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AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES

By C. L. MaLLows
Bell Telephone Laboratories, Incorporated

Suppose the random variables {X;;, ¢ =1, ---,m,j = 1, ---, n} are inde-
pendent and identically distributed. Then the event A defined by the inequalities
Xu+ X+ - + X

Xo + X+ o+ + Xon = a2,

X+ Xop + o0 4 Xon S 0

has a certain probability, P(A). If the random variables are constrained to
satisfy some conditions of the form Xy = Xa, Xs3 = Xe; ete. (but not of the
form Xu = X ete.), then P(A) is increased. This result was conjectured by
E. Arthurs.

TuaEOREM. If

i) X ={Xy,2=1,---,m,j =1, -+, n} is an array of independent and
identically distributed random variables;

(ii) A s an event of the form

A= {Z;‘LIXZ']' = ai,i = 17 ,771};
(iil) Ci, Cy are sets of constraints of the form Xi = Xij; with Cy C Cs ; then
P(A|Cy) < P(A|C).

Proor. It is sufficient to prove the result in the case that C; does not imply
X1 = X, while C; = Ciu {Xu = Xu}. Suppose the dimensionality of X con-
ditioned by C;is k + 2, where £ = 0. We can choose k variables Yy, Yy, -+,
Y.outof Xsothat ¥;,Y,, .-, Yy, Xu, Xa are linearly independent under C; .
Then Yy, ---, Yi, Xu, Xu are statistically independent, and

P(A|C) = [5TimdF (y:) [P dF (211) [*% dF (1)

where F(z) = P(Xuy < z), B is some region in R* (which is the range of
(y1, -+, Yr)), and by, by are certain functions of %, - - -, yx derived from the
inequalities defining the event A. This is to be compared with

P(A|C) = [s[[icdF(y) [23® aF ().

However, for any distribution function F and any by , bs
[ dF (u) [2% dF(v) < [23®% dF (x)

and the theorem is proved.
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REemARKk 1. If F is Gaussian, or even if X has an arbitrary multivariate Gaus-
sian distribution, the truth of the theorem follows from a result of Slepian (see
[1]). Slepian’s theorem shows that P(A4) is a monotone increasing function of
each of the correlations p;x = corr (D Xi, 2 X«;); these correlations are
increased by the imposition of constraints of the form we assume.

Remark 2. The result fails to hold in general if conditions of the form
Xi; = X, are allowed, since in general it is not true that P(2X = a) >
P(X: + X, £ a). However, the theorem remains true provided the conditions
are such that no constraints of this type are allowed, even if it is not possible to
present them as in the statement of the theorem. For example, the constraints

Xi+ X £ o0, X + X3 = b, X+ X5 = ¢

cannot be put in this form, but the result applies (by the same proof). In general
there is no need to have the same number of terms in each of the inequalities de-
fining A; and arbitrary non-negative coefficients can be inserted.

ReEMARK 3. A simple corollary of the theorem and the previous remark in the
casen = misthat P(4) < P(4 | C) where C is the set of conditions { X.; = X;,
1=27<j = n}.

ReEmMARK 4. One way of generalizing the result is as follows: Suppose first that
X has an arbitrary multivariate Gaussian distribution. Then using Slepian’s
theorem (see Remark 1), P(4) is a monotone increasing function of each of the
inm(nm — n) simple correlations corr (X, Xyj) where ¢ 5 i (since the
correlations p;» in Remark 1 are monotone functions of these). Now let X be
obtained by monotone coordinate-wise transformation of an arbitrary multi-
variate Gaussian distribution (i.e., Xs; = fi;(X.;) where the { fi;} are monotone
increasing, and {X.;} is Gaussian). Assuming for simplicity that X’ is nonsingu-
lar, we can write P(A) as

f s d@G filw fﬁc g(Z1, To1 5 p11,21.rest) A2 dTon

where G is a (nm — 2)-dimensional Gaussian distribution, b; and b, are functions
of the limits defining A and the variables in G (b; and b, also involve the functions
{fs1), 9(x, y; p) is the standard bivariate Gaussian density with correlation p,
and pu 21.rest 1S the partial correlation between X1: and Xz when all the other
(primed) variables are held constant. Now pi1,21.rest 1S & monotone function of
the simple correlation py 21, so using Slepian’s theorem we again have that P(4)
is monotone in each of the fnm(nm — n) simple correlations of this type.
RemARK 5. Now we can ask the following question. Is the result of the pre-
vious remark the most general possible, or does there exist another class of
distributions, indexed by a set of parameters (at least #nm(nm — n) in number),
for which the monotonicity result holds? Notice that the k-dimensional “trans-
formed Gaussian” distributions are quite a small family, in that they are de-
termined by only & marginal distributions and 3k(k — 1) pairwise coefficients of
dependence. All the joint distributions in three or more dimensions can be de-
termined from the two-dimensional marginal distributions. It is tempting to
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suppose that it should be possible to define a family of joint distributions in
which this is not the case; an attractive possibility is that each k' -dimensional
distribution (¥ < k) involves just one more parameter than do its various
marginals. An attempt has been made to generalize the construction of [2] in
this way, but without success (so far).
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