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SUBSTITUTION IN CONDITIONAL EXPECTATION

By R. R. Bauapur! Axp P. J. Bicker?

University of Chicago and University of California, Berkeley

Let X be a sample space of points « and P a probability measure on a o-algebra
@ of sets of X. Let Y be a space of points y, ® a c-algebra of sets of Y, and
T:X — Y a function such that B in ® implies 77'B in @. Let f(z, y) be a real
valued @ X ®-measurable function on X X Y, and consider the conditional
expectation of f(z, T(z)) given T'(z) = y. It is natural to presume that this
equals the conditional expectation, with y held fixed, of f(z, y) given T'(z) = .
This note points out that the presumption is essentially correct. In the final
paragraph of the note we show, as an application, that a regular conditional
probability measure automatically assigns probability one to the set specified
by the condition.

Since in the general case a conditional expectation given T(z) = y is not
quite uniquely determined as a function on Y, we must first restate the present
issue more precisely, as follows: Suppose for simplicity that f is non-negative.
Let g(y, n) = 0 be a function on ¥ X Y such that (i) for each fixed 4 in Y,
g(y, 1) is B-measurable in y and serves as the conditional expectation of f(z, )
given T(z) = y, i.e., [r-129(T(x), 1) dP = [r-15f(x, 1) dP for all B in ®.
Then is it true that (ii) g(y, y) is B-measurable in y and serves as the conditional
expectation of f(z, T'(z)) given T'(z) = y? In general, for an unfortunate choice
of g, (i) does not imply (ii). Suppose, for example, that each one-point subset
{n} of Y is ®-measurable and of induced measure zero, that f = 0, and that
g(y, 1) is the indicator of the set {(y, n):y = 9},ie,g =1ify =nandg =0
otherwise. Then (i) holds but (ii) does not. It is true, however, that there always
exists a suitable g, i.e., a g which satisfies both (i) and (ii). The existence of a
suitable g (ie., the essential validity of substitution) is well known in certain
special cases, e.g., f(z, y) = fi(z)-fo(y), or f(z, T(x)) = ¢(U(x), T(x)) where
U and T are independently distributed.

To establish the existence of a suitable g in the general case, let & be the class
of all non-negative @ X ®-measurable functions f on X X Y, and let &, be the
class of all f in § for which a suitable g exists. According to one of the special
cases mentioned above, &, includes all indicator functions of sets A X B with
A in @ and B in ®; for such an f = Iis(z, ¥), g(y, n) = h(y)-Is(n) satisfies
(i) and (ii), where b = 0 is any B-measurable function which serves as the con-
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ditional probability of A given T(z) = y. It now follows by approximation that
Fy = F. The approximation required here is parallel to the approximation in
proofs of Fubini’s theorem.

The argument outlined above yields only the existence of a suitable g for the
given f. Constructive definitions of a suitable g can be given in certain cases.
Suppose, for example, that  admits a regular conditional probability measure
given y, i.e., there exists a function @(A4, y) on @ X Y such that @(-, v) is a
probability measure on @ for each %, and such that, for each A, Q(A4, y) is
®-measurable in ¥ and serves as the conditional probability of 4 given T'(z) = y.
(According to Doob, such a @ always exists if 2 represents a finite or denumerably
infinite set of real valued random variables.) In this case g(y, ) = fx flz, 9)
Q(dz, y) satisfies (i) and (ii). The proof consists.in verifying first that the
formula produces a suitable g for f(z, y) = I.(z)-I3(y) and then showing by
approximation that the formula is successful for any non-negative @ X ®&-
measurable f.

By way of an application of substitution, suppose that C = {(z, y):T(z) = y}
is @ X ®-measurable. (This holds, in particular, if y represents a finite or de-
numerably infinite set of real valued random variables). Then T {#} is @-measur-
able for each 7 in Y, and a regular conditional probability measure @ necessarily
satisfies the natural condition Q( T *{y}, y) = 1 for almost all y in Y. To see this,
let f be the indicator of the set C. Then, by the preceding paragraph, Q(T*{n}, »)
is a suitable ¢ for this f. Hence Q(T *{y}, y) serves as the conditional expectation
of Io(z, T(z)) = 1 given T(z) = y; hence Q(T*{y}, y) = 1 for almost all y.
Similar conclusions have been established in special settings by other methods in
[1], [3], [4]. It is shown in [2] that in general there does not exist a @ such

that Q(T'{y},y) = 1forally.
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