero and unit (equal to one) eigenvalues
and for which D> % H(r) = I where I is the K X K identity matrix is termed a
set of factor matrices. If K = R, there exists a non-singular matrix C such that
foreachr,1 < r £ R, CH(r)C"" is a diagonal matrix. This is a consequence of
the definition for factor matrices and Theorem 7 of [10], p. 134.

TueoreM 3.2. Let Y (t) be an exponential type process with order K. Let the
set of matrices {B(r)} of Definition 2.2 be a set of factor matrices. Let k be a state for
Y (t) such that B(k) has exactly one unit eigenvalue. Then k is a regeneration state
for Y(t).

Proor. Fix r > 0. Let (y, s) be any sequence pair of length n for Y (¢) with
Yn =k.DefineBy .y =B ={Y(s1+ --- + 8) =yiforl <7 = n}, and for each
state £ in 9 and each time ¢ = D 7y s; = rdefine A,y = A = {Y(¢) = £}. The
conditional probability P(A | B) must satisfy the equation P(AB) =
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P(A | B)P(B) whenever P(AB) > 0. It must also be shown that P(A4 | B) is a
function only of Y(r), and Y(¢). Note that P(AB) = py(yt, st) =
R'CT'A(k)CH(%,t — 1), where R” = (r;) is the row vector of elements preceding
B(k) in the representation (2.4), B(k) = CA(k)C, and H(, ¢t — 7) =
(hi(§,t — 7)) = “"”B(¢). The matrix A(k) is diagonal with exactly one unit
term, say a;j(k) = 1. Thus

pr(yé, st) = Dfaricn = P(B)n, where 1 = X 5 cCimhu(E, ¢ — 7)

7 satisfies the equation P(AB) = 9P(B), and n = P(A | B). Note finally that
n depends only on Y(7) and Y (¢) as was to be shown.

4. A new representation for py(y, s). Throughout this section let X(f) and
Y (¢) satisfy hypothesis H. Clearly K < N since the »; of Definition 2.2 are the
eigenvalues of the matrix A associated with X (¢). It is of interest to examine the
case K < N. Define the set of integers X = {¢| for some sequence pair (y, s),
v; appears in a term I'(e, s) of (2.5) having a non-zero coefficient}.

Lemma 4.1. Let X(t) and Y (t) satisfy hypothesis H. Then 1 ¢ XK.

Proor. It must be shown that for some sequence pair (y, s), pr(¥, s) has a con-
stant term in its representation (2.5). The set of joint probability functions cor-
responding to the set of all sequence pairs of length 1 must form a distribution.
Should none of these functions have a constant term, their sum would tend to
zero as the parameter s increases.

If u and v are elements of 97 then u is said to be linked to v if there exist finite

sequences {£, &, - -+, a1} and {a1, @2, -+, an_} of elements of 9N and N
respectively such that
(41) bu,al(go)bal,ag(gl) tte ba,,__l,v( En—l)

is non-zero where b;;j(m) is defined in (2.5). If u is linked to v, then v is said to
be linked from %. Any non-zero term of the form (4.1) is a linking term.

It is immediate that the sets U, U, and W form a partition of 9t — X, the set
theoretic complement of X relative to 9T where by definition

U= {v|veN — X and v is linked from sonre but not to any element in X}

V= {v|veX — X and v is linked to some but not from any element in X}

W = {v|veR — X and v is neither linked to nor from any element in %}.

Without loss of generality the eigenvalues, »; of the matrix A can be indexed so
that w = 0and X = {{|[1 = ¢ = K},u={i|]K+1=<1=< K+ U},
V={(|K4+U+1=2isK+U+V},andWw={i{|K+U+V+1=
t = N}. Henceforth the diagonal matrix D = (8;;) and the non-singular matrix
C of (2.1) will be taken to conform to the above indexing. That is, the 7th column
of C will be the eigenvector corresponding to the eigenvalue »; . Within the indi-
vidual partition sets however, no further order is specified for the indices. Using
this indexing convention and the definitions of U, U, and W one has that for each
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element k of 91 the matrix B(k) of (2.3) can be written in the block form

FB*(Ic) * 0 0
0  Byk) 0 0
(4.2) B(k) = . . .
By (k)
0 * 0 Bw(k)

where B*(k) is K X K, BU(lc) isUXU,By(k)isV X V,Bw(k)is W X W and
the blocks indicated by * may contain non-zero elements.

Observe that the product of two matrices each of which has zero submatrices
where the matrix (4.2) does will again have zero submatrices in the same
positions. From (4.2) the vector B(k) = (bi(k)) has zero elements for
K4+1=i{=K+Uand K+ U+ 1 =4 = N foreach k of 9.

Note finally that for v ¢ U, b, = 0. By definition of U there exists a linking
term Ly(v, k) linking v to some element k of X. Since in (2.6) any = 1, every
element of X is linked to 1. Thus there exists a linking term L(k, 1) linking & to 1.
If b, were non-zero, b,Li(v, k) La(k, 1) would be a non-zero coefficient for a term
of the form in (2.6) contradicting the assumption that v # X. These observations
when applied to (2.3) yield Theorem 4.2.

THEOREM 4.2. Let X (t) and Y (t) satisfy hypothesis H and let Y (t) have order K.
Then for any sequence pair (y, s) of length n,

(4.3) pr(y, 8) = BYe”""B*(y1)e” *B*(y:) - - - ¢”""B*(ya),

where D* = (8;;),1 <4, < K,B* = (b:),1 <4 < K and B*(y,) = (bi(yn)) -
1=7=K.

Lemma 4.3. Let X(t) and Y(t) satisfy hypothesis H and let Y (t) have order K
Then for each element k in 9, B*(k) = 0.

Proor. Suppose for some k in 9 B*(k) = 0. Consider the sequence pair of
length one, (k, r). From Theorem 4.2 and from (2.3) one concludes that in the
context of the basic Markov chain X (#)

(4.4) pr(k, 7) = 2opmk 2oim PiPi(r) = 0.

Each P; is positive. Thus (4.4) implies that P;;(r) = 0 for each 7 and every K
with f(j) = k, and that the matrix A for X(¢) has more than one zero eigenvalue,
contrary to the assumption that X (¢) is a basic Markov chain.

THEOREM 4.4. Let X(t) and Y (t) satisfy hypothesis H and let Y (t) have order
K. The set {B*(m)} of K X K matrices of representation (4.3) s a set of factor
matrices.

Proor. From (4.2) the characteristic equation for B(k) is

IB(k) — uIn| = |B*(k) — plx|-|Bo(k) — ulo|-|By(k) — uly|-|Bw(k) —

#le =
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where the vertical bars denote determinant and I; is the j X j identity matrix
forj = N, K, U, V, W. Thus the set of eigenvalues of B*(k) is contained in the
set of zero and unit eigenvalues of B(%). That the remaining properties hold
follows readily from (4.2) and the observation that the set of matrices { B(k)} of
(2.3) is a set of factor matrices.

5. The proof of Theorem 2.5. Let Y (t) be Markov. For any sequence pair
(¥, 8), pv(y, s) will be a linear combination of exponential terms involving the
set {u;}, 1 <7 = M of eigenvalues of the A matrix for Y (¢). Since these exponen-
tial terms are linearly independent functions, the representations for py(y, s)
are unique. Hence {u;} & {v;} and the elements of {u;} are distinct. The initial
probabilities of Y (¢) can easily be seen to be positive. Thus Y (¢) is a basic
Markov chain, and K £ M.

For each element & in 9% let B*(k) = (bf;(k)) be defined as for Theorem 4.2.
Let m(k) be the number of unit eigenvalues of B*(k).

From Theorem 4.2 observe stgm bfi(k) = 1 for each 7 ¢ X. For each k in 9
the characteristic equation of the matrix B*(k) is

(51) |B*(k) — plxl = W* — [Zaex b5(R)W"™ + -+ = [B*B)I(-1)"

(5.2) = kK "P( — 1)"P(-D" = 0.
Equating the coefficients in (5.1) and (5.2) for ™ yields
(5.3) D iex (k) = m(k).

If expression (5.3) is summed over all £ in 9N, one observes there are K unit
eigenvalues among the M matrices B¥*(k). If K < M, then at least M — K
of these matrices would have no unit eigenvalues and hence would be zero
matrices. This contradicts Lemma 4.3. Hence K = M.

Conversely suppose K = M. There exist exactly K matrices B*(k), each
K X K, in the representation (4.3) for py(y, s). By Theorem 4.4 the set of
matrices {B*(k)} is a set of factor matrices. Since none can be a zero matrix
by Lemma 4.3, each has exactly one unit eigenvalue. By Theorem 3.2 each
state of Y(¢) is a regeneration state and Y (¢) is a Markov chain.
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