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NOTE ON A MINIMAX DESIGN FOR CLUSTER SAMPLING
By V. M. JosHI

M ahamshird Government, Bombay

1. Introduction. The problem of determining the minimax procedure for
estimating the population mean, with two-stage cluster sampling has been recently
discussed by Aggarwal (1966), without however giving a general solution. A
general solution of the problem is presented in this note.

2. Preliminary. We shall refer to Aggarwal’s paper (1966) as the ‘Main
Paper’ or shortly as M and use throughout the same notation as in M. It is shown
in equation (6.1) in Sectiont 6 of M, that with given.m clusters, the minimax
sampling scheme is obtained by choosing the n;,7 = 1, 2, --- , m, so as to
minimize the risk,

(1> R(l‘; 5*) = {Zﬁq ni/(ni0b2 + 0'1'2)}—1 + am + Z?=1 nic; .

It is further observed in M, that theoretically speaking the risk (1) should be
minimized over the choice of n,, under the restriction that they be positive
integers, but that even without this restriction it does not seem possible to solve
the problem of minimizing (1), in general; and that it may be possible only to
obtain approximate solutions under some simplifying assumptions. The solution
for one such particular case is derived in Section 9 of M.

In the following we obtain a general solution giving non-negative values of n; ,
which minimize right hand side of (1), provided the restriction to integral values
is ignored.

3. Main result. We put,
(2) 8 = 2 rin/ (o’ + o),
(3) R = R(u, 8%).

We are concerned with only the positive quadrant of the m-spece of the varia-
blesn;,7z = 1,2, -+, m, defined by n; = 0. We shall refer to this space as the

ni-space. Suppose R has a minimum (in the calculus sense) in the positive
quadrant of the n;-space. Then at the minimum point we must have

oR/dn; = 0, t=1,2,---,m.
By differentiation, we obtain from (1)
(4) aR/an,- = ——0"1:2/82(7),,‘01,2 + 0'1'2)2 + Ci,

so that by equating dR/dn; to 0, we have
(5) ’I‘L,’O’b2 + U'L.2 = O"L./Sci%,
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and,
(6) 'n,'O'bz = O"L/ISCﬁ - 0’,'2.
Dividing (6) by (5), and summing up from 7 = 1 to m, we get, using (2),

2 1
8o =m— 8 2y chos,

ie.

(7) S—_l = m—labz + m_l Z’i’;} C;%O'.' .
Substituting (7) in (6), we get

(8) nm,2 = O'ici_’}{m_ldb2 -+ m_l Z?—_-l Ci0; — aic,-%}.

Since by assumption, this minimum occurs in the positive quadrant of the n;-
space, we must have

-1 2 -1 3 .
(9) m ey 4+ m D el 2 ol fore=1,2,--- ,m.

Thus a minimum of R oceurs in the positive quadrant, only if (9) is satisfied, and
it is seen that if (9) is satisfied the values of n;, given by (8) are all non-nega-
tive and as they are uniquely determined they must yield the minimum value of
R, which by assumption exists in the positive quadrant.

Next suppose that (9) is not satisfied Then R has no minimum in the calculus
sense at any point of the positive quadrant. It may however have a minimum
value on a point on the boundary of the positive quadrant, the minimum being
in the sense of the least value in the part of the neighbourhood of the boundary
point which falls within the positive quadrant of the n;-space. Such a minimum
occurs on a boundary point, if conditions such as the following are satisfied:

n; = 0, T =G, 0, Uk,

(10) n; =2 0,  for other 1,
OR/n: > 0, 5 =11,00, ", 0,

dR/on; = 0, for other 7.

We shall investigate the conditions under which (10) can hold. From (4), it is
seen that dR/dn,; > 0, if and only if,

(11) S_l < cﬁa;.

Without loss of generality, we can assume that the clusters are numbered in such
a way that the numbers {¢;'s;} form a non-decreasing series. It then follows from
(11), the indices ¢ for which dR/dn; > 0 in (10), must be the highest indices,
i.e. they are givenby ¢ =k + 1,k + 2, - -- , m, for some k.

We therefore assume that in (10),

(12) n,=0 for e=k+1,---,m.
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Then dividing (6) by (5), and summing from ¢ = 1,2, --- , k, and noting
that the remaining terms in the summation for S in the right hand side of (2)
vanish, we have

2 k 1
S'O'b =L — S'Zi=1c,-’ai,

so that,
(13) S = ke kT D s cdo
Then by substituting (13) in (6), we get
(14) nio’ = o k70 + k' Diacdos — el i=1,2, -k
From (13) and (14) it follows that, in order to satisfy (10), we must have

ol + Dhacle 2 kedos, i=1,2, -,k
(15) ol + Dk cltor < kel i=k+1, -, m.

We shall next show that there always exists one, and only one value of k, for
which (15) is satisfied.

Since the numbers {cﬁai} are non-decreasing, the inequalities (15), are equi-
valent to

(16) o+ D ia cioi — koo, = 0,
(17) 0'52 + le;l ci%a,' - kC}i+10’k+1 < 0.

Putting k = 1, it is seen that (16) is satisfied. Further, since by assumption (9)
does not hold, (16) does not hold for & = m. Hence assigning to & successively
the values 1, 2, we must reach some lowest value k for which (16) and (17) hold.
We now show that there is no other such value. Let k" > k. Applying (17) and
the monotonicity of ¢ o: we have

2 K’ 2 k 3 K’ 3
o + Zi=1 Ci*'Ui =0y + Zi=1 ¢t + Zk+1 ciror < kci+1‘0'}c+1
’ 1 7L
+ (k' — k)cir-or = Kkcko-onr.

Hence (16) cannot apply for K.

Using this value of k, we obtain by (12) and (14) the unique set of values of
n: , for which the relations in (10) are satisfied.

By elementary considerations it is seen that B must have a least value in the
positive quadrant of the n-space; since by assumption, R has no minimum in the
caleulus sense, at this least value, relations like those in (10) must hold. But as
shown above, there is only a unique set of values of n;, satisfying (10). This
unique set accordingly gives the least value of R in the positive quadrant of the
ni-space.

The values of n; given by (8) are the same as those given by (14), where k
is taken equal to m. Hence the rule for determining the minimizing values of n;
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may be stated as follows: construct successively the series of numbers,
(18) tk = k_16b2 + IC—I Zle C}'O’i
fork = 1,2, -+ ; continue the series until we reach a value of k, for which (16)

and (17) hold, or until & = m. This procedure always gives a unique value of k.
Using this value in (13) and (12), we get the minimizing values of n; .

4. An application. As an application of our formulae, we shall verify that the
values of n; given by our formulae agree with those obtained for the particular
case in Section 9 of M. In this case, it is assumed that

a,--cf = for all <.

Clearly condition (9) is satisfied. Hence by (8),
ni = moi/ed = mt /e, i=12, -, m,
which are the values derived in Section 9 of M.

b. Integral values. Actually the values of n; must be integral. The integral
values may be obtained by rounding to the nearest integer, the values given by
(8) or (14). These nearest integral values, would not necessarily give the mini-
max design and some adjustments of the values by trial and error may be neces-
sary. In most cases however the nearest integral values will give at least a design
close to the minimax design.
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