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CONCENTRATION OF RANDOM QUOTIENTS!

By WiLLiam H. LaAwToN

Eastman Kodak Company

1. Summary. The present paper proposes a definition of relative concentration
of random variables about a given constant, and studies the relationship between
two stochastic denominators Z; and Z, which causes the random quotient X/Z,
to be more concentrated about zero than X/Z,. In this paper we shall always
assume that the numerator and denominator are independent.

Two necessary and sufficient conditions, and several sufficient conditions for
X/Z, to be more concentrated about zero than X/Z; are given in Section 4. The
results of Section 4 are used in Section 5 to obtain generalizations of a theorem
due to Héjek (1957) on the generalized Student’s ¢-distribution. Sections 6 and 7
use these generalized theorems to produce tests and confidence intervals for
several Behrens-Fisher type problems. Finally, Section 8 contains a proof of the
randomization theorem stated in Section 4.

In particular, Secton 6 is concerned with the extension of a result in Lawton
(1965) on Lord’s u-statistic to the case of unequal sample sizes. Section 7 gives
methods for constructing confidence intervals for linear combinations of means
from %k normal populations.

2. Introduction. While the definition of relative concentration of random vari-
ables considered in this paper has not been given previously, the concept is quite
closely related to the notion of relative peakednesspresented by Birnbaum (1948),
and has appeared, somewhat disguised, in a paper by Hijek (1957).

DeriniTioN 1. A random variable Z is more concentrated about a constant co
than the random variable Y, in symbols Z <., Y, provided

Pla<Z —c<b =2Pla<¥ — ¢ < b}

for every interval (a, b) containing zero.

Let Z, be a random variable with distribution function F((z — b)/a), that is,
a random variable with location parameter b and scale parameter a, then Z,, is
more concentrated about b than Z,, if and only if ; < a. . Thus, the notion of
concentration given by Definition 1 is consistent with the notion of concentration
in terms of scale parameter. Also, as one would hope, the random variable de-
generate at ¢o is the most concentrated random variable about ¢,. It may be of
interest to note that concentration about ¢, has a simple interpretation in terms
of distribution functions.
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REMARK 1. Z <, Y if and only if
Fz(z) £ Fy(z) for z < ¢,
Fz(z) = Fy(z) for x> ¢.

The proof is immediate.

If the distributions of ¥ and Z in Definition 1 are symmetric about ¢, , as they
were in Birnbaum’s work, then the present notion of coneentration coincides
with Birnbaum’s concept of relative peakedness. Birnbaum was concerned with
concentration of sums (or equivalently, of arithmetic means) of random vari-
ables, and he proved

TareoreMm 1. (Birnbaum). Let Yy, Y2, Z1, Z, be continuous random variables
with probability densities o1, @2, f1, fo respectively. If .

(1) Y1 and Y, are independent, and Z, and Z, are independent,

(i) giand f;, 1 = 1, 2, are symmetric about zero,

(i) ¢z and fi are non-increasing functions on [0, =),
then

VioZi,i=1,2=2Y1+Y,<Z1+ 2.

This result relates concentration of individual variables to concentration of
their sums. From this theorem he obtained

Tueorem 2. (Birnbaum). Let Y be a continuous random variable such that

(1) o(y) is symmetric about zero,

(ii) o(y) s non-increasing on [0, ),

(iil) P{|Y| > a} = 0 for some finite a > O,
then for alln

Wo Ko Y <o Zn

where Y, is the sample mean of n independent observations of Y, and Z, is the sample
mean of n independent observations from the uniform distribution on (—a, a), and
W, the random variable degenerate at 0.

Now concentration about 0 (<<,) is an order relation on the space of random
variables, and this last theorem merely gives the extreme points (relative to <)
of a special set of random variables. If 9 is the class of all random variables satis-
fying conditions (i), (ii), and (iii) of Theorem 2, then this theorem states that
the set { V»: Y;independent, identically distributed, and in Y} has extreme points
W, and Z, . Birnbaum uses the bound Z, to obtain an upper bound for the tail
probabilities P{|Y,| > y}.

Hajek (1957) does not mention the notion of concentration or peakedness, but
his results are easily expressed in terms of these concepts. Unlike Birnbaum,
Hijek dealt with ratios of independent random variables.

TareorEM 3. (Hé,]ek) Let X have a standard mormal dzstrz"butwn, and let
z=1{2:Z= SE A (1), M = 0, Dty i = 1 where the x.*(1) are independent

of each other, as well as of X}. Then
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(1) X/ (n) /nl <o X/1Z1 <o X/IXC() /o1
for all Z in Z, provided v < min; <i<a {1/N3}.

Thus, Héjek examined the class of random quotients {X/ [Z1: X distributed
N(0, 1), Z £ Z}, and demonstrated the existence of extreme points (relative to
<o) in the set. Thus, H4jek, like Birnbaum, has examined a set of random vari-
ables and shown that the set has extreme points relative to the ordering < .
Hé4jek used his result to obtain bounds for the type I error in the Behrens-Fisher
problem.

One of the questions immediately raised by Héjek’s work is whether one need
be so restrictive about the distributions of the numerator and denominator, or
do similar results about extreme points hold for more general classes of random
quotients. Also, one might ask what property of the denominator causes
X /Z, <0 X/Z, . Clearly, if Z, and Z, were non-negative and Z; were stochastically
larger than Z, , then this order relation would hold. This, however, i IS not a neces—
sary condition because [x*(n) /n]! is not stochastically larger than [x*(») /ol

3. Assumptions, remarks, and notation. As in [3] we will consider random
quotients of the form X /h(Z), where X and Z are independent random variables,
Z non-negative and h(-) a contmuous real-valued function. In Hajek’s work X is
standard normal, h(z) = 2}, Z = > 71 Aix(1). It was shown in [3] that Héjek’s
proof goes through if one only assumes that the following condition is satisfied.

ConorTioN (A). The pair (X, h) is said to satisfy condition (A) if

(1) X has a continuous distribution function,

(2) for any a < 0,b > 0 the function fo(2) = P{a < X/h(z) < b} is concave
forz = 0.

Exawmpire 1. If i(2) = 2, and X is a random variable with a density ¢(z), then
Condition (A) simply requires that ¢(z) be unimodal at zero. That is, ¢(z) and
o(—z) are non-increasing functions on [0, « ). This then would allow X to be
distributed N (9, 1) only when & = 0.

ExampLE 2. Once again let X have a density ¢(z). If we allow A( - ) to be a con-
cave function on [0, « ), then we can relax the restriction that ga(x) be unimodal
at zero. For example let X be distributed N (3, 1) and k(z) = 2%, then it can be
shown that the pair (X, h) satisfies Condition (A) if and only if |6| < 2.

The relationship (1) of Héjek’s Theorem 3 states that forn = »

(2) * X/h(x(n) /n) <o X/R(xP()/v)

whenever the numerators and denominators are independent, and X has a stand-
ard normal distribution and h(z) = 2z!. However, since the proof Hijek used
works for any (X, h) satisfying Condition (A), we find that the two non-negative
random variables x*(n)/n and x*(»)/» have some relationship which causes (2)
to hold whenever the numerators and denominators are independent and (X, &)

“satisfies Condition (A). The following example shows, however, that (2) may
not hold without Condition (A).



CONCENTRATION OF RANDOM QUOTIENTS 469

Exameze 3. Let X be distributed N (8, 1) with § = 4.25, and let h(z) = 2,
then it.ean be shown that (X, h) violates the second requirement of Condition
(A).Taken = 10 and » = 5, then (2) is equivalent to

P{a < t,0(4.25) < b} = P{a < t5(4.25) < b}

for all intervals (a, b) containing zero. Here ¢,(8) represents a random variable
having the non-central ¢-distribution with n degrees of freedom and non-centrality
parameter 8. Tables of the non-central ¢-distribution yield

P{t0(4.25) < 6.0} = .7437 < 8210 = P{t;(4.25) < 6.0}

which contradicts the relationship in (2).

The relationship in (2) leads us to define the notion of a uniformly better
denominator.

DeriniTIiON 2. Let Z; and Z, be two non-negative random variables. Z, is said
to be a uniformly better denominator than Z, , written Z; < Z,, provided

X/ Zy) <o X/h(Z2)

whenever X is independent of Z; and Z,, and (X, k) satisfies Condition (A).
Our goal in the next section is the study of the order relation of Definition 2.
In the remainder of the paper let B* denote the compact, positive half-line.

4. Properties and characterization of <. We now proceed to investigate those
properties of Z; and Z, which cause Z; < Z,. Theorem 4 gives two necessary
and sufficient conditions for Z; < Z, which will be useful in studying the ordering.
Theorem 4(iii) is of particular interest because it deseribes a method by which one
may construct, for a given Z;, all random variables Z such that Z; < Z.

Let 8 represent the class of all non-negative, concave, non-decreasing con-
tinuous functions on Rt to R'. Define the notion of a randomized, mean de-
creasing map, rmd map for short, as follows:

DzrFINITION 3. Any real valued function T,(y) on BT X R' which is

(1) a measurable function in z for each fixed y,

(2) the distribution function of a non-negative random variable for each fixed

2, and

(3) [r+ydT.(y) < e, for every z in R,
is called a randomized, mean decreasing map.

For each non-negative random variable Z we will designate by 7'(Z) the
random variable having distribution function

FT(Z)(y) = fR"' Tz(y) sz(Z).

ExampLE 4. Let Z be any random variable defined on the non-negative integers,
and let Y be a random variable with conditional distribution P{Y =k |Z = 2} =
(,';)’?"(1 —p) ™ forsome0 < p < 1. Wehave E(Y |Z = 2) = pz < 2, and so

T(y) = P{Y <y|Z =2} = 2 ()P*(1 — p)"™"
is an rmd map. If Z has Poisson distribution P{Z = 2} = ¢ "\°/z!, then T'(Z) is
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just the random variable Y whose distribution is given by
P{Y =k} = D> ooP{Yk|Z = 2}P{Z = 2} = ¢ ™(p\)"/k!.

Thus, T'(Z) has Poisson distribution with parameter pA.

The random variable degenerate at zero is clearly the worst possible denomi-
nator, since it can be obtained from any non-negative random' variable by the
rmd map

1 for y <O,
0 for y=0.

T.(y)

We are now in a position to state .

TrEOREM 4. For any non-negative random variables Z, and Z. , the following
three statements are equivalent:

(1) Z 1< Zs,

(ii) Ef(Z:) 2 Ef(Z,) for all f €8,

(iil) Z; = T(Z,) where T is an rmd map.

Proor. First note that whenever (X, h) satisfies Condition (A) with X inde-
pendent of Z we have

Pla < X/W(Z) < b} = EP{a < X/MZ) < b|Z}
= Efas(Z)

where f, 5(2) is concave, non-negative, non-decreasing, and continuous on B* for
any @ < 0,b > 0. Thus, if (ii) of Theorem 4 holds, then for any interval (a, b)
containing zero

Pla < X/MZy) < b} = Efap(Z1)
> Hfsn(Z) = Pla < X/h(Zs) < b)

whenever X' is independent of Z; and Z, and (X, h) satisfies Condition (A).
From Definition 2 it then follows that (ii) implies (i).
Conversely, if Z1 < Z, then it is clear that we have

(3) Ef(Z,) = Ef(Z,) forall f e8'

where 8’ is the class of all concave, non-decreasing continuous functions on
R* with f(0) = 0 and f(z) — 1 as # — . This inequality holds because any
fe8' is the distribution function of a non-negative random variable. Let X be
independent of Z; and Z; and have Fx(z) = f(x), and takeh(z) = 2. Under these
conditions (X, h) satisfies Condition (A) and

Ef(Z,) = P{X/Z, < 1} =z P{X/Z, < 1} = Ef(Z,).

. What remains then is to show that (3) holds for all f in 8. Since (3) holds for all
fin §, it also holds for all non-negative, non-decreasing, concave, continuous
functions on R* bounded by ¢ < o. This follows because any such bounded
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function can be transformed into a member of §' by subtraction of a suitable
constant, and then division by some other constant. Now, for any f in 8, define

Ja(2) = f(2) for f(z) = n,
=n otherwise.

We know that Ef,(Z:) = Ef.(Z,) for every n, and since 0 < f,(Z;) 1 f(Z.)
we have, by the monotone convergence theorem, Ef(Z:) = Ef(Z,) for all f in
8. This proves the equivalence of (i) and (ii). The proof of equivalence of (ii)
and (iii) will be deferred to Section 8. The equivalence follows at once from
Theorem 10 of that section.

Let Mz(t) denote the moment generating function of the random Va,rlable
—Z, where Z itself is a nonnegative random variable. That is, M (t) = Ee **
for¢ > 0. For all Z = 0, M 5(¢) exists and is finite for ¢ > 0. We have then

CoRrOLLARY 1. Z; < Z, implies that M 5,(8) < Mz,(t) for all t > 0.

The proof follows immediately from the fact that fi(z) = 1 — ¢ * is in 8.

THEOREM 5. Let Zy and Z: be non-negative random variables, then any of the
following conditions are sufficient for Zy, < Zs:

(i) Z1 = E®Z,, where ® is any o-field contained in the o-field generated by Z, ,

(ii) Z1 K. Z;and EZ, < EZ,,*

(iii) Z, ss stochastically larger than Z. .

Proor. The proof of (i) follows at once from Jensen’s inequality and Theorem
4(ii), since for all concave functions one has Ef(Z;) = Ef(E®Z,) = E(E®f(Z,))
= Ef(Z,). The proof of (iii) is also simple. One again uses Theorem 4(ii) and
the fact that Ef(Z:) = Ef(Z,) for any non-decreasing function f and Z; sto-
chastically larger than Z,.

The proof of part (ii) of the present theorem is based on a geometric interpreta-
tion of expectation. For any non-negative random variable Z with distribution
function Fz(2), we have

EZ = [211 — Fy(2)] de.

That is, EZ is the area above the distribution function, and below the line y = 1.

Let us assume that Z; <. Z; and EZ, < EZ, . Since EZ, = EZ, + [7 §(x) dx
— fo 3(x) dz, we have fo 8z)dr = [7 8(x) de where 5(x) is defined as
|Fz,(x) — Fz,(z)|. If A denotes the first of these integrals and B the second,
we have B < A < =, and both the areas are finite. Let F,,(z) and F,,(z) denote
the dlstnbutlon functlons of the transformed random variables s(Z;) and s(Z,)
where s ¢ 8. The result will follow from Theorem 4(ii) if we can show Es(Z;)
= Es( Zs) for all sin 8’ (the set of continuous, concave, non-decreasing functions
on R* with s(0) = 0 and s(z) — 1 as z — « ). Because these s(+) are bounded

by 1, both Es(Z;:) and Es(Z;) are finite. Also s(-) is continuous and strictly
— e e

2 Note: This condition on the expectations may be replaced by the weaker condition
[i8@) dz Z [2 8(z)dz where 8(z) = |Fz, (z) — Fz, (z).
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increasing on the interval [0, a) defined by {z:s(x) < 1}; s(-) is constant for
z = a. For 0 < 2 < a, we can define s '(-). Thus, we have

Fun(y) = Fo(s7(y)) for 0=5y<1,
=1 for y = 1.

From this we can show that s(Z;) is more concentrated about some constant
than s(Z.). First consider the case where ¢ > ¢. We have F,,(y) = F,(y) = 1
fory = 1. For 0 = y < 1 we have

F.(y) = Fz(s(y)) fori=1,2.
From this it follows that
Fo(y) = Fo(s'(9) Z Fa(s(¥)) = Fu(y)
for ¢ < s (y) < a;thatis, s(¢) £ y < 1. Similarly, we have
Fo(y) = Fz,(s7(y)) < Fz(s7(y)) = For(y)

for 0 £ y < s(c). Thus, we have shown that when ¢ > ¢, s(Z;) K5y 8(Z2).

Because of this concentration relation we can define the transformed areas A’
s(c) o ’ ’ ’

= [ 8 (y)dy, and B" = [} 8'(y) dy where §'(y) = |[Fu(y) — Fu(y)l =

8(s7'(y)). Since Es(Z;) and Es(Z,) are finite, we have

Es(Z,) = Es(Z,) + [A" — B'],

and we need only show A" = B, forall sin §'.
For 0 = r < a we know s( +) is strictly increasing and continuous. The change

of variable theorem for Riemann-Stieltjes integrals yields
A= [(98(y)dy = [ (s(x))ds(z) = [68(x) ds(zx).

In our case s(-) is concave and thus we know the derivative exists everywhere,
except possibly on a countable set. Let s'(z) denote the left derivative, then

A" = [§8(z)s'(x)dz = §'(c) [§8(z) dz = §'(c)A.

This last statement follows since, by concavity, s'(x) is a non-increasing func-
tion of z. Using this same approach we can show B’ < s'(¢)B. We then have
A’ = §'(¢)A = §'(¢)B = B as was to be shown.

We now consider the case where a < c. As before, F,,(y) = F,,(y) = 1 for
y = 1,and fory < 1 wehave F, (y) < F.,(y). Thus, in this case s(Z1) <1 5(Z:),
and the transformed area B’ = 0. Since A’ = 0 we again have A’ = B’. This
completes the proof.

Theorem 5(ii) states the conditions under which greater concentration of the
denominators implies greater concentration of the random quotients about zero.
This- particular result is very much like Theorem 1 of Birnbaum. Compare

" Theorem 1 with the following corollary.
CoroLLARY 2. Let X, Z,, Z: be continuous random variables where X has
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density ¢ and the Z; are non-negative. If
(i) Zy and Z, are independent of X,
(ii) ¢(x) and o(—z) are non-increasing on [0, «),
(iﬁ) EZz é EZ1 < o,

then
Iy Ko Zo= X[Z) &0 X/Z>.
Proor. The proof is an immediate consequence of Example 1 and Theorem
5(ii).

In closing this section on the properties of < it may be of interest to note

COROLLARY 3. The relation < is antisymmelric; that vs Z1 < ZiandZy < Zh =17,
and Z, have the same distribution.

Proor. Antisymmetry follows from Corollary 1, since Z; < Z, and Z; < Z;
implies that gz,(¢!) = g¢z,(¢) which, in turn, requires that Z; and Z, have the
same probability distribution.

5. Generalized Hijek bounds. In this section we obtain two theorems which
are generalizations of Hé4jek’s Theorem 3. We first examine the set of random
variables Dy = {Z:Z < Y, Z = 0}; that is, the set of all denominators which are
uniformly better than Y.

LemMmA 1. The set Dy ¢s convex.

Proor. We must show that Z; ¢ Dy and Z; ¢ Dy implies that «Z; +
(1 — a)Zye Dyforany 0 < a < 1.If both Z; and Z; are in Dy , then by Theorem
4(ii) we have Es(Z;) = Es(Y) for¢ = 1,2 and all s in 8. Thus,

Es(aZ1 + (1 bl Ol)Zz) OLES(ZJ,) + (1 - a)ES(Zz) = ES( Y),

for all s in 8. The proof is complete.

Lemva 2. Lt Z, = {Y:EY < ¢,Y = 0},and Z' = ca.s., then Z' < Y for all
Y in Z., and there is no other denominator Z with this property for which Z' < Z.

Proor. This lemma actually states that Z’ is a greatest lower bound for the
set Z,. For any Y in Z., we have EY < EZ’, and clearly 7' <, Y. Hence, by
Theorem 5(ii), Z' < Y for all Y in Z, . Since Z’ itself is in Z, , any other variable Z
with Z < Y for all Y in Z, must necessarily have Z < Z'.

We now use these lemmas to prove

Lemma 3. Let Zy, Zs, -+, Z» be any n non-negative random variables with
Z;< Z*for1 £j < n.Then
(4) Z'< EANZi< ZF, Mz 0, Diahi=

where Z' = max;<i<n {EZ3} a.
Proor. First note that E( Z,.,I NZi) = 2raN(EZ;) < EZ'. From Lemma 2
we have Z' < D 21 \:iZ:. Now consider the set Dz« = {Z:Z < Z*}. By assump-
tion, Z; € Dzs for 1 < ¢ < n. By Lemma 1 Dz« is convex, and so all convex combi-
nations of points of Dz« are members of Dz«. Thus, for \; = 0 and drani=1,
we have D11 MZ; < Z*. The proof is complete.
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In the case where all of the Z; of Lemma 3 are independent and identically
distributed we can sharpen the bounds given in (4). In fact, we can show

Lemva 4. Let Zy, Zs , -+ - - , Z,, be any n independent, identically distributed, non-
negative random variables, then it follows that

- (5) Dt (Zi/n) < D aNZi < D ima (Zifv)

where the \; are as in Lemma 3 and v is any integer not exceeding miny<i<n {1/Ni}.

ProoF. Given any Zy, = D 1 A\'Z;, form the set Dz, = {Z:Z < Zp,}. Zay is
determined by the weights (A, A", - -+ , A0). Let (o, @’y -+ , %), 1 £ 7 S n),
be any of the n! permutations of the \.”. Because the Z; are indentically dis-
tributed and independent, each of the n! Z,, = >t aiZ; have the same dis-
tribution as Zy, . But then we have .

Za; < Zny for 1 =j=nl
This tells us that all the Z.; are in D, , and by Lemma 1 we have
(6) 232 BiZa; < Zng

forall B; = 0, >+ B; = 1. In particular, we have Y4 (Za;/nt) = > (Zi/n)
< Zy, . This gives us the desired lower bound.

Assume that » satisfies the specified condition. We can consider that
> %1 (Z:i/v) has the form Y 7y N'Z; where (M, A, -+, A0 = (1/v, 1/, - -+,
1/»,0,0,---,0). Again all permutations of the \; yield Z, ; € D2\ and so once
again (6) holds. A lemma, due to Hijek (1957), states that whenever the \; are
such that » < min {1/\;}, then there exists a (81, B2, -, Bx1) such that

"y BiZa; = D_ta MZi. Combining this with () gives us Dy NiZ; <
Y -1 (Zi/v) and this completes the proof.

In the case where nothing is known about the \;, the upper limit of the present
lemma is the same as that given in Lemma 3. This comes about since, under these
conditions min {1/\;} = 1.

Lemmas 3 and 4 lead us to the following two generalizations of Theorem 3 -
(Hajek).

Turorem 6. Let (X, k) satisfy Condition (A), and let Z = {Z:Z = > raNZ:,
e = 0, Dty = 1, where the Z; are any n non-negative random variables, inde-
pendent of X, with Z; < Zy for 2 £ j = n}. Then
(7) ‘ X/Mv) Ko X/MZ) <o X/WZ1)
for all Z in Z, provided v = maxi<i<n {EZ3}.

Proor. From Lemma 3 we know Z < Z, for all Z ¢ Z. By assumption (X, h)
satisfies Condition (A), and X is independent of Z and Z, . It follows then from
Definition 2 that X/h(Z) <o X/h(Z,). We also know that Z' < Z for any Z in Z,
again by Lemma 3. Clearly Z' is independent of X, since it is a degenerate
random variable. Thus, we have X / h(v) <o X/h(Z) for all Z in Z, and the proof

~ is complete.
In exactly the same manner we can use Lemma 4 to obtain the main result in

Lawton (1965). Namely,
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Tugorem 7. Let (X, h) satisfy Condition (A), and let Z = {Z:7 = 30y NiZs,
N =0, Doty \ = 1, where the Z; are n independent, identically dustributed, non-
negative random variables, all independent of X}. Then

X/ ta Zifn) Ko X/MZ) Ko X/ D 5e1 Zi/v)

for all Z in Z, provided v = miny <i<n {1/},

Notice that if one takes Z; = x, (1), then this last theorem gives statement (2),
and if one also asks that X have a standard normal distribution and takes
h(z) = 2, then this theorem becomes Theorem 3 of Héjek.

6. Applications to the Behrens-Fisher problem. Theorem 7 of the last section
was used by Lawton (1965) to obtain bounds for the « and g risk in the Behrens-
Fisher problem. The theorem was also used in that article to obtain a-risk bounds
for the modified two-sample test, the u-test, proposed by Lord (1947) when the
two sample sizes are equal.

We can extend the u-test result to the case of unequal sample sizes by using
Theorem 6 in place of Theorem 7. Let X3, X, -+ ,X,, and Y1, Y,, -+, Y, be
two samples from N (£, ¢°) and N(n, 7°) respectively. We will accept the hypothe-
sis H:¢{ = n whenever

(8) |7 — X|/(Wi )/ + Woi/me)? < e,

where Wy and W, are the ranges of the respective samples. Under the null hy-
pothesis the statistic in (8) has the form X/h(Z) where the numerator has the
standard norinal distribution, h(z) = 2}, and Z is distributed as

AE() + (1 — N Wa(ne)

where X = (0°/n1)/(o”/my + 7°/n2) and W (n;) denotes a random variable having
the distribution of the range of a sample of size n; from a standard normal
population.

Now W1(n:1) and Wa(n,) are both independent of the numerator, and W*(n) is
stochastically larger than W?(m) for m < n, and so we may apply Theorem 6 to
obtain

(9) P{V|/W(») < ¢} = P{|Y — X|/(W\/m + Wi/n2)* < c}
< P{|V|/+* < ¢}

where V has the standard normal distribution, v = max {EW’*(n,), EW*(ns)},
and v = min {n; , no}. If one takes n, = ny = 10 and ¢ = 0.288, then the bounds
for the probability of Type I error are 0.0036 = o < 0.02. The lower bound given
here by the statistic |V|/y® is actually better than the bound given in Lawton
(1965) by the statistic |[(2/n)} V|/(Wi(n1) + Wa(ns)).

In the present case, because the Wi(n) are independent and stochastically in-
creasing in 7, we can further improve the upper bound given in (9).

Theorem 6 told us only that Z’' < \W?*(ny) 4+ (1 — A)W?*(n,), where Z’ was
degenerate at y. Take m = max {n , ns}, then W*(m) is stochastically greater
than Wi(n;) for ¢ = 1, 2. It follows then, since the W ’(n;) are independent,
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that \W.*(m) + (1 — N)W,(m) is stochastically larger than AW%(n;) +
(1 — N\)W2(ns). The Wi(m) are considered to be independent. Thus, we know

AW (m) + (1 — N)Wo(m) < AW (1) + (1 — N)Wa'(ny).

But the left hand quantity involves the average of two independent, identically
distributed random variables, both independent of X. We can apply Theorem 7 to
obtain

(Wi(m) + Wy(m))/2] < \WiX(m) + (1 — NWa'(me).
Combining this with (8) we have
(10) P{VI/W() < ¢} < P{|Y — X|/IW/m + Wi'/nal]' < ¢}
= P{(2/n) [VI/IW(m) + W' (m)] < ¢}

where » = min {n; , 2} and m = max {n; , ns}. The distribution of the statistic
in the upper bound is unfortunately not tabulated. If we take n; = n, then the
above inequality is the same as that in Lawton (1965).

7. Confidence intervals. One could also use Theorems 6 and 7 to construct
confidence intervals for linear combinations of means from % normal populations.

Let Xa, Xa, -, X, be the sth sample of size n; from N(u:, o) where
¢ =1,2, ---, k. Suppose one wishes to construct a confidence interval for
0= Z'f-1 v:u; where the v; are known constants, but the oi are unknown, and
possibly unequal. Such confidence intervals may be obtained from the statistic

(11) Db viXe — 0/ 5 (vis?/na)l

where X,;. = E;‘;l X,'j/ng, and 8.'2 = Z;:l (X,'j - X.-.)z/(n,- - 1)

On the division of numerator and denominator by [ i (vie/n:)]' the
statistic in (11) has the form X/h(Z) with X standard normal, and h(z) = #. Z
is independent of X and has the form

(12) %o hixi(ma) /m

2 2

where \s = (vioi/n:)/[2 %= (viol/n:)] and m; = n; — 1. As in Section 6,
this can be put in the form > i ax(1), @i = 0, 2 7y a; = 1, where
m = 2.5y n; — k. The x’(1) are all independent of the numerator, and so
the comditions for Theorem 7 are satisfied. We are then able to obtain bounds
for the probability that the statistic in (11) lies in an interval about zero. This
allows the construction of confidence intervals for 8 based on the means and
standard deviations of the k samples. In much the same way, Theorem 6 would
allow one to obtain confidence intervals for 6 based on the statistic

[E’f-ﬂ v:Xi — 0]/ [El;=1 ('YizWiz/ni)]}

where the sample range of the sth sample replaces s; as the estimator of ¢;. If
the sample sizes are equal, one could just as well use any of the usual estimators for
o ; interquartile range, mean average deviation, etec.
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An interesting application of this method is given by the following example.
Three sets of measurements are made on the same object, and it is felt that the
precision of the three sets of measurements may not be the same. That is,
Xa, Xa, +, X, are samples of size n; from N(u, o) for ¢ = 1, 2, 3. Let
n = ny + ne 4+ ns. It is possible to obtain confidence intervals for u based on the
overall mean X = > i3 D %, (X,;/n). This is done by choosing v; = n;/n and
using the statistic in (11). In this case, 8 = u and the confidence intervals may be
obtained from the inequality

tas Ko (X — p)/[2 a1 (nisd/nP)} <Ko t,

where » = min {n; — 1,n, — 1,73 — 1} and ., denotes a random variable having
the central ¢-distribution with m degrees of freedom. If we had assumed that all
the variances were equal, then the confidence intervals could have been obtained
from a statistic having the ¢-distribution with » — 1 degrees of freedom.

We can also, of course, use the statistic in (11) for testing hypotheses about 8.
The bounds we have obtained for the confidence coefficient then become bounds
for the type I error. As in Lawton (1965), we could extend these bounds to the
power curve for values of the non-centrality parameter |3| < 2. We could then
construct tests involving  which would guarantee that type I error is at most oo,
while the power at alternative d, is at least 3, .

8. Randomization theorem. In this section we shall show that Z; < Z; if and
only if Z; can be obtained from Z; by a particular type of randomization. While
this result has been stated in Theorem 4 of Section 4, its proof has been deferred
to now because of its length and complexity. The present results come from a
modification of some theorems given by Meyer (1963) on the characterization of
the Choquet ordering of positive measures.

In this section let B again be the compact, positive half-line, and let € be
the space of continuous functions on R'. Let ®, o™, and 91 denote the classes of
Radon measures, sub-stochastic measures, and probability measures respectively.
A sub-stochastic measure is a positive measure with total mass at most one.
Define A 10 be the distribution function of the measure which assigns mass 1 to
the point z in R*. For any Fz ¢ & define

EZ = [g+ydFi(y)

provided the integral exists. Finally, let 8 be the space of all non-negative, non-
decreasing, concave functions belonging to €. From Theorem 4 we know

Z1 < Zz ~ ES(Zl) ; ES(Zz)
for all sin 8. Here Z; denotes a random variable.
DeriniTION 4. For any f ¢ € define f by
H(z), = inf {s(z):se8, s = f}

-7

. B

for each z in K™,
f = f and is concave, and continuous.
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TaEoREM 8. For all z in R and each f in @
f(x) = sup {Ef(Z):Fze ", EZ < a}.

Proor. If EZ < z, then Es(Z) < s(EZ) =< s(z) for all s in 8. The first in-
equality follows from Jensen’s inequality, and the second from the fact that s
is a non-decreasing function. But then f(z) = inf {s(z):s¢eS8, s = f} =
sup {Es(Z):se8,s = f} = Ef(Z) forany Fz ¢ ot with EZ < z. We have then

f(z) = sup {Ef(Z):Fze ", EZ < z}.

In order to establish the reverse inequality, we note that the map defined by
L.(f) = f(x) is sub-linear. That is,

(13) L.(af) = aL,(f) for- a > 0,
L.(f 4+ g9) £ L(f) + Li(g) for f,gee€.

The first property in (13) follows immediately from the definition of 1. Also, we
see that

L(f +g) = inf{s(z):s = f+ g,s¢e8} = inf§,
L(f) + L.(g) = inf {si(2) + s(2):81 = f, €2 2 g, s:€ 8}
= inf$,.

But since s; + s: £ S we have §; C &, and so

L.(f + g) = inf & =< inf$, = L.(f) + La(g).
Using this we have
(14) L.(f) = sup {Ef(Z):Fz ¢ ®, Bf(Z) = L(f)};

that is, L. is the upper envelope of linear functionals on € less than L. . Let b be
the supremum in (14). If b < L.(f) then b + ¢ = L,(f) for some ¢ > 0. If (14)
were not true then by use of the Hahn-Banach theorem one could construct a
linear functional on @ whose value at fis b + ¢/2 < L.(f). This contradicts the
statement that b was the supremum of such linear forms.

Let Ef(Z) be any one of these linear functionals which lie below L.(f). If
f = 0, thenf < 0, and this implies Ef(Z) < f(z) < Osince s(z) = 0isin 8. This
last statement implies that F; must define a positive measure. We also have
f(z) = 1in 8 and this yields E(1) = f(z) = 1, and E(1) is the total mass associ-
ated with the measure F'z . Thus, we have shown that Fz ¢ 9. Finally, note that
f(z) = z isin 8 and this yields EZ = f(z) = z. We have then shown that

f(z) = sup {Bf(Z):Fz ¢ &, Bf(Z) < f(2)}
< sup {Ef(Z):F,e W', EZ < z}.

- This inequality completes the proof.
Let U be the compact set in 9 X 91 (having the topology induced by €)
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defined by
U={(A:,Fz):xeR", Frem, EZ < x}.
It is clear that U C V, the closed convex set defined by
V = {(Fz,,Fz,):(Fz,,Fz,) e M X M, Zy < Zy}.

LemMA 5. V s the closed convex envelope of U.

Proor. Let U. denote the closed convex envelope of U. We know U, C V, and
we need to show that there are no points of ¥V outside U. . By virtue of the Hahn-
Banach theorem, it will be enough to show the following:

If (Fz,, Fz,) ¢ V and L is any continuous linear functional on 91 X 9 with
U c {L = 0}, then V c {L = 0}. That is, all linear half-spaces containing U
also contain V.

All continuous linear functionals on 91T X 91T have the form

L(H,G) = [udH — [vdG, (u,v)e€ XE€C.
Thus, we seek to show that
L(A;,Fz) = u(z) — Ev(Z) 20 forevery (A:,Fz)eU

implies that

Eu(Z,) — Ev(Z,) = 0, forall (Fz, ,Fz,)eV.
But L(A;, Fz) = 0for all (A;, Fz) in U implies that

u(z) = Ev(Z) forall Ezeom’, EZ < =z,
which in turn yields
w(z) >d(z) forall z in R*.

But then Eu(Z;) = E0(Z,) = Et(Z,) = Ev(Z,) as was to be shown. The proof
is complete.

TaeoreM 9. If Zy < Z,, then there exists a probability measure § on U whose
center of gravity (in M X M) is equal to (Fz, , Fz,).

Proor. The result follows immediately from the last lemma, and the fact that
U. is a closed, convex, compact set in 9 X 9. U, is then, by the Krein-Milman
theorem, the set of centers of gravity of probability measures on U. The proof is
complete.

We are now ready to prove the main theorem of this section.

TuroreM 10. Z, < Z, if and only if there exists a randomized, mean decreasing
map T such that Z; = T(Zl).

Proor. That this condition is sufficient follows easily. Let T be an rmd map
and Fyz, ¢ 9, then T, () can be interpreted as the conditional distribution of
7, given Z, . Since E(Z:|21) = [y dT.,(y) < =, we have

Es(Z:) = E[Es(Z:|Z1)] = E[s(E(Z:|Z1))] £ Es(Z1)
for all s in 8. By Theorem 4 we have Z, < Z,.
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Conversely, let (Fz, , Fz,) ¢ M X 9 and such that Z; < Z.. By Theorem 9
there exists a probability measure 8 on U such that

(15) fo(Az}F)o(dA;dF) = (le’Fzz)-

We can define a new measure 6’ on U’ = {(z, F):x ¢ R*, F £ 911} by means of the
map (A;, F) — (z, F). We may rewrite (15) as

[[o (As, F)O'(dx, dF) = (Fz,, Fz,).
Using the notion of regular conditional probabilities we can write
(16) [[o (As, F)6'(dF | ©)6'(dx) = (Fz,, Fz,)

where 6'(dF | z) represents the conditional distribution of F given x, and 6'(dx)
the marginal distribution of x. These measures are determined by the joint dis-
tribution 6'.

From (16) we have

[r+ Ad(y)0'(dz) = Fz,(y),

and this is equivalent to saying Fz (y) is the distribution function corresponding
to the measure 6'(dz). Also we have

[z+ [ F(y)0'(dF | x)] dF z,(x) = Fz,(y).

Let T.(y) be the quantity in square brackets. Being an average of distribution
functions of probability measures on B* for each fixed z, it is itself the distribution
function of a probability measure on B*. In addition, f y dF(y) £ « for every F
in the average, implies f y dT.(y) < z. Finally, one sees that, for each fixed ¥,
T.(y) is a measurable function of z. It follows that T.(y) is the rmd map which
was sought.
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