A NOTE ON THE WEAK LAW OF LARGE NUMBERS

By Melvin Katz¹

State University of New York at Albany

Let $\{X_k: k \geq 1\}$ denote a sequence of independent and identically distributed (iid) random variables. Let $S_n = \sum_{k=1}^n X_k$. If S_n/n converges to zero in probability but not with probability one (wp 1) it is well known that $\limsup_n |S_n|/n = +\infty$ wp 1. The purpose of this note is to show that in fact $\limsup_n S_n/n = +\infty$ wp 1 and $\liminf_n S_n/n = -\infty$ wp 1.

LEMMA. Let $\{X_k: k \geq 1\}$ be iid then the following are equivalent.

- (a) $\limsup_{n} S_n/n = +\infty \text{ wp } 1.$
- (b) $\sum_{n=1}^{\infty} n^{-1} P(S_n > nM) = \infty \text{ for all } M > 0.$

PROOF. Suppose that (a) holds. Then $\limsup_n (S_n - nM)/n = +\infty$ wp 1 for all positive M. Consequently $\limsup_n (S_n - nM) = \infty$ wp 1 for all positive M. Therefore by (Theorem 4.1, [1]) (b) holds. Conversely if (b) holds it follows, again from (Theorem 4.1, [1]), that $\limsup_n (S_n - nM) = +\infty$ wp 1 for all positive M and therefore (a) holds.

Lemma. Let $X_k: k \geq 1$ be iid, $\epsilon > 0$, and suppose that S_n/n converges to zero in probability. Then there exists a positive constant A such that

$$P(S_n > n\epsilon) \ge AnP(X_1 > 2n\epsilon)$$
 for $n \ge n_0$.

PROOF. Let $\mu(X)$ denote the median of the random variable X and let $S_n^i = \sum_{k=1, k \neq i}^n X_k$. Then

$$P(S_n > n\epsilon) \ge P \bigcup_{i=1}^n \{ [X_i > n\epsilon - (n-1)\mu(S_n^i/(n-1))]$$

$$\cap [S_n^i > (n-1)\mu(S_n^i/(n-1))] \}$$

$$\ge \sum_{i=1}^n [\frac{1}{2} - (i-1)P(T_1)]P(T_i)$$

where $T_i = [X_i > n\epsilon - (n-1)\mu(S_n^i/(n-1))]$. Further S_n/n converging to zero in probability implies that $\mu(S_n^i/(n-1)) \to 0$ and $nP[|X_1| > n\epsilon/2] \to 0$. Therefore there exists n_0 such that if $n \ge n_0$ it follows that

$$P(X_1 > 2n\epsilon) \le P(T_1) \le P(X_1 > n\epsilon/2)$$
 and $\left[\frac{1}{2} - nP(X_1 > n\epsilon/2)\right] \ge A > 0$.

Thus if $n \ge n_0$ it follows that $P(S_n > n_{\epsilon}) \ge AnP(X_1 > 2n_{\epsilon})$.

THEOREM. Let $\{X_k : k \geq 1\}$ be iid and suppose S_n/n converges to zero in probability but not wp 1. Then $\limsup_n S_n/n = +\infty$ wp 1 and $\liminf_n S_n/n = -\infty$ wp 1.

PROOF. First note that $\sum_{n=1}^{\infty} P(X_1 > 2n\epsilon) = \infty$ for all $\epsilon > 0$. For if $\sum_{n=1}^{\infty} P(X_1 > 2n\epsilon) < \infty$ for some $\epsilon > 0$ it would follow that $EX_1^+ < \infty$; and

Received 8 November 1967.

¹ Research partially supported by NSF Grant GP-1816.

then, since $\int_{|x|< n} xF(dx) \to 0$, that $EX_1 = 0$. This is impossible since S_n/n does not converge wp 1. Therefore, by the preceding lemma, $\sum_{n=1}^{\infty} n^{-1}P(S_n > n\epsilon)$ is infinite for all $\epsilon > 0$ and it follows from the first lemma that $\limsup_n S_n/n = + \infty$ wp 1.

Finally since $\{-X_k: k \ge 1\}$ satisfy the hypotheses of the theorem it follows that $\liminf_n S_n/n = -\infty$.

REFERENCE

 SPITZER, F. (1956). A combinatorial lemma and its applications to probability theory. *Trans. Amer. Math. Soc.* 82 323-339.