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ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM
TELEGRAPH SIGNAL

By Davip S. NEWMAN

The Boeing Company, Aerospace Group

1. Introduction. The two-state Markov process known as the random tele-
graph signal has been applied to a number of problems in communication en-
gineering. Most investigations have been concerned with the spectral density
function of the process. Wonham and Fuller [6] treat a special case of the
problem treated in this paper; namely, thé probability distribution of a filtered
random telegraph signal. The analogous problem for a secondary or filtered
Poisson process (in the terminology of L. Takacs [5] or E. Parzen [3], respectively )
has a closed form solution which apparently was first derived by S. O. Rice [4].
His result can be obtained rigorously from the Lévy-Khintchine theory of in-
finitely divisible distributions (see Feller [1]). The method used here is more
elementary.

2. Statement of the problem. The random telegraph signal is a Markov
process X (t) with two values which we shall take to be 0 and 1. The representa-
tion of X (¢) which is most convenient for our purposes is

1) X(t) = 2% (—1)'H (¢t — Si),
where H (1) is the unit step function
Hwu)=1 for u=0
=0 for u<0O,

and Sy = D> 1T, S = 0, and {7} is a sequence of independent, exponentially
distributed random variables, with mean 1/\ for j odd and 1/u for j even. The
assignment X (0) = 1 in equation (1) is purely a matter of convenience.

If the random signal X (¢) is passed through a linear filter, the output may be
represented in the form

) Y() = Do (1A — Si)

analogous to equation (1). A (u) is the response of the filter at time u to a
unit impulse applied at time zero; various assumptions may be made about its
behavior.

The results of this paper are threefold: (a) The moment generating function

(mgf)
®0,t) = E(exp 0Y (1))
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is shown to be an entire function of 6 for each value of ¢, and a bound is obtained
on®(9,t). (b) (6, t) satisfies a linear, second order differential equation in ¢.
() ®(0) = lime,, P (0, ) exists and is analytic for 6 in a neighborhood of zero,
and therefore in a strip |Re 8] < 6, for some 6,. The technique used in the proof
of (¢) provides a workable though cumbersome method for the explicit calculation
of the limit ® (#) of the generating function. The result (c¢), Lévy’s continuity
theorem and analytic continuation together imply that the limit of the distribu-
tion of Y (t) exists, and has mgf ®(6).

3. Analyticity of the moment generating function. Let N, be the alternating
renewal process associated with the sequence of sums {Si;}—that is, the total
number of jumps in the random telegraph signal up to time ¢. Formally
N: = max {k:S; < ¢}, which exists with probability 1. Let A,; be the event
{N, = n}, and let I,; be the indicator function of this event. Define, if it exists,
(3) ®(r,n) = E[(Y (1)L

= E[(Y (t))*|N: = n]P[N: = n].
If K, (¢) is the distribution function of the random variable S, , then
PN, =n] = K,(t) — K.1(2).
From (2) it follows that

YOF £ (ZialAe - 8)) £ @d)"

whenever N, = n, if we assume A = Supo<u<w |4 ()| < . These results
imply that ®,(f, n) exists and

@1, n)| < MA) (Ku(t) — Kua (t)).
We may now show that the kth moment
de(t) = E(Y (1))

exists, and obtain a bound on it (and on the kth absolute moment, for that mat-
ter). Consider the partial sums of the series ) n—on'[K,(t) — Knu(t)]. By
Abel’s summation formula,

@) 2Nan*(Ke — Kon) + VN 4+ 1) Ky = 2 0ol + 1) — nMK,

for all ¢.
Let A* = max (, u). Then the sum of n exponential random variables with
mean 1/\* is stochastically smaller than S, , or in other words,
(5) Ko () < [0 ("/n))e ™ da.
1t follows that limy.e (N 4 1)*Kyii(t) = O for each ¢, so that the two series
whose partial sums occur in (4) diverge or converge together, to the same limit.
Consider now the double series

2o Don—o (/KN (A0)Y(n + 1)° — n|Kua (¢) + 1,
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with 8 > 0. Since the terms are positive, the order of summation is immaterial.
But

Do Kna (t) 20 ((A0)/ED[(n + 1) — n'] + 1
= 2 Kan @™ — ¢ + 1
= (" = 1) X0 " Eun () + 1.
But by the inequality (5) the last series converges, and furthermore
> @) Kaa (8) < [8 200 ((we™)"/nb)e ™ da
and the right side is simply )
€’ — 1) exp N (™ — 1)] — 1}.

Consequently the double series sums to exp Nt (@*® — 1)] for all values of
¢ and 6. Now it follows that 2 a—on"[Kn(t) — Kn4 (t)] converges uniformly in ¢
on every finite subinterval of [0, « ). From this fact and the convergence of the
double series one has

TuaroreM 1. Y (t) has moments of every order. The moment generating function
has a Taylor series expansion

B0, t) = D2imo®i ()0 /k!
converging for every finite t € [0, «) and every complex 0; furthermore
[®6, O] < Xial® ()] (6]/k1) < exp W™ = 1)]
where A* = max (\, u). Consequently ® (9, t) is an entire function of 0 for each t.

4. The differential equation for ®(9, ¢). In this section we shall prove
TurorEM 2. The mgf ® (0, t) is the unique solution to the differential equation

) D (@d/dt) (e (d/dt) €D (0, 1)) — Aue "B, 1) = 0
with the initial conditions
@) ®0,0)=1; @,0) = 1" — 1),

where g(1) = (N — wp)t + 0A(@). (The prime in (7) denotes a derivative with
respect to t.)
Proor. Let 4,; be the event N; = n defined in the preceding section and I,

its indicator function. Then by the complete additivity of the integral
®@0,1) = 20=0®@,t,n)

where
®0,t,n) = EE L.

Now ® (6, t, n) may be expressed as an integral over Euclidean n-space R", since
Y (¢) restricted to A, is a Borel function of the random variables (S;, - -, S,),
or equivalently (T, ---, Th).
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If we define the differential probability element
dP, = Pls; < 8; £ s; + ds;, 1=7=n, and N, = n],
then in terms of the density function f;(¢) of 7; and F; (¢) = fé fi(w) du, we have
APy = [T1i= fi(si = sia) dsill — Fon(t — s,).
Note that dP, = Ounless 0 < s; < -+ < s, < t. Then
D0, t,n) = [w][[iaexp[(—=1)"04 ¢ — s,)]dP, .

These integrals suggest that a recurrence relation exists among the ® (0, ¢, n).
The relation becomes clear when the change of variables y; = t — Su—jt1 1s made,
and the resulting integral has the form

®) @0, 4, n) = ¢ JTtadi fa, exp [(—=1)" Xt (=) () dys - - -y,
where \; = X for 7 even and u for 4 odd, and g (y) = (A — w)y + 04 (y). Q. is the

point set 0 = y1 < .-+ = y, < (. The recurrence relation is as follows: Define
Gy(t) = Ho(t) = 1, and
) Ge(t) = [5G () dy,

o) = [6e7YH, (y) dy.
Then ® (4, t, n) = NOw)" G, @)™ for n odd, and
®0,t,n) = Ow)"H,@t)e™
for n even. The series
(102)  xe() = 2o W) "Ho, ), Xot) = D neo NO) Ganyr (8);
(10b)  xa(t) = 20— (u)"Hons (8),  xo(t) = Do%oo N (\i)"Gon (2)

converge uniformly in ¢ on every finite subinterval of [0, «] by their relation to
the series D n—o® 0,t,n) and D o ® (=8, ¢, n). For the same reason the differ-
ential equations

X () = ¢ “xut),

(11) xn () = (e Ox. (1),
xo @) = ¢"Px, (),
Xo (8) = (e "xo(t),

with initial conditions x,(0) = x(0) = 0, x,(0) = 1, x, (0) = \, are an im-
mediate consequence of (9). Since

20, t) = ¢ Mxe(t) + x0()]
it is convenient to reduce (11) to the single second-order differential equation
O @/d)le " Ox )] — Mx(t) = 0,
with the initial conditions
x©0) =1, x'(0) =x"" =",

[
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This result is equivalent to (6) and (7), and the theorem is proved.

It is worth noting that there is no need to assume the continuity or differenti-
ability of ¢ (t) [that is, A (¢)]. The differentiability of x (t) and ¢*“x’(¢) is a
consequence of the uniform convergence of the differentiated series.

b. Existence and analyticity of the limiting characteristic function. Existing
results on the asymptotic behavior of differential equations (for example, see
Levinson [2]) imply only the existence of the limits ® (#) = lim,,.. P (4, ¢) when
restrictions on A (¢) similar to those given below are made. Here it will be shown
that the limit is analytic in a strip containing the imaginary #-axis.

Let A (¢) have second derivative on [0, « ). Then the transformation

(12) F(6,t) = exp (364 ()2, ¢)
brings (6) and (7) into the form
) 60+ 0+ w60 + B ) + Ce®lf6,t) =0
and
(14) f(8,0) = exp (364(0)),

1(6,0) = 204" (0) exp (264 (0)) — 2\ sinh (264 (0)).
The primes denote derivatives with respect to ¢, and
(15) @) = 347(t) — 300 — A’ ),

et) = -1 @)

TarorEM. If A (t) has a second derdative on [0, ), and ¢ (t), g2 (¢) defined by
(15) are absolutely integrable on [0, « ), and lim;.., A (t) exists and is finite, then
®(9) = lim P (6, t) is analytic at least for

(16) |Re6] < 6 = [(R + 2)/2R;)' — Ri/2R,
where
Ri= (N4 p)" [§lg:@)] at (@ =1,2).
Proor. Let
M@) = O+ w)[1— e ™, z >0,
=0, x <0,

and let M xh(t) = ff)M (t — s)h(s)ds be the convolution of M with any
integrable function k. Then (13) and (14) together are, by elementary methods,
equivalent to the integral equation

an) F6,t) = a(@)e ™" 4+ BO) — M * 8y + 6°:f (6, )1 () .
«(8) and B (0) carry the initial conditions (14) as

(18) a(0) +8@0) =16,0), —O+pa®) =750,0).
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Since f (6, t) is an entire function of 6 for each ¢, it may be expanded in a power
series

F0,t) = 2o fi ()8

which converges for all 6. The coefficients « () and 8(f) are also analytic and
have expansions ) ax0*, > 8:8*. By repeated differentiation of (17) with respect
to 6 and setting 8 = 0 one obtains

19) fi) = ae™ ™™ + By — M *[qifics + @afis] (t)

for all k = 0 if we define f;(t) = f2(t) = 0.
It is easy to show that if A4 (¢) is integrable on [0, « ),

lime.o M *h(t) = A+ w) [T A@)dt
By mathematical induction and (19) it follows that

(20) fi() = B — (N4 1)7 [0 [ @)fics (8) + ge()fiz(t)] dt.

The existence of the integral on the right is assured by the fact that f (¢) is
bounded for 0 = ¢ < « which we shall now prove, and which also completes the
proof that f(8, t) is analytic. By induction and (19) we have [fi. (¢)| < g for all
kand 0 =t £ «, where g; satisfies the difference equation
(21) gr = ,ak + ﬁkl + ngk—l + Rzgk—z s
with B, and R, as in (16). From the boundary conditions (14) and (18) one
has

low + Bl = £ (0)] = (1/kD)[2A ()" = c*/k!.

The difference equation (14) may be solved formally by introducing the generat-
ing function

G (0) = Z;;o gkok.

If

(22) G6) = ¢ + Ri6G(6) + R6°G(9)
so that

(23) G@O) = ¢’/(1 — R6 — R.6%),

then the Taylor series expansion of G (8) converges for |8] < 6, defined in (16).
The coefficients g, must satisfy (21) by the argument which leads from (17) to
(19 )—successive differentiation of G with respect to 6 at 6 = 0.

The conclusion that

F6) = Diefu()n* = limew f(6, t)

follows by applying what is, in effect, the dominated convergence theorem. Let
{t,} be any sequence of positive real numbers with ¢, — «. Then f; (t,)6" is a
summable (i.e., Lebesgue integrable) function of k for each n, since |fi (t,)6"| <
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g: 6] and g, [6]* is summable provided [6] < 6, . Since fi (,)8° — i (00 )" for all
k (that is, “almost everywhere” in k), the dominated convergence theorem yields

Do i (t)8* — fu()6F| >0

as n — o, or in other words,

£0,t) = 2o fi(=)6* = £(0).

Furthermore the convergence is uniform in 6 on any closed subset of |6] < 6, , so
by a classical theorem from analytic function theory f(8) is analytic for |6] < 6.
The same is also true of ®(9). But since ®(40) is a characteristic function it
follows that ®(6) is analytic at least for [Re| < 6.

6. Remark. The sequence of equations (19) and the limiting form (20) pro-
vide a technique for the explicit calculation of the limiting distribution—at
least in theory. This technique may be usable for some forms of A(f) which
are of interest in engineering applications.
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