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1. Introduction and summary. Let { Y;}j-1 be a sequence of random variables
defined on a probability space (2, F, P), which are not necessarily independent,
or identically distributed. Let S, = Y; + --- + Y, . Assume that there exists
sequences of constants {4,}, {B.}, B, > 0 such that the limit distribution of
(8» — A.)/B, exists. For a class of limit distributions which includes the stable
distributions, we give a characterization of { B,} in terms of the dispersion of the
sequence of partial sums S, . Such a characterization will be useful in obtaining
stable limit theorems for Markov chains since it allows a description of the
norming constants which is not dependent on any particular state of the state
space of the Markov chain. In addition, using this characterization and that of
Tucker in [6], we obtain a partial strengthening of Paul Lévy’s Theorem on the
Augmentation of the Dispersion.

2. Preliminary definitions and results. Let us recall the following well known:

Drrmirion 1. For 0 £ v = 1, the dispersion of a random variable X for the
probability v, denoted D(y, X) is the infimum of the lengths of the closed inter-
vals to which X belongs with probability =+.

The next lemma, shows that the infimum in the definition of the dispersion is
actually assumed. This lemma corresponds to that given by Tucker in [7] for
concentration functions.

LemmA 1. Let X be a random variable and let 0 < v =< 1 be given. Then there
exists an inlerval [a, b] such that D(y, X) = b — a and P{[a, b]} = v.

Proor. Let L{I} denote the length of the interval I. Let T' be the collection of
all closed intervals I such that P{I} = v. Let k = inf {L{I} | ¢ T}. Then k =
D(~, X). Pick a subsequence of intervals {I}j-1 from I' such that L{I} — k
and L{I} < 2k + 1forj = 1,2, --- . Let F be the distribution function of X
and let a, b be chosen so that F(a) < v/4 and 1 — F(b) < /4. Then for all
5, I; Cla — 2 — 1,b + 2k + 1. If I; = [a;, bj], it follows that {a;} 7
has a cluster point. p. Let {a1,;} =1 be a subsequence of {a; such that a;,; — p.
Then by ; — p + k. The lemma follows by observing P{[p, p + ]} = v.

Motivated by the preceding we are led to call the interval [a, b] a y-interval

for the random variable X iff b — @ = D(y, X) and P{a = X < b} = v. We -

observe that the dispersion of a random variable X for a given probability v
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depends only on the distribution function ¥ of X. Thus we write D(y, F) and
D(y, X) interchangeably. The next lemma is well known and verifies ones
expectations.

Lemma 2. Let X be a random variable and let h, ¢ be real constants. Then for
0 = v = 1 arbitrary, but fixed, D(v,cX + h) = |¢|D(y, X).

We observe that the absolute value sign is needed in. the preceding lemma, since
dispersion, being a length, must be positive. Finally, in order to show that the
principal theorem of this paper is valid for a sufficiently large class of distribu-
tions we shall need a certain property of stable distributions which will be given
in the lemma, following:

DermviTion 2. Let F be a distribution function, and let @ = sup {z | F(z) = 0},
b = inf {x|F(z) = 1}. Then a < b and [a, b] n (—®, +») is termed the
interval of variation of F.

The property of stable distributions deseribed in the following lemma is prob-
ably known although it does not appear to have been stated before.

LeEMMA 3. A stable distribution of index a, 0 < o = 2, 1s strictly monotone
over its interval of variation. Further, for 1 £ a < 2, the interval of variation
18 the entire real line.

Proor. For 1 £ a = 2, the result follows from the fact that a stable distribu-
tion of index « is an analytic function [3], page 183, on the entire real line, coupled
with the fact that an analytic function cannot be constant over any interval
unless it is identically constant. For 0 < a < 1, the result follows from the series
expansion of the density function [2], page 549, since a distribution function
having continuous density is constant over an interval iff the density function
is identically zero over this interval.

3. The principal result:

TueoreM 4. Let {Xj}71 be a sequence of random variables and let S, =
Xy + -+ 4+ X.. Assume there exist sequences of constants {A}, {Ba}, Ba > 0
such that the limit distribution G of Y, = (S, — A.)/B. exists and s strictly
monotone over its interval of variation. Then for 0 < v < 1, arbitrary but fixed:

(3.1) lim D(v, Ya) = D(v, G),

and

(3.2) : lim D(y, 8,)/B. = D(v, G).

The following corollary follows immediately from a well known lemma [1],
page 254.

CoROLLARY 1. Let {X}7=1 be a sequence of random variables and let S, =
X1+ -+ + X, . Assume there exist sequences of constants {A,}, {Ba}, Bn > 0
such that the limit distribution G of Y, = (Sn — A.)/Ba. exists and 1s strictly
monotone over its interval of variation. Then for 0 < v < 1, arbitrary but fized,
the limit distribution ofr (S, — An)/D(v, S.) exists and is G(xD (v, G)).

By restricting the random variables {X,} in the preceding corollary to be



396 STEPHEN R. KIMBLETON

independent and identically distributed, we have by Lemma 3:

COROLLARY 2. Let {X;}7-1 be a sequence of independent, identically distributed
random variables whose distribution function F belongs to the domain of attraction of
a stable law G of index a, 0 < a < 2. Let S, = X1 + --- 4+ X.. Then there
exists a sequence of constant. {A .} such that for 0 < v < 1, arbitrary but fized, the
limat distribution of (S, — A,)/D (v, S») exists and is of the same type as G.

Proor oF TuroreM 4. First let us observe that (3.2) follows from (3.1) by
virtue of Lemma 2. Thus we need only prove (3.1). In order to do this we need
the following lemma where d lim Z, = Z indicates that the limit in distribution
of the sequence of random variables {Z,} is Z.

LeMMA 5. If d lim Z,, = Z, then for 0 < v < 1, arbitrary but fized:

(3.3) D(v, Z) < lim inf D(v, Z,) < lim sup D(, Zx) < lima,, D(ex, Z).

Proor. Let us first obtain the left hand inequality. Thus, let k =
lim inf D(v, Z,) and choose a subsequence {Z1,,} of {Z,} such that lim D(y, Z1,»)
= k and D(y, Z1.) < 2k + 1 for all n. Let F be the distribution function of Z
and let a, b be continuity points of F such that F(a) < vy/4and 1 — F(b) <v/4.
Then there exists an integer N; such that n > N; implies Fn(a) < v/2 and
1 — Fn(b) < /2. For such n, it follows that all y-intervals for Z,,,» are contained
in the interval [¢ — 2k — 1, b + 2k + 1], which we call J. If I, = [a1,n , b1,
is a y-interval for Z; ,, then as in Lemma 1 it follows that {a1 .} has a cluster point
p in J. Again, as in the proof of Lemma 1, we obtain an interval [p, p + k]
having probability =~. Thus D(y, Z) < k and the left hand inequality of the
lemma, follows.

Since the middle inequality of the lemma is obvious, we proceed to verify the
right hand inequality. Thus, let ¥ = lim sup D(v, Z.) and pick a subsequence
{Zy,5} such that lim D(y, Z1,,) = k.

The inequality is now obtained by showing k& < D(a, Z) for each a > 7.
Assume that for some ay > v, we have k > D(ao, Z). Let [a, b] be an ap-interval
for Z and pick ¢, 7 > 0so that L{la — ¢, b+ ]} < 7,7 <kanda — b + ¢
are both continuity points for the distribution F of Z. Thus there exists N > 0
such that forn > N, v + (a0 — 7)/2 < Fi.(b + ¢) — F1.(a — ¢€) where F1,
is the distribution function of Z; , . Hence for such n, D(v, Z1.) < b — a + 2¢
< 7. Since r < k, this contradicts the fact that lim D(v, Z1,) = k. Thus the
third inequality and hence the lemma. We remark that the conclusion of the
preceding lemma can be given a more symmetric appearance by observing that
D(v, Z) = limayy D(e, Z).

The next lemma, coupled with the inequalities of the preceding lemma yields
the theorem.

LevmMma 6. Let F be a distribution function which is strictly monotone over its inter-
val of variation I. Then for 0 < v < 1:

{3.4) limg |4 D(e, F) = D(v, F).
Proor. Let J = [a, b] be a y-interval. Then J S I. Let lim,}, D(a, F) = k
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and assume that ¥ > b — a. Choose ¢ > 0 so that £ > b — a 4 2e By
the strict monotonicity of F over I, P{la — ¢, b + €J} = = > v. However
L{la — ¢ b + €} < lima;, D(a, F) which is a contradiction and yields the
lemma.

4. Application. We obtain a partial strengthening of Lévy’s theorem on the
augmentation of the dispersion stated in [5], page 155:

TuroreEM 7. Let v and 8 be given (0 < v < 1, 0 < B). Then there exists k
= k(y,B8) > 0and N = N(v, B) having the following property: if n > N, and if
S is the sum of n independent random variables X, such that the dispersion of each
X, for the probability v is >2t, then the dispersion of S for the probability 8 s
> ktn'”.

Our partial strengthening is:

TueoreM 8. Let {X;} be independent, identically distributed random vari-
ables belonging to the domain of atiraction of a stable law of index o, 0 < a < 2.
Let 0 < v < 1 be arbitrary but fixed, and let S, = X1 + -+ 4+ X, . Then given

e > 0, there exists N(e) such that for n > N(e):
(4.1) 77 < D(y, 8n) < n

Proor. By Corollary 2, we know {D(v, S.)} is a sequence of norming coeffi-
cients for the partial sums S, . Therefore, it follows from [6], page 9, that
D(v, S.) = n“—lL(n) where L is a slowly varying function. However, from [4],
page 45, it therefore follows that n* 'L(n)/n® 5 + o, n* 'L(n)/n* "+ — 0.
The theorem follows.
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