IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF
FINITE MARKOV CHAINS'
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1. Summary. If {f(X,): n = 1, 2, ---} is a finite-state function of a finite-
state Markov chain {X,}, it is known that the distribution of {f(X,)} is deter-
mined by the distribution of (f(X1), f(X2), --- , f(Xk)) for suitable K, and a
finite construction utilizing only the latter distribution exists in special cases yield-
ing the probability structure of a chain {X,'} and a function f* such that {f(X,}
and {f'(X,')} have the same distribution [7]. We obtain a finite construction
when ({X.}, f) is such that if 7 is a state of {X,} and j is a state of {f(X,)}, then
there is at most one transition from < to the set f () and the distribution of X;
assigns positive probability to at most one state in each set f(5). Such “state-
calculability” is a rather severe, but natural, structural restriction subsuming
certain cases not previously treated. The corresponding finite construction is very
simple and directly related to the representation of any finite-state process {¥,}
by a function of a (possibly countable-state) Markov chain.

2. Preliminaries. Let {Y, :n = 1, 2, ---} be a stochastic process with finite-
state set J having D elements. Let J * be the set of all y-sequences (finite sequences
of elements of J). Letters s, ¢, u, v here denote y-sequences, while ¢ is a y-state
(or sequence of length 1); |s] is the length of s, and the sequence “s followed by ¢”’
is written st. Let p(-) be defined on J* by

(1) p(s) = P[(Y,1,Ys,---,Y,) =s] when |s| =n.

We say that {Y,}, or its probability function p, is represented by a function of a
Markov chain if there exists a Markov chain {X,} with state set I and a function f
from I to J such that {Y,} and {f(X.)} have the same distribution (it may be
that Y. = f(X,), but we are concerned here only with equality of probability
laws). With I = {1, 2, - - -} finite or countable, we arrange the chain transition
probabilities P[X; = j| X; = 1] and initial distribution P[X; = 7] in the usual
way, in a matrix M = (m.;) and row vector m = (m.) respectively, and we let
either ({X.}, f) or (M, m, f) denote the representation of {¥,}.

Suppose it is known that {Y,} admits such a representation, about which
nothing is specified except that I can be taken to be finite with at most C elements
(of course C = D). Let K = 2(C — D + 1); then the entire distribution of
{Y.} is determined solely by the probabilities (1) for n = K, or equivalently the
function p is determined by [p]x , where [p], denotes the restriction of p to argu-
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ments of length ==. This basic result (with restrictions on the chain { X,}, includ-
ing stationarity, which can be dropped) is due to Gilbert [7], who showed that
K could not be reduced, and also obtained an explicit recurrence relation for
[p]~ based on [p]x . However, explicit construction of a representation (M, m, f)
from [p]x remains an open problem. ( Blackwell and Koopmans [1] first considered
“identifiability” problems of this nature, and obtained an upper boundfor K.)
Gilbert [7] found (M, m, f) when p satisfies a certain regularity condition and is
representable as a function of a stationary irreducible aperiodic chain; the tech-
nique in [7] is still valid when the chain restrictions are removed, and also when
the Markov matrix depends on a finite-state parameter [3], but the regularity
condition is used in an essential way. We shall not need to review regularity
here; it suffices to note that although structures (M, m, f) giving rise to regular
{Y.} are “typical” in the sense of selection at random [7], it is easy to produce
examples of structure classes containing both regular and nonregular members,
particularly when restrictions are placed on the connection properties {X,} and
their relationship to f. Our object here is to give a simple construction of (M, m, f)
for one such class which arises rather naturally.

We note that other results (not directly relevant here) have appeared relating
to identifiability [4] and to the determination of necessary and sufficient con-
ditions that a probability function p be representable as a function of a finite-
state Markov chain [5], [6], [8].

3. State-calculable representation. First we observe that any finite-state
process {Y,} can be represented by a function of a Markov chain with at most
countably many states; in particular we shall use the following representation.
Let J* be the set of all s & J* such that p(s) > 0. For s ¢ J*?, define p,(-) on
J* by p.(t) = p(st)/p(s). Let J** be partitioned into equivalence classes
E, , E,, - -- by the equivalence relation

(2) s ~ t < final term of s = final term of ¢, p.(+) = p«(-).

With a slight abuse of notation, let p; be the probability function coinciding with
p, for all s ¢ E; . Let ; be the final y-state common to each sequence in E; ; state ¢
of our Markov chain is to be identified with class E;, and we define f on the
resulting state set I by

(3a) (@) = &.

We write ¢ — j if there exists s ¢ E; such that se; ¢ E; , and we say that ¢ is initial
if e;& E;. It is easily verified that: (a)i — 7 & se¢je E; for all se E;; (B) if
pi(e) > 0 then ¢ — j for one and only one j e f'(¢); (v) if p(e) > 0 then 7 is
initial for one and only one ¢ £ f(¢). Therefore, setting

(3b) mi; = pie;) when 17— 7,
=0 otherwise,
(3¢) m; = p(e;) if ¢ 1is initial

=0 otherwise,
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we obtain a Markov matrix M and a probability vector m. It follows immediately
by inspection that (M, m, f) as defined by (3) is a representation of {¥,} as a
function of a Markov chain.

The structure ({X,}, f) obtained from (3) is state-calculable; i.e., there exists
a function g: J u (I X J) — I such that, with probability one,

(4) 9(f(X1)) = X,,
9(Xn, f(Xan)) = Xona -

(The existence of g follows from (8) and (v) preceding (3b).) Thus, using (3),
any {Y,} can be represented as a state-calculable function of a Markov chain.
Suppose that the required chain state set I is known to be finite; in the next
section we show that the representation can then be constructed from [p], for
sufficiently large n.

First we establish two simple lemmas valid in the general case where I may be
infinite. We say that s, ¢t ¢ J** are n-equivalent (otherwise n-distinguishable) if in
(2) the requirement p, = p. is replaced by [p.J» = [p:]. - Let II,, be the partition
of J*» with respect to n-equivalence, and let II denote the equivalence partition
{E:, E», ---} already introduced.

Lemma 1. {Tl,:n = 1, 2, - - -} 4s a sequence of refinements, with common refine-
ment L. In fact, if n is such that I, 5 11, then M,y 25 a proper refinement of 1L, .

Proor. The first assertion is obvious. Now let n be such that II, ¢ II; then
there exist s, ¢ which are n-equivalent but not equivalent. Let s, { be (n + k)-
equivalent and (n + & + 1)-distinguishable, and let uv be a minimal-length dis-
tinguishing sequence for s, ¢, with |u| = k, o] = n + 1; then p,(u) = p(u) > 0
and

(5) Ps(u)Psu(v) = ps(uv) # pi(uv) = p(u)pa(v),

showing that su and tu are (n + 1)-distinguishable. But equality prevails in (5)
when v is replaced by any sequence of length n, so su and fu are n-equivalent.
Hence, there is a class in II, which is refined in 1,4, .

We say that E; , or 7, is reachable in n steps (n = 1) if there exists s ¢ E; with
|s| = n. Let G, be the set of all ¢ ¢ I reachable in at most n steps.

Lemma 2. G T I; in fact if n is such that G, = I, then G, s a proper subset
Of Gn+1 .

Proor. Clearly G, T I.To prove the remaining assertion, it suffices to show
that when G = Guy1 we have Guye C Gryq . If § € Gy there exists s with se; ¢ E;
and |s| £ n + 1. If s < n + 1 the conclusion is immediate. Let |s| = n + 1, and
let s ¢ E; ; then ¢ € Gupn = G, , so there exists ¢ ¢ E; with |¢{| £ n. Also E; — E; by
construction. Thus, by (a) (above (3b)), te; e E;, orj & Guya .

4. Finite construction. We say that [Y,], or p, is of finite state-calculable type
if it is known that there is some representation as a state-calculable function of a
finite-state Markov chain; if so, there are evidently many such representations
(which we call finite state-calculable representations), and we now show that the
““best,” namely (3), can be obtained from [p]., for suitably large n, by a finite
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construction (i.e., a finite number of algebraic operations on the finite set of
values of the function [p]n).

TurEOREM. Let {V,} be a process with D states and let p be defined by (1). Suppose
it 1s known that { Y.} 7s of finite state-calculable type, and that C is an upper bound
on the number of chain states necessary for a finite state-calculable representation.
Then the unique minimal-state finite-calculable representation can be obtained
through a finite construction which utilizes only [plx for K = 2(C — D + 1).

Proov. Let I, M, m, f refer to the representation (3) of Section 3 applied to the
present { ¥,.}. It is easy to see that I is finite with at most C states, that I has the
least number of states among all finite state-calculable representations, and that
such a minimal-state representation is unique except for permutations of the state
set. It remains to show that those aspects of (3) which depend upon p in its
entirety can be restated in terms of [p]x only, for the present { ¥,}. Using Lemma 1
we see that {II,} here consists of a finite initial sequence of strict refinements with
II, = II thereafter. Thus, since II has at most C classes and II; has at least D
classes, D + n — 1 = C is sufficient to guarantee II, = II, so that

(6) Pde-ps1 = [Pde—p+1 = ps = p¢.

Similarly, from Lemma 2, {G,} in the present case consists of a finite initial
sequence which is strictly increasing with. G, = I thereafter; Gy has at least D
elements and I has at most C' elements, so D +n — 1 = C is sufficient for G, = I.
Therefore every 7 ¢ I is reachable in at most C — D + 1 steps. This result, with
(6), shows that one can determine the size of I, connections ¢ — j, and states
¢; (and then calculate m;; and m;) by inspection of the functions

(7) [Pde-p+1: all s oflength £ C — D 4 1.

Evidently knowledge of [p]x is necessary and sufficient for evaluation of all of the
functions in (7).

6. Remarks. The value of K in the above theorem cannot be reduced; simple
examples where the strictly monotone portions of the sequences in Lemmas 1 and
2 are of maximal length can easily be exhibited by restricting attention to cases
where M and m are degenerate (0 and 1 entries only). In this sense, the lemmas
are extensions of well-known facts in deterministic automata theory, and similar
results hold for random automata with a finite-state input [2]. The latter struc-
tures are called finite-state channels in information theory, and it is from this
context [9] that the concept of state-calculability has been borrowed. Since func-
tions of Markov chains serve as models for information sources, the result of
Section 4 may be viewed as a method for deducing internal structure from ex-
ternally “observable” characteristics for the elass of finite state-calculable in-
formation sources.

Finally, we note that for any finite-state process { Y.} with probability func-
tion p and any positive integer k, the arguments of Sections 3 and 4 can be adapted
in an obvious manner to yield a construction (based on [p]:) of a finite state-
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calculable representation for a process {Z,} of finite state-calculable type such
that (Y1, Ys, ---, Yi) and (21, Z>, - -+, Zi) have the same distribution.
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