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ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS

By Saur BrLuMENTHAL' AND ARTHUR COHEN’

New York University and Rutgers—The State University

1. Introduction and summary. Let the random variables X1, X2, -+ , Xin,
t = 1,2, bereal valued and independent with density functions f(z — 6.) (0;real),
t = 1, 2, (with respect to Lebesgue measure). We take ffw zf(z) dr = 0 with
no loss of generality. The problem is to estimate the ordered pair (6, , 6;), under
the condition 6, = 6;, when the loss function is the sum of the squared errors in
estimating the individual components. Questions of minimaxity and admissi-
bility of the analogue of the Pitman estimator are considered.

This problem, which represents a two dimensional estimation problem subject
to constraints, has received attention in the past. Most of the literature deals with
obtaining maximum likelihood estimates for specified densities. (See for example
Brunk [3].) Katz [6] considers some aspects of the problem for the binomial and
normal densities.

The analogue of the Pitman estimator studied here is the vector estimator which
is the a posterior: expected value of (6y, 6.) given X;;,7=1,2,7=1,2, --- ,n,
when the generalized prior distribution is the uniform distribution on the half
space 0 = 6, . If we call this estimator § = (6, 8;), then

5i(Xll ) X12 Tty XZn)
(1.1) = [fo,20, 0 [17= f(X1; — 61) [1}=1 f(Xs; — 65) d6y df,

[ oy 20, H:Llf(le — 61) I?=1f(X2j — 6;) doyde,)”, ¢ =1,2.

In order to state the main results, it is convenient to introduce some notation.
Let

(1.2) Xi= [6:]]}af(Xs — 6:)dos/ [[imf(Xs; — 6:)dos, 5 =1, 2.

Let YV, = (Yﬁ y Yf,'z, ey, Yi,n—l) where Yij = X,;,j_;.l — X . Let p(x, y) be
the conditional density of X; given Y; when 6; = 0.

We obtain the following results: (a) If EE[(X,® + X5°)| Y1, Ya] < «, and if
p(x,y) = p(—=z,y) then the Pitman estimator (4, 8;) given in (1.1) is minimax.
The normal and uniform densities are examples of when this condition is satis-
fied. (b) Let P(, y) denote the cumulative distribution function corresponding
to p(z, y). That is, for a fixed y,

P(z,y) = [Zap(u, y) du. If EE(Xy + X5') |V, Vo] <
and if p(z, y) is such that for each y, p(z, y)/(1 — P(z, y)) increases in z, (i.e.
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518 SAUL BLUMENTHAL AND ARTHUR COHEN

increasing hazard rate) and p(z, y)/P(x, y) decreases in z, then the Pitman esti-
mator is minimax. The family of gamma densities, f(¢) = " exp (—£)/T'(a + 1)
for « > 0, are examples of when the above condition is satisfied. The proofs of
the minimax results (a) and (b) are based essentially on the method of Farrell
[4]. (¢) An example is given which indicates that in general the Pitman estimator
is not minimax. The example is justified by a computation performed by numeri-
cal integration. The numerical integration shows that the risk of the Pitman esti-
mator exceeds the risk of an estimator known to be minimax. The results (a)
(b), and (e) indicate that whereas in a related one dimensional problem, namely
to estimate a translation parameter 8, subject to 8 = 0, (see Farrell [4], Section 7),
the Pitman estimator is always minimax (save for moment and continuity con-
ditions), the same is not true for this two dimensional. problem. (d) Let

(1.3) p(y) = max {Sup_wcac [[Z0v dv [Z0 p(u — v, 1)

plu + v, 9) du/z [2o [Zop(u — v, y1)p(u + v, y2) du dv), 2}.
If

(14) Bl(y)E[( X + XY
(1 4 |log (X 4+ X)|P| Y1, Y] < », forsome B > 0,

then the Pitman estimator given in (1.1) is admissible. The normal density is an
example for which (1.4) holds. Whereas Katz [6] stated the admissibility result
for the normal case, the proof there is not adequate. The proof given here is based
on results of Stein [9], and James and Stein [5].

In the next section we give notation. The minimax results are given in Section
3, and admissibility in Section 4.

2. Notation. The notation of the preceding paper [2] will be adopted com-
pletely and references in the sequel to equations (2.1) through (2.16) refer to the
corresponding equations in [2]. In addition we add here the equation for the risk
of an estimator (6;(X1, X2, Y), 6:(X1, X, Y)) for (6, 6.)

(217) R(61,0,,81,8) = [ [Zs [2al(:(21, 22, y) — 61)°
4 (8a(@1, 22, y) — 6:)°Ip(21 — 01, 2 — 65, y) drydew(dy).
In terms 0f< this notation the estimator (1.1) becomes
(2.18) 8 X1, X2, ¥) = [ fo,20, 00(Xs — 61, Y1)p(Xs — 05, ¥) dby by
S oy20, p(X1 — 61, Y1)p(Xa — 02, Ya) dby d] .

3. Minimax property of Pitman estimator for estimating both parameters,
given 6, = 6; . In Theorems 3.2 and 3.3 below we give sufficient conditions for
the Pitman estimator to be minimax. It appears that, whereas in the analogous
~one dimensional problem, the Pitman estimator is always minimax, provided the
distribution p has finite variance (see Farrell [4], Section 7), the same is not true
for the problem considered here. In fact an example is offered in which it appears
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that the Pitman estimator is not minimax. This proposed counterexample is
supported by computing a risk function by numerical integration. The develop-
ment of this section is based on that of Farrell [4].

First we state

TarorEM 3.0. Let (8:(X1, X2, Y), (X1, X2, Y)) be any estimator of (0y,62)
with the property that

(31) R(gl, 02, 31, 52) é R fO’I‘ 02 é 01,

where R is the constant risk of the estimator (X1, X,) (we assume R < o). Then
(81, 82) is a minimax estimator of (61, 62), for 2 = 6; .

Theorem 3.0 is a special case of the following more general result.

TuroroM 3.1. Let 2y be a subset of Euclidean 2-space K, such that there exists a
sequence {a, , by |n = 1} for which

(3.2) lim infoe { (61, 62):(6 + an, 62 + ba) e 2o} = L.
Let (8,1, 8;) be an estimator with
(33) R(01 ) 0, ) &1 y 52) = R Z:f (01 y 02) €2

where R is as in Theorem 3.0. Then (8;, 82) is a minimaz estimator of (6, 0s), for
(01 , 02) 2.
Proor. Suppose there exists an estimator (8, §) and € = 0, such that

(34) R(6:,0,,6,8) <R —e€ if (6:,60)cZ.
By change of variable in (2.17), we see that if (6; 4 a. , 62 4 b,) € 2o, then
(35) R(6:,0:,8(x1+ an, %+ b0) — @, 8(T1+ G, 22+ b)) —ba) SR — e

From the sequence of estimators [§i(z1 + @ , %2 + bu) — @, 82(21 + @,
23 4 b,) — b,] we may take a subsequence which converges regularly (weakly) to
a limiting estimator 8* = (8%, &) with the property that

(3.6) R(6y,0,, 8% &™) <R —¢  forall (6i,0,)cE:.

This last statement follows from (3.5), (3.2), and the fact that for the unre-
stricted problem the set of decision functions is compact, after compactification
of the action space. (See LeCam [7], Remark 6 and see [2], Theorem 3.1).
Furthermore, for the unrestricted problem it is well known that (X, X;) is a
minimax invariant estimator with risk R. Hence from (3.6) we must have e = 0,
which proves the theorem.

ReMARKs. (1) The generalization of Theorem 3.1 to K dimensions is obvious.
Clearly, (3.2) will not be satisfied when Z, is a bounded set, or when Z, is con-
tained between a pair of parallel lines. For Theorem 3.0, we may take a, = 0,
b, = n.

(2) It appears that this theorem would follow also from the results of Peisakoff
[8].

By virtue of Theorem 3.0, it follows that if we show that the Pitman estimator
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satisfies (3.1) then it will be minimax. We proceed to develop sufficient condi-
tions that determine when the Pitman estimator satisfies (3.1). Note that the
risk for an estimator (&, ), given in (2.17), may be written as

R(6y, 02, 81, 82)
(37) =3[y S (0 4+ & — (64 &)+ (8 — & — (6 —6))]
p(xy — 61, T — 03, y) doy daw(dy).
If welet v1 = (8 + 82)/2, v2 = (8 — 81)/2 and define Zo, Z1, 7, and p as in
(2.12), then (3.7) becomes
R(p, m, 71, 72) .
(38) =4[y % [Za(n — 1)’ + (2 — ) (2 — w) — (20 — m), )
p((z1 — p) + (20 — 1), Y2) deo dew(dy).
It is convenient to rewrite (3.8) as
(3.9) Ry, m, v1, v2) = 4Ra(p, m, v1, v2) + 4Be(p, 1, 71, 72)
where
(392) Ri = [y % [Zulr — Wl'p((2r — 8) — (20 — 1), %)
p((21 — w) + (20 — 1), Y2) dzo dzrw(dy)

and R, is defined similarly.
The Pitman estimator is determined by

(3.10) 0 = [ [T (v — wp((2r — w) — (20 — 1), %)
p((z — ) + (20 — ), 42) dndu
and
(311) 0 = [Z [T (v2 — Mp((21 — w) — (20 — n), )
p((2r — 1) + (20 — 1), Y2) dn dp.
If we now let u = 2 — pand v = 2o — 7, then (3.11) becomes
(3.12) 0 - [20 [Z (v2 — 20 + v)p(u — v, y1)p(u + v, y2) dv du.
Call '
(3.13) JZap(u — v, y)p(u + v, o) du = g(, 7).
It follows from (3.12) and (3.13) that for (2o, ¥) such that [2%g(v, y) dv > 0,
(3.14) ve = 20 — ([*%0g(v, y) v/ [Zag(v, y) dv).
We define v2(20, ¥) to be 2o otherwise. Similarly from (3.10) we find that for
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(20, y) such that ff_% g(v, y)dv > 0,
(315) m = & — [%%[Zaup(u — v, )p(u + v, y2) dudv/

f’_"w ffw p(u — v, y1)p(uw + v, yo) dudv.
From (3.14) we see that v, depends only on (20, ¥) and not on z . Hence
(3.16) 4Ra(p, m, 71, v2) = JoyfZe(ve — n)’g(20 — n, y) dew(dy),

which implies by the result of Farrell [4], Section 7, that 4Rs(u, 1, v1, v2) = R/2,
and that

(3.17) lim,,,_,w lim,,_m 4R2([.L, N, Y1, ‘yz) = R/2
Also, if )
(3.18) J2oup(u — v, y1)p(u + v, ) du = 0,

it follows that 41 = 21, which in turn implies that 4Ri(x, 9, v1, v2) = R/2. This
then gives us

TareoreM 3.2. If the density p defined in (2.6) has finite variance and if it is
such that (3.18) holds, then the Pitman estimator is minimax.

We note that when n = 1, condition (3.18) is implied by any density f which
is symmetric. Also it is clear that (3.18) is satisfied when f is either the normal
density or uniform density for arbitrary n. (See Section 3 of [2].)

In order to develop another sufficient condition for the Pitman estimator to
be minimax, we introduce some further notation and prove some lemmas.

Let

(3.19) @z, y)
Note
(3.20) G(z0, y) = % [Zup(z, y)P(z + 20, yo) du

= 3 [Zup(z, 1)1 — P(z — 220, )] da.

Il

[*%g(v, y) dv, Pz, y:) = [Sep(z, y5)dz, i = 1,2

Also let
E(z,y) =} [Zozp(z, y2)P(x — 220, 1) da
= —1[Zoap(z, @)l — P(z — 2, p)ldz,
F(z,y) = } [Zoap(z, 1) P(z + 220, 32) de,
(321) E(z0,y) = E(20,9)/G(20,y), F(a,y) = F(20,7)/F(,y),
K(z,y) = —(F(20,y) + E(20,9))/G(20, 9),
H(zo,y) = (F(20,y) — E(2,y))/G(20,9).
T(z0,7) = [Zaap(z — 20, y)p(z + 20, y2) do.
We note that the Pitman estimator is determined by (3.15) and (3.14) and
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so it may be written as

(3.22) =2 —H(z,y)
and
(3.23) ve =20+ K(z,¥),

whenever G(20,y) > 0, and v1 = 21, v2 = 20, otherwise. To verify (3.22) we see
that the numerator of the integral on the right hand side of (3.15) may be written
as

2 [Zeup(u — v, y1)p(u + v, ) dvdu
= 1 [2, 27 (4 + 9)p(s, y1)p(t, 1o) dst
=1 [Zasp(s, y)P(20 + s, ya)ds + }[Z [antp(t, v2)p(s, 1) dsd
= F(z0,y) + 1 [Zutp(t, y2)[1 — P(t — 220, y1)] dt
= F(Zo, y) - E(ZO: y)'
Thus (3.22) is verified and (3.23) is verified similarly.
Now we prove
Lemma 3.1. Let v1(20, 21, y) and v2(zo, 21, y) be the components determining the
Pitman estimator. Then for each (z1, y),
(3.24) - lim,sw (71 — 21) = 0,
(325) limzo_,w (’Yz —_ 20) = 0

For all (20, y) such that fz_"m g(v,y) dv > 0, y2 — 20 18 a nonincreasing function of
20, and

(3.26) |H(20,y)| = —K(20,9).
Also,
(3.27) limyesee limyaw B( 4, 1, 71, 72) = E.

Proor. Statements (3.24) through (3.26) are obvious from the definitions
(3.14), (3.15), and (3.21). Using (3.9) and (3.17), then (3.22) and (3.26)
in (3.9a) with the monotone convergence theorem gives (3.27).

LemMa 3.2. Suppose for each y there are real numbers b(y) and c¢(y) satisfying

(3.28) b(y) < e(y) and 1= [i} g0, y) da.
Suppose also that for each (zq, y) such that G(zo,y) > 0
(3.29) B(zo,y) and F(z,y)

are monotone functions of 2o , for each y. If R(u, n, v1, v2) ©s the risk for the estimator
(71, v2) gtven in (3.22) and (3.23), then

(330) #n =0, R(pynm,r) =R; R0 7, =R.
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Proor. Consider the functions

R(”’) M Y1, Y2, y)
(331) = 4J‘§EZ; fo—ooo [('YI(ZO + 7, %1, y) - #)2 + (’)’2(20 + n, 21, y) - 7’)2]

(21 — 1) — 20, y)p((21 — p) + 20, Y2) der dzo
and

(332) R(y) = 4[i8 [2a (28 + &' )p(ar — 20, y1)P(a + 20, y2) dea deo.

From the proof of Lemma 3.1 we note that if z > ¢(y) then v; = 21 and vz = 2o
which in turn implies that

(3.33) ifq > c¢(y) — b(y) then R(g, n, 11, 712, ¥) = R(¥).
Let the function
(3.34) [e(R(y) — R(p,n + dy 71,72, 9)) dn = T(d).

If T(d) is a decreasing function of d, it will follow that if 9, d = 0, R(y) =
R(u,n + d, v1, vz, y). Suppose 0 < d; < dy. From (3.22), (3.23), and (3.34)
and some simplification we find

I(dy) — T(ds)
=4[5 dn [2u{[HY 20 + &, y) — H'(z + du, 9)g(z0 — 1, 9)
(3.35) + [K*(20 + do, y) — K'(20 + i, 9)lg(20 — m, y)

— 2[H(20 + da, y) — H(zo + du, )T (20 — 1, 9)

+ 2[K(20 + dz, y) — K(zo + dr, ))(20 — m)g(20 — n, ¥)} dzo.
1t follows from (3.28) and (3.33) that the double integral in (3.35) is absolutely
convergent. The order of integration may be interchanged. Note That

[79(20 — ) dn = G(20, ¥),
J5 T(z0 — m,9) dn = [2% T(v,y) dv
= G(20, y)H(z0,Y),
15 (20 — 1)g(z0 — m, y) dn = —K(20, )G (20, 9).
Therefore (3.35) becomes
4 [2{[H (20 + o, y) — H(20 + di, ¥)IG(20, ¥)
— 2[H(z0 + da, y) — H(zo + di, y)]H(20, ¥)G(20, y)
+ [Kz(zo + day y) — KZ(ZO + di, PIG(20, y)

(3.36) —2[K(2 + do, y) — K(20 + di, y)IK(20, y)G(20, y)} d2o
=4 [%G(2, y){[H(z + dz, y) — H(zo + di, y)]
” ‘[H(Zo'i‘dz,?/) +H(Zo+d1,y) '—2H(Z(),y)]

+ [K(20 + do, y) — K(zo + du, y)]
[K(zo + do, y) + K(zo + di) — 2K(2, y)]} dzo.
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If we substitute the expressions for H(zo, y) and K(zo, ) given in (3.21) into
the right hand side of (3.36), and simplify we find that

I(dy) — T(dn)
= 420 G20, P{E(20 + &2, y) — Blz + di, y)]'
(3.37) + [Pz + do, y) — F(z0 + du, 9)I
+ 2[B(20 + da, y) — B(zo + dy, )][B(20 + di, y) — Bz, 9)]
+ 20F(z0 + o, y) — Flzo + di, ¥)]
[Pl + di,y) — F(20,9)]} deo.

Now by hypothesis it follows from (3.37) that for all 0 £ dy < d», I'(dy) —
I'(d:) = 0. It is clear from the proof of (3.27) that for each y, R(u, 1, v1, vz, ¥)
is a continuous function of n. Now we may proceed exactly as in Farrell [4],
p- 985, to complete the proof of the lemma.

We now generalize Lemma 3.2.

TurorREM 3.3. If the density p defined in (2.6) has finite variance and if for each
(20, y) such that G(z, y) > 0, E(z0, y) and F(z, y), defined in (3.21), are
monotone functions of 2o, for each y, then the Pitman estimator is minimaz.

Proor. The proof follows from the argument in Farrell [4], pgs. 985-986, by
letting, for each integer n = 1, and for all y,

Pu(20, 21, Y) = Pa(21 — 20, Y1)Pu(21 + 20, Y2)
= p(zr — 20, y1)p(&1 + 20, 92) for |z = n.
=0 otherwise.

REMARK. Setting d; = 0in (3.37), it is immediate that I'(d) < I'(0) for any
d > 0, and letting d — o, it is then clear that R(p, 7, v1,v2) = R for n sufficiently
near zero, without any-conditions on £ or F. Thus, if the conclusion of Theorem
3.3 is to be false, the misbehavior of R(u, 7, v1, v2) will oceur at “moderate’
n values—as it does in the example given at the end of this section. (For large
7, we have (3.27).)

CoROLLARY 3.1. If the density p(x, y) defined in (2.6) is such that for each y:
and y2, p(x, 11) has increasing hazard rate, i.e.

(3.38) 9(z, 1) = p(z, 1)/(1 — P(z, y1))
increases with x, and if p(x, y2) s such that
(3.39) (%, y2) = p(%, y2)/P(z, y)

decreases with x, then the Pitman estimator is minimazx.

) Proor. It p(x, y) satisfies (3.38) and (3.39) then it follows from Theorem
3.1 of Barlow, Marshall, and Proschan [1], that 1 — P(z, 1) and P(z, ys) are
Pélya frequency functions of order 2, i.e., (PF.). We show that this implies that
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E(z0,y) and F(20, y) are monotone, and so the corollary follows from Theorem
3.3. For 20 < 2, look at the difference F(20") — F(2®), which by (3.20)
and (3.21) is

p(zo(l)) _F(20(2))
(340) = H[Zwap(z, y)P(z + 22", o) du/ [Zu p(z, Y1) P(x + 220", o) d
— [Zezp(z, y)P(z + 22°, y2) do/
JZap(@, 1) P(z + 2207, 42) da).

Clearly F is nonincreasing if (F(2") — F(2®)) = 0, which by (3.40) is equiva-
lent to

(841) [2, [Zo2[P(z + 220, y2)P(u + 22, yg)‘
— P(z + 2%, 12)P(u + 22, y2)lp(@, %)p(u, y) dudz = 0
The left hand side of (3.41) can be written as
[2e [Zo2lP(z + 220, y2)P(u + 22®, 1)

— P(z + 22, 1) P(u + 220, y2)Ip(2, y1)p(w, 41) du dz

+ [Za [2ulP(u + 20, y)P(z + 220°, )

— P(u + 2%, p)P(z + 227, wlp(w, y1)p(z, 1) dzdu
(342) = [Z [ZoalP(z + 220, 12)P(u + 2%, y»)

— P(z + 227, y2)P(u + 22, y2)p(=, y1)p(w, y1) dudz

+ [20 [ZeulP(u + 227, 12)P(z + 220%, Ya)

— P(u + 22”, 2)P(x + 227, 12)lp(u, y1)p(z, %) dude

2o [2a (z — w)P(u + 227, 12)P(z + 227, 1)

— P(u + 2%, 1)P(z + 22?, y2)lp(w, y1)p(z, 1) dudz.

Now if we utilize the PF, property of P(z, y2) in the right hand side of (3.42) it
follows that F(20®) — F(2®) = 0. The monotonicity of B(zo, y) is demon-
strated in the same way and so the corollary is proved.

ReMARKS. (1) From the proof of the corollary it is clear that if (1 — P(zx, %1))
and P(z, y.) are PF; then B and F are monotone. From Barlow, Marshall, and
Proschan [1] we note that if p(x, 41) is PF, then sois 1 — P(z, y1) and it is clear
that if p(x, y2) is PF, then so is P(z, y2). This latter fact follows since we can

write
(r(@))™ = [{p(z — A)/p(x) dA,

apd if p(z) is PF, then the integrand is increasing in x.
(2) If n = 1, then the sufficient conditions for minimaxity that refer to the
densities p(z, y1) and p(z, ¥») reduce to conditions on the original density f(x).
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Hence, for example, if n = 1, and f is PF, then the Pitman estimator is minimax.
For arbitrary n, if p(z, y) is independent of y, then the conditions refer to the
marginal density of the Pitman estimator. An example of where this is the case
and the marginal density satisfies the conditions is the exponential.

(3) We now offer the gamma distribution as another example of where the
original density is PF, and this property is maintained for p(z, y). That is, let
f(x) = z%°/T(a 4+ 1), for > 0, @ > 0. Then using the notation of Section
2 we get

(3.43) To(y)P(x, y)‘x(x + rl(y))ae—(x+r1(y))(x + 7‘1(?/) + yl)ae—(z-i-rl(v)‘Hll)
<o (x4 7‘1(2/) + yn_l)ae——(m+r1(y)+u,._1)

forx +r(y) +y:>0,alle=0,---,n — 1;and yp = 1.
Let s = 2 + f(y) + minoci<n-1¥y:, and let A; = y; — miny,;. Then we
may write (3.43) as

(3.44) ro(y)p(s, )
= (S + Ao)ae—(s+Ao)(s + Al)e—(a+A1) (S + An_l)ue—(s+A,,_1),

fors+A4:;>0,7=0,---,n — 1.
Hence if & > &,

(3.45) ro(y)p(s — &, y)/r(y)p(s — &, ¥)
= OIS (s — &+ A)/(s — & + A)}°

for (s — &+ A;)) >0,¢=0,1,---,n — 1.

Clearly the ratio on the left hand side of (3.45) is infinite if for any ¢ we have
s — &+ A:;<0ands — & + A; > 0. Thus p(z, y) is PF, provided the ratio
in (3.45) is a decreasing function of s. But if we differentiate the right hand side

of (3.45) we find that the derivative is
—a(f — &) 215 [1/(s — & + A)7]
(3.46) I l(s — & + A9)/(s — & + A
TG — &+ A /(s — 8 + A0,

which is negative. This demonstrates that the Pitman estimator for this problem,
given the original density, is the Gamma, is minimax.

(4) If the marginal density of the Pitman estimator X is PF, and X is suf-
ficient for the observations (X, Y), then it is easily seen that p(X, Y) is also
PF,. In fact, the joint density of (X, ¥V) is g(60)h(X — 0)K(X, ¥), so that the
marginal p(x) is just g(60)(X — 0)I(X), where I(X) = f:y K(X,y) [1:=5 dy:.
Setting L(y) = ¢(0) [ h(z)K(z, y) dx, we see that p(X, ¥) = g(0)m(X — 6)-

K(T, Y)/L(Y) so that (p(X1 — 61, y)/p(X1 — 62, ) = (p(X1 — 61)/
p(X; — 62)), and the PF, property of p(X) holds also for p(X, Y).

We conclude this section with an example which indicates that the Pitman

estimator is not in general minimax. Let » = 1 and consider the density, with
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finite variance,
f(=z) =3/x4) l=z= =,

=0, otherwise.
It can be verified that for zo > 0,
G(z0) = (20 + 220 + 20 — 20 + 20 — 102 — 452 — 3020
+ 30(1 + 2)" In (1 + 20))/2'(1 + 2)°*

and
E(z) = (3/2)X(20) — (3/2)(2° + 2 — 2' + 2 — 62 — 122

+ 12(1 + 20) In (1 + 20))/2°(1 + 20).
These quantities enable us by numerical methods, t0 evaluate the quantity
(3.47) R — R(p, n, 71, ¥2)- (See (3.31) and (3.32)).

At 5 = 1.75, the numerical integration yielded a value less than —.5 for (3.47),
indicating that the Pitman estimator cannot be minimax for this problem.

The numerical integration was based on the 96 point Gaussian quadrature
integration routine. As a check on the computation, we calculated (3.47) for
p = 0,7 = 0. In this case it can be verified, by writing out the integrand for
(347), for u = 0,4 = 0, in terms of E(z, y), F(20, y), and G(2¢, y), and per-
forming the integration, that (3.47) is zero. The numerical integration gave a
value of —.01 for (3.47) when u = n = 0. We wish to acknowledge Mr. Kenneth
E. Larsen and the Western Electric Research Center, Princeton, New Jersey,
for the computations.

4. Admissibility for 6, = 6,. In this section, we demonstrate the admissi-
bility of the estimator (&(-), 8(-)) given by (1.1) and (2.18), under certain
moment restrictions. This result includes as a special case the normal distribu-
tion. We shall use the notation of (3.8) and prove the admissibility of the
equivalent estimator (vi, vz) given by (3.10) and (3.11). The method is an
adaptation of that of [5] and of Section 4 of [2]. The major difference is that
whereas it was possible to bound from below the denominator of (4.16) in (2]
by means of the Markov inequality, the restricted parameter space here does
not allow the use of that device in the corresponding expression (4.4). The
subsequent necessity of using the Schwarz inequality in (4.5) to eliminate that
denominator causes the moment conditions of Theorem 4.1 to be somewhat
stronger than those of Theorem 4.2 of [2] or of Theorem 2 of [5].

By adopting Theorem 3.1 of [5] to this problem and making computations
similar to (4.4) in [2], it is easily shown that almost admissibility of (v, v2)
is implied by

1imyoe (1/75(0)) [ v(dy) [Ze [Ze0 dzr dea
(£1) A2l [Ze(vdzr, 22, y) — E)po(2r — £, 22 — B, Y)
m(f, E)h(h, b) ddl’
[ [Z0polzs = &1, 22 — &, Y)me(ln, B)R(E, &) dardl '} = 0,
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where we write 2, for z; of (2.12a), 2; for 2o of (2.12a), & for u of (2.12b), &
for 9 of (2.12b), (&, &) is given by (4.8) of [2], po(®1, 72, y) is given by
p(xy + 22, x2 — 21, y) and
(4.2) h(£1,22)=1 f —wo<fH <o, 026 < o,
=0 if —o<Hi< o, —0<ELO

TueorEM 4.1. Let the observed variables (X1, Xz, Y) be distributed so that for
some 8 = (61, 6s), (X1 — 61, X2 — 65, Y) has a probability density p(z1, 2, y)
satisfying (2.7) and (2.8). Let g(v, y) be given by (3.13) and

(4.3) p(y) = Max {SUP—wcsc [[Zw v9(v, ¥) dv/z [Za g(v, y) dv], 2}.

If
(44) [yr(d)d’@) [ [ (@' + 251 + [log (& + =)
(1, T, y) dryday <
then (81, 82) given by (2.18) is an admissible estimator of (61, 65) giwen (62 = 61).
Proor. As in Theorem 4.1 of [2] it is sufficient to show almost admissibility.

To prove the theorem then we demonstrate (4.1) with (& , &) given by (4.8)
of [2]. Call the inner integral on the left hand side of (4.1), I(y), i.e.

I(y) = f:ow fwdﬁdzz{zga[ i foo(’)’i(zl, 2 y) — &)
(4.5) oo — b, a — b, Ymlh, B, &) dadeal
A [polar — &1, 2 — &, Y)7allr, E)I(Er, &) dErdE] ).

Using (3.10) and (3.11) in (4.5), followed by the Schwarz inequality and a
change of variables, we obtain

I(y) = [ [dadeaf 2 [[20 [Z (vd21,22,9) — E)po(er — £1,20 — &2, )
(7o, B) — molze, 22))h(Er, &) dbda]
A fooer — b1, — &, y)mol &, &) dfa d] )
(4.6) < [ [dndn X [20 [2a (vi(er, 22, 4) — £z — 1,22 — B2, 9)
mo(f1, &) — w2, ) Im (&, &) h(E, &) dade
= [ [ poz1, 72, y) daidzs
e [Pa (v + &, 1+ B, y) — 8
mo(br, B) — wo b+ 21, £+ 2) Plro(&, £)17(h(&1, &) dE1 dEs).
We shall show below that for & > 0,
47 Dia(rdm+ b, m+ b, y) — £) S G (@ + @ + 1)
with p(y) given by (4.3), and C; independent of y. Using (4.7) in (4.5) we get
> I(y) £ O f [IP() (@ + @' 4+ Dlpo(@, 22, y) daades
(4.8) SR [Zalmf, B) — T+ @, b+ 20)]
[ro(fr, 8176, £2) db .
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Note that

(49) % [Za (1 (s, B) — m(t + o, &+ @))/m(h, b)) Mh, &) dads
< [ [P {lmetr, £2) — m(f + 3, & + 2) /(I8 + 2} dadia,

where 7*( ||£||) is given by (4.18) of [2]

(4.10) A=Ay = [[ (@ + 2 2Vpo(@y, T2, y) Aoy das .

The right side of (4.9) is the inner integral of (4.17) of [2] and has been bounded
by Stein [9], equation (2.21), subject to A(y) = Cso. Using the Stein bound and
(4.9) in (4.8) gives after some reduction

(411) I(y) £ Cilo*(y)(log o) /ollff(z* + 21 + llog (21" + @))I]
po(x1, T, y) dridas], if Ny) = Cho.

Further, applying the Schwarz inequality directly to (4.5) and using (4.7), it is
easily shown that without any restriction on \(y),

(4.12) I(y) = AW + 1.

It is now possible using (4.11) and (4.12) to proceed as in James and Stein
[5], pps. 374 and 375, to complete the proof of the theorem (noting that X ®(y) =

2 [ [(x* + x')p(a1, 22, y) darda,), subject to
(4.13)  [o(d)it @) [ [ (@' + @) (1 + [log’ (= + =7)|)
p(1, T2, y) drrdae < .

Clearly (4.13) is equivalent to (4.4).
It remains to prove (4.7). To do this we will refer to (3.14), (3.22), (3.23),
and (3.26). First observe that if the second moment of g(v, y) given by (3.13)

exists, (forz < 0)
[2wdz [Zavg(v, y) dv
2 [Zavg(v, y)dv — [Zo0’g(v, y) dv
(4.14) =z [lovg(v, y)dv — 2 P [2wg(v, y)dv + [2w 2 [Twg(x, y)dxdy
=2 [la(v — 2)g(v, 9) dv + [Za20 [Lwg(z, y) dudv
> [Zo22 [Z0g(v, y) dvda.
Since the inequality (4.14) is true for all z < 0, it follows that

(4.14a) lime—o [Zovg(v, y)/z [Zwg(v,y)dv £ 2.
Thus p(y) will be well defined, and we will have
(415) = > {[Zovg(v, y) B/ [Zag(v, y) do} > 2p(y), (x = —1).

By virtue of (2.8), [Zwvg(v, y) dv = 0, so that the ratio in (4.15) is always
negative and goes to zero as + — «. Further, it is easily seen that this ratio
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increases monotonically for all x (see Lemma 3.1) so that in particular
(4.16) {[Zwvg(v, ) dv/ [Zwg(v, y) dv}

2 {[Zovg(v, y) do/ [“og(v,y) o} 2 p(y)  (z 2 —1).
Now using (4.15) and (4.16) in (3.14) (with 2, in place of zy), we find that
(4.17) (ra(z + &, 3+ &, 9) — &) = 2°(9)(1 + 20°).
Using (3.22), (3.23), and (3.26), it is easily found that
(418) (m(m + &, .+ &, y) — &) = 22’ + 2°(9)(1 + 22)).

Combining (4.17) and (4.18), we get (4.7) and complete the proof of Theorem
4.1 .

ReMARk. If the Pitman estimator X, is independent of Y, the condition
(4.4) reduces to B{(Xy* + X:N[1 + |log (Xi’ + X)|’]} < o, which includes
both the normal and exponential distributions for n = 1.

Acknowledgment. The authors are grateful to the referee for Theorem 3:1.
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