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FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES'

By Martin Fox® anp Herman RuBiN’

Michigan State Unaiversity

1. Summary. Let { Y3} be a stochastic process where either £ = 1,2, -+, or
k=0, +1, --- . Let S and T be measurable sets of sequences of states. Let e be a
state. Assume P(Y, = ¢) > 0. Let p.(SeT) = P((---, Yo, Yaa)esS,
Y. =¢ (Yo, Yaa,  --+) eT). We define the rank of € at time n to be maximal
rank of matrices (p.(S:«T;); 7,7 = 1, -+, m) as m, the S; and the T; vary. In
the stationary case, since the rank does not depend on n, we will refer to the
rank of e. In this case, with finite state space, Gilbert [6] denoted the rank of e
by n(e).

A state which has rank 1 at time n is a Markovian state at time n. A stochastic
process all of whose states are Markovian at all times is a Markov process.

Let { X} be a second stochastic process indexed as {Y:}. Gilbert proved (but
stated in far less generality) that if v, (e) and u,(8) are the ranks at time 7 of the
states e in { Y} and & in { X4}, respectively, and if ¥, = f(X,), then

(1.1) v (e) S Zf(5)=e#n(8)~

In the stationary finite state space case, Dharmadhikari [2] gave conditions
under which if { Y} has all states of finite rank it is possible to express ¥ = f(X3)
where { X} is stationary and Markovian. An example was given to show equality
need not hold in (1.1). A similar proof can be used to show in the more general
case that if € is a state of finite rank in { Y} and his conditions hold for ¢, then it is
possible to write Y, = f(X)) where ¢ = f(e;) for a finite number of states e; of
{ X} which are Markovian and § = f(§) for 6 # ;. See [4].

In Section 2 of the present paper we present an example showing that finite
rank alone does not guarantee Dharmadhikari’s result. In this case we have
stationarity for {X;} and {Y:} and ¢ = f(§) for a countable set of states 6 of
{X;} which are Markovian. This is an example referred to by Dharmadhikari
[2] and disproves a conjecture due to Gilbert.

In Section 3 it is proved that if {¥%} has a state € of finite rank at time n, then
there exists a stochastic process {X:} such that ¥, = f(X;) where 6§ = f(8)
if ¢, and e = f(e;) for a countable family {e;} of Markovian states of {X;} at
time n. However, we are unable to prove that the ranks of states at times other
than n are undisturbed. Trivially, no rank may be decreased. Alternative con-
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structions are given to show Markovianess and rank 2 of states may be preserved
in {X4%}. The latter is deferred to Section 4.

Our construction is valid both forn = 0, 1, - - - and forn = 1,2, - - . without
any assumption of finiteness of the state space of { V;}. Trivially, if this state space
is countable and n = 1, 2, - - - it is possible to represent ¥, = f(X) where { X3}
is a countable state Markov process. In this case Carlyle [1] gave a particular
construction of {X3} which, in the case that {X,} has a finite state space, yields
the minimal state space.

In Section 4 we consider a state e of rank 2 at time . It is proved that in this
case the construction of the process { X;} can be carried out so that there are only
two states, & and e, for which ¢ = f(e;). Furthermore, it is proved that ranks of
all states § # e are undisturbed. If, in addition, { ¥4} is stationary, it is proved in
Section 5 that a stationary { X} can be constructed with all these properties.

The definition of rank can be readily extended to the case of densities. All
results of this paper as well as Gilbert’s and Dharmadhikari’s results can be ob-
tained in this case. These considerations are deferred to a later paper.

The results of Section 4 have found applications to a stochastic process de-
scribing the temporal behavior of cloud cover [5]. The observable states of cloud
cover are clear (under 5% of the sky covered by clouds), partly cloudy (between
5% and 50 % covered), cloudy (between 50% and 95% covered) and overcast
(over 95% covered). A nonstationary Markov chain does not fit the data. Cer-
tain matrices of observed frequencies are, approximately, of rank 2 for data from
Boston. Assume the observable process is a function of a nonstationary Markov
chain with eight states, each state of the observable process being the image of
two Markovian states. This model fits the Boston data very well.

2. Example. Let the transition probabilities for {X;} be given by:

Initial State Final State Transition Probability
) €m,1 $)m sinj m
) 5 1— D1 B)sinzk
€m,i €m, 141 1 i ¢=1,...,m—1
€m,m ) 1

Let YVi = f(Xi) where f(6) = 6 and f(em,;) = € for all m and 7. Then § is
Markovian in both processes.

In this case it is possible to consider finite sequences s; and ¢; of states in place
of arbitrary sets S; and T; of sequences. In the matrices of the form (p(suet;))
the sequences s; can be truncated by omitting any portions to the left of
Markovian states and the sequences ¢; can be truncated by omitting any portions
to the right of Markovian states. Thus, let s; consist of a & followed by ¢ ¢’s and
t; consist of a § proceeded by j €s. Then, the infinite matrix (p(sety):
t,J = 0,1, --) is, except for constant factors in each row (or column), the
matrix

P=(sin®(i+j+1):4,7=0,1,---).
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But P is of rank 3 so the rank of ¢ is 3.

Given any 7 > 0, the matrix P can be transformed by rearranging rows and
columns to form a matrix P*(r) with main diagonal elements less than r. But a
non-negative hollow matrix of rank greater than 1 cannot be expressed as a sum
of a finite number of non-negative matrices of rank 1 so that, by continuity, the
same property holds for P, which proves that there is no stochastic process {Zz}
with Markovian states 8, --- , 8, and function g with Y, = ¢(Zi), e = ¢(B:)
(¢=1,---,r) and g(a) 5 e for all other states a of {Z}.

3. The general case of finite rank. Since we do not assume stationarity, we
may assume the state spaces at different times are disjoint.

TueoreEM 1. Let {Yi} have state space Uy at each tome k. Let e ¢ U, have finite
rank ot time n. Then, there exists a process { X1} such that

(1) {X4} has state space Uy at time k = n and (U, — {f) ufa, e, -} at

time n;

(ii) The states e , & , - - - are Markovian;

(i) Yi = f(X%) where f(8) = 8if 6 = e;and f(e;) = efort = 1,2, -+ .

Proor. Let the rank of € at time n be »,(e). Let 8 and J be the classes of all
measurable sets of sequences of states prior to and after time n, respectively.
Then, there exist functions ®; and ¥, (72 = 1, --- , v,(e)) on 8 and J respectively,
such that

(3.1) Da(SeT) = Dm0 ®:(S)Wu(T)

forall Se8, T ¢ 3.

Let p.(SeY) = Q(8) and p,(XeT') = R(T) where X = -+ X Upz X Uny
and ¥V = U,y X Unye X ---. We wish to show &; K @ and ¥; < R for
7=1,---,v.(e). Suppose the former is false. Let E be such that Q(E) = 0 and
®,(E) # 0 for some ¢. Then, p,(Eel') = 0 so that

YO ®(E)TL(T) = 0

for all T ¢ 3. But then the ¥; are not linearly independent, so that the rank of e
at time n is less than »,(¢), a contradiction. The proof that the ¥; << R is the same.
Thus, (3.1) becomes

(3.2) Pa(SeT) = 205 [sr 0i(x)¥i(y) dQ(z) dR(y)
where
©w; = dq)w/dQ an(’l 1[/@ = d‘I’m/dR

Then, each ¢; is a function on X and each ¢; is a function on Y.

Leto = (o1, , @) andyp = (Y1, -+, ¥y,0). Let 0" (z) = o(2)/|le(2)]|
and ¥*(y) = ¥(y)/|[¥(y)|. Then, (¢*(z),¥*(y)) = Oforalmostallze X,ye¥
since p.(SeT’) = 0forall S ¢ 8, T ¢ 3. By changing ¢* and ¢* on appropriate sets
of measure 0, we obtain this inequality for all z, y.

Let U and O be the range spaces of o™ and ¥*, respectively. Then, at and O are
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compact and inner product is a continuous function on U x V. Hence by a
theorem due to Rubin [7],

(3.3) (u,0) = 2270 ai(u)Bi(v)

for all w € U, v € VU where the a; = 0 and 8; = 0.
Inserting (3.3) in (3.2) we obtain

(84) Pa(8eT) = 27 [sxr (@) as(e* @) W) || B:(¥* (1)) dQ(z) dR(y).

The a; and 8; can be normalized by multiplication of «; by a constant ¢; >0
and dividing 8; by ¢; . We normalize forj = 1,2, - - - so that

(3.5) Jr @)l B:(¢*(y)) dR(y) = 1.
Then from (3.4),
(3.6) Pa(8eY) = 271 [s lle(@) || i(¥(2)) dQ(x).

We now define { X;}. Let { X} have state space as defined in (i) of this theorem"
For A C U, — {¢, let

P((-, X2, Xn1)eS, Xned, ( Xnp1, Xngz,+-)eT)
=P((-,Yn2,Yn1) eS8, Yned, (Yop, Yuyo, ) eT).
Furthermore, let
(87) P((+++,Xu2,Xu1) €8, X0 = &) = [s[le(@)] ai(o*()) dQ(z)
and
P(( X1, Xnga, o) eT|(+++ Xn, Xno1) €8, X0 = ¢)
= [+l B;(¥* (%)) dR(y)"

By (3.5) and (3.6) these probabilities are consistent and ¥ = f(X) which com
pletes the proof.
CoroLLARY. Under the conditions of Theorem 1, there exists {Xx} satisfying the
conclusions for which every Markovian state & # € in {Yi} is Markovian in {X}}.
Proor. From (3.4) we have

(3.8) Pa(SeT) = 277 A«(S)E(T)
forall Se8, T ¢ 3 where A; = 0, 5; = 0.

We say T is a right M-set if whenever %év ¢ T and & is Markovian, then also
udw & T for all sequences w. We define left M -sets similarly. Let Sy and 3, be,
respectively, the classes of all measurable left M -sets of states prior to time n and
right M -sets of states after time n.

Let
(3.9) ¢(T,t) = xr(t) if ¢ has no Markovian states
= P((Yn+l ) Yﬂ+2 y ©° ') eT I(Yﬂ+l y Tt Yn+m) = U, Yn+m+1 = 6)
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if £ = udw where u is a sequence of length m without Markovian states and & is
Markovian. Define

(3.10) EX(T) = [ g(T,t) d=:(t).
Similarly define f(S, s) and
(3.11) AF(S) = [ £(S, s) dAs(s).

Then A;*(8) = Ai(8S) for 8 e 8y and E*(T) = Ei(T) for T & 35 . Furthermore
Pa(SeT) = 257 A (S)ESA(T)

from (3.8) and (3.9). ]
We now define {X;}. For A < U, — {€} use (3.7). Let

P(( -, Xn—2, Xn—l) SS, X, = ej) = Aj*(S)
and
P((Xn+17 Xn+27 "')€TI("' ) X"-2’ X"_I)SS’ Xn = Ej) = EJ*(T)'

It suffices to show that a state 8 # e which is Markovian in { Y} is Markovian
in {X,}. Examining (3.9) and (3.10) we see that {X;} has the transition prob-
abilities from ¢; at time n given by =; until a Markovian state of { Y3} is reached.
After a Markovian state is reached, the transition probabilities for { X} as given
by the Z;* become those of { ¥}. Thus any state of { Y3} at time & > n which is
Markovian in {Y5} is Markovian in {X;}. Similarly, examining (3.11) and the
analogue of (3.9) which defines f we see that a state of { Y3} at time k < n which
is Markovian in {Y3} is Markovian in { X;}. Trivially a state of {Y;} Markovian
at time n is Markovian in {X}}. This completes the proof.

An extension of Theorem 1 to allow the simultaneous construction of Mar-
kovian states at a fixed finite set of time points can be carried out. Stronger
results are possible if we assume Markovian states occur infinitely often (in both
directions in the case k = 0, =1, ---). These considerations are deferred to a
later paper.

4. The case of rank 2. In this section we do not, as yet, assume stationarity.
TaEOREM 2. Let { Y1} have state space Uy at each time k. Let € € U, have rank 2 at
time n. Then, there exists a process { Xi} such that
(i) {Xi} has state space Uy, at time k = n and (U, — {€}) U {er, &} at time n;
(i1) The states e , e are Markovian; -
(iii) Y% = f(Xy) where f(8) = 614f 6 # e;and f(e;) = efori = 1,2;
(iv) If & 5 ¢, then the rank at any time of & is the same in { Xy} as in {Y}.
Proor. Let X, Y, 8, 3 be as in the proof of Theorem 1. We first prove that there
exist measurable S; ¢ § and T ¢ 3 such that

pn(SleTl) pn(SIGY) |

(4.1)
pn(XeTl) Pn(XGY)
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Suppose false. Then, for all choices of S; and T,
pn(Slle) = pn(SlfY)pn(XeTl)/pn(XeY)
= a(Sl)ﬂ(Tl)

so that the rank of €1is 1, a contradiction.
Choose S; and T to satisfy (4.1). Then, for all measurable Se8, T' ¢ 3,

Pa(SeT)  pu(SeTr)  pa(SeY)

Po(S1€T)  pa(SieTh) pa(S1eY) | = 0

Pu(XeT) pa(XeT1) pa(XeY)
so that

Pa(Sel") = Pa(SeT1)¥1(T) + pu(Se )u(T).
Now p,.(SeT') < p.(SeY) so that we may assume p,(SeY) = 0. Let
AM(8) = pa(Sel1) /pu(SeY).
Then 0 < A(S) = 1. Let A = supsg M(S) and B = infsg N(S). Now,
(4.2) NSWA(T) + ¥a(T) = pa(SeT)/pa(8eY) = 0.
But,
NSWA(T) + ¢2(T) = (M8) — B)(4 — B)'¥a(T) + Aga(T)]
(4.3) + (4 = MN8)(A — B)'Wa(T) + Bu(T)]
= (M(S) — B)(4 — B)"W(T)
+ (4 = N\(S))(A4 — B)™¥y(T),
say, where ¥; = 0, ¥, = 0. From (4.2) and (4.3)
(44) Pa(SeT) = ®1(S)W(T) + P(8)¥e(T)
where
(4.5) @1(8S) = pa(8eY)IN(S) — Bl/(4 — B)
= [pn(Sel1) — Bpa(8eY)]/(A — B)
and )
(4.6) @2(S) = pa(SeY)[4 — N(S)]/(4 — B)
= [Ap.(8eY) — pa(SeTh)]/(A — B),

NOW7 O é (bz(S) é pn(SeY) é 1 fOI‘?: = 1) 27 a'nd‘q)l(‘S) + (I)z(S) = pn(SGY)
We wish to show ¥;(T') < 1, ¥,(T) =< 1. The two proofs are similar and we will
prove the first. From (4.3) and (4.2) we see that

U (T) = AYr(T) + ¢e(T) = sups pa(SeT')/pa(SeY)
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and the last expression is at most 1 since T' Y. Furthermore, ¥,(Y) =
¥2(Y) = 1 since otherwise,

Pr(8eY) < ®1(8) + $2(8) = p,(8eY).

The ¢, and hence the ¥, are linear combinations of D (S1€T) and p,(S:€T) so
that the ¥; are s-additive. Similarly the ®; are s-additive.

We now define {X:}. Let the state space for {X4} be asin (i) of this theorem.
For measurable 4 < U, — {¢}, let

(47) P((-, Xug, Xn1) €8, Xne A, (Xop1, Xga, ) & T)
=P((-, Yas, V) e S, Yae A, (You, Yate, - +-)eT).
Fori =1, 2, let
(4.8) P((c++, Xug, Xn) €8, X0 = &) = ®y(S)
and
(4.9) P((Xnt1, Xngz, oo2) e T[(+ , Xucg, Xny) €8, X = ) = Wi(T).

Finally, we must show that if & > ¢, then the rank of § at any time is the same
in {X;} asin {Yi}. If & & U, this is trivial. Let vx(8) and . *(8) be the ranks of &
in {Y3} and { X}, respectively, at time k = n.

Trivially ».*(8) = ».(3). We assume § & Ui,k < n.Let

pn(S(STeU) = P[("' ) Yk_z, Y;,__l)sS, Yk = 5, (Yk+1, ey, Y,,_l)eT,
Y,,,=€, (Yn+l,Yn+2;"')3U]
for appropriate:S, T and U. Then, by (4.5) and (4.8)
P((-+, Xos, Xia) €8, X3 = o (Xepr, v, Xan)eT, X, = &)
= [pn(88TeT1) — Bpn(SsTeY)]/(A — B)
= 28 [fi(8)gu(Telh) — Bfi(8)g« Te¥)]/(4 — B)
= 25D £48)GL(T)
and similarly if ¢ is replaced by ¢ in the above. Hence n(8) < ve(8) so
v (8) = v (8).

The point of this proof is the linearity of the probabilities in 0. (S8TeT;) and
Pn(88TeY). But if 8 £ Uy for & > n we have only to consider the ¥,(T8U) which
are linear in p,(81eT8U) and p,(SyT8U) so the proof is similar.

From Theorem 2 and the corollary to Theorem 1 we obtain the

CoroLrARY. Under the conditions of Theorem 1 4t is posstble to construct { X}
satisfying the conclusions for which every state & % € in {Yy} which is of rank at
most 2 has its rank preserved in {X,}. :

Proor. Since only states of positive probability have ranks, we know that at

most a countable number of states are of rank 2. We carry out the construction
of Theorem 2 to obtain a process {Z} such that ¥, = h(Z ) and each rank 2
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state of { Y} is the image under h of two Markovian states of {Z;}. Furthermore
we recall that the ranks of other states are preserved.

Secondly, carry out the construction of the corollary to Theorem 1 to obtain a
process { W} such that Z, = g(W). Recall that this preserves Markovianness
in {Wi} of states in {Z;}. Furthermore, the only states of {W;} for which g is
not the identity are those mapping into e.

Let m(8) = h(3) if g(8) # e and m(8) = ¢(38) if g(8) = e Set X = m(W).
Then the obvious f yields Vi = f(X:) and {X)} and f have all the properties
claimed.

5. The stationary case. With the assumption of stationarity we drop the sub-
seripts n on p, and U, .

TueorEM 3. Let { Y1} be a stationary process satisfying the conditions of Theorem
2. Then, there exists a stationary process { X1} satisfying the conclusions of Theorem 2.

Proor. The proof of Theorem 2 is valid for £ = 0, =1, --- and for
k =1,2,--..In considering the stationary case, we require that it be possible
to choose Sy € 8, 8; € 8, Ty € 3 for (4.1) independent of the time at which e occurs.
For this reason we prove the theorem for k = 0, 1, --- . If k = 1,2, -+ , ex-
tend {Yi} to k = 0, &1, --- and after constructing {X;}, restrict back to
Ek=1,2,..-.

Let { X1} have state space (U — {€}) u {e, e}. Let s be a sequence of states of
{X}. Fix n and assume s, = & (7 = 1 or 2). Let &Y = s, if k = n and
s = ¢ (j # 7). We will say that the set of sequences S is e-freeif s & S implies
s™ & 8 for all n such that s, = ¢; for some ¢ = 1, 2.

Assume Se8 and T e 3 are efree. Define probabilities as in (4.7), (4.8)
and (4.9). It suffices to define P((Xipr, -, Xua)e T, X, = ).
(v Xpoy Xi1) €8, Xi = ¢) for 4,7 = 1, 2. We will do this for ¢ = 1. The
proof is similar for ¢ = 2.

With the obvious extension of the notation of Section 4, we have

(5.1) P((+++, Xpo, Xs1) eS8, Y =€, (Xppa, -+, Xo) eT, X = &)
= [p(SeTeT1) — Bp(SeTeY)]/(A — B)

by (4.4) and (4.7). Denote the left side of (5.1) by T'(SeTe). By (4.4),
T'(SeTer) = [@1(S)¥1(Tel1) + Po(S)¥s(TeTh)]/(A — B)

— B[®1(8)¥(TeY) + 22(8)¥y(TeY)]/(A — B)
so that

T(SeTe) = ®:1(S)[W1(TeTy) — BY(TeY)]/(A — B)
+ :(8)[¥a(TeT1) — BY:(TeY)]/(A — B)
= &,(8)%*(T) + &:(S)T*(T),

say. Additivity of ¥,* and ¥,* follow from their linearity in ¥, and ¥,. Let
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A*(8) = ®1(8)/®:(8) = [M(S) — BI/[A — A(S)]. Then, sups A*(8) = o
and infegA*(S) = 0. Thus, if ¥,*(T) < 0, there exists Se$ such that
T'(8eTe) < 0 and similarly if ¥,*(T) < 0. Hence, ¥,* = 0 and ¥,* > 0. Also,
T(SeTe) = ®:(8)(z = 1, 2) so that, by the argument used in Section 4 for the
¥, we have the ¥.;* < 1. We now set

P((Xpt1, X)) eT, Xn=a |-+, Xia,Xsa) €8, Xs = ) = ,5(T)
for 7 =12
Extending the notation in the obvious way we obtain
T(SeTe) = & (S)¥* (T) + ®(8)W**(T)

where the ¥,** enjoy the same properties as the ¥,* which are proved in the
preceding paragraph. Then,

P((Xk+1, ,Xn—1) €T, X, = €2|("' ,Xk—z, Xk—-l) SS, X, = €j)
()

forj =1, 2.
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