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1. Introduction. Let us introduce some definitions.
DerFiNiTION 1. Two distribution functions F and G are e-coincident if

sup, [F(z) — G(z)| £ e
DeriNiTION 2. A distribution function F is e-normal if there exist a > 0
and b such that
sup; [F(x) — ®(ax + b)| =< ¢,

where ®(2z) is (2r) [Zwexp { —2*/2} da.
DeriniTION 3. Two random variables n and ¢ are e-independent if for every
a} b’ c) d’ e’ f

(1) |fau+b2<c,du+ez</ dQ(?/: Z)l S
where
(2) Q(y,2) = Pln <y, ¢ <2} — Pln < y}P{¢ < 2}.

In 1956 N. A. Sapogov (Leningrad) [3] showed, that if F; = F; « F; is e-nor-
mal, and if F;(0) = 3,

ffodF1=a1, f’lNﬁdFl(x) —'(112=0'12>0, N = (210g(1/e))§—|—1,
then
sup, [F1(z) — ®((z — @) /m)| < Coy*(log (1/¢)) .

This study was continued by Hoang Hiu Nye (Moscow) [2] who showed in
1966 that, with some supplementary assumptions,

(a) eindependence of the random variables of ¢ + 5 and £ — 7, where £ and 7
are independent, implies B1(e)-normality of the £ and #;

(b) e-independence of

E= 2 ty/n and S = 2 (& — B

where the £; are independent and have the same distribution function F, implies
B2(€e)-normality of F. In his theorems the 3(e) are of the order of

(log (1/e))".

The purpose of this paper is to show that in some cases we can obtain a much
better order of magnitude of the 8(¢).
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TrEOREM 1. If & and & are independent identically distributed and E&; = 0,
Etl = 1, E|t> < M < o, then e-independence of & + & and & — & implies
Cy(M)é-normality of &; .

THEOREM 2. If & and & are independent identically distributed and E§; = 0,
Etl = 1, E|lt&’ < M < o, then e-coincidence of the distribution functions of
(& + £)/2 and & implies Co(M)é-normality of &:.

2. Proof. As the proofs of both theorems are very similar we shall prove only
the first of them. All constant C; (¢ = 1, - -+, 8) will be functions of M. Assume
also that e is so small that ¢ < C5*-Cs*, where C; and Cs will be defined by (7)
and (20), and that inequality (18) holds.

Letn = & + &, = & — & and Q(y, 2) is defined by (2); then we have that
o(t), the characteristic function of £;, satisfies the equation

(3) ¢(2t) = Eexp {it(n + )} = E exp {in}-E exp {it§} + f(¢)
= &' (De(—1) + f(1),
where f@@) = fexp {it(y + 2)} dQ(y, 2).

Our purpose now is to estimate |f(¢)|. Let 21 = (y + 2)/2, 22 = (y — 2)/2
and

(4) R(m1, ) = [yiacte; y-s<ezy 4Q(Y, 2);
then '
7(8) = [ exp {2ita:} dR (21, @) = [ exp {2itz} dS(x) = [jo1za + [1o15a = B+ 5,

where S(z) = R(x, ) — R(xz, — ). From (1) and (4) we obtain that
|8(x)| = 2. Now we can estimate |3;| by the integration by parts

(5) |3] = |S(a) exp {2ita} — S(—a) exp { —2ita} — 2it [%. S(z) exp {2itx} dx|
=< 4¢(1 + 2ta)
It follows from the Tchebysheff’s inequality for 3rd moments that

(6) 5] < Cy/d’.
Let now a = ¢ ¢, then from (5) and (6) we have
(7) If()] £ Cee(1 + €7%).
Let
(8) ¢(t) = exp {—£/2} + A1),

then according to Essen’s well-known theorem (see, p. 196-197 of [1]), in order
to prove the desired result it is enough to show that for one 7' = ¢ *
-

(9) U= [T, |n(t)/t] dt < Csé'.
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Let t; = €2, ¢t < 4 < 27,
Yi = maxy;_;<i<s; |h()| (1=12,---,k),
then
(10) Jiscv@/tlde = [, (viftia) db = v
The conditions on the moments of the ¢ give us an estimate of |2(¢)| for small ¢

then
(11) O [R(8)/t| dt < Cate® = Cue.
Sinee |A(t)] = |h(—t)| from (9)—(11) we obtain
(12) U < 2Cie + 225 7i.
From (3) and (8) we have inequality
(13) [h(2)] £ 22010 (1) exp {=U/2}[h ()" + [F(2)].
Then from (13) and (7)
(14) yin £ demi(l + Loy + 7)) + v + Coe(1 + 27,
where a; = exp {—1ti4/2}.
Let us show that if forallz < I (I £ k — 1) we have
(15) v £ Coe(1 + 27,

then (15) holds for z = [ + 1 too.
From (15) it follows that forz = I < k

1.5v: + vi < O™ = .

Repeating the inequality (14) [ times we obtain
i < 2C2e(1 + 2Y) + daryi(1 +8) < 2C2e(1 + 2°) + 2Coe(14+2"7") -4ai(1 4+ 6)

4 a1 + )P < -0 < 20 i (1 4+ 2941 + 8)I;

+ 4'(1 4 8)'Im,
where II, = 1 and
0 = @11+ Grjy = €Xp {— D hall-a/2} = exp {—t’(4' — 4'77)/6}.
(16) v < 4Cee(1 + 8)' 225252 + 4'(1 + 8)'TIm

< (4Cee + 1) (1 + 6)' 2f-o 2777,

It is not difficult to calculate that
(17) Db o2M; < 2 exp {—t0 22} < Cee b
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According to our assumption about e

(18) (148" = 2.

Then from (14) it follows that

(19) 11 = Cre

Therefore from (16)-(19) we have

(20) Y < 2(4C; 4+ C7)Ceet = Cset.

From (20) and the assumption about e it follows (15) for 2 = I 4+ 1. Since we
have shown that (15) is valid for all I < %, we can use (16) to estimate D vi.
According to (16), (17), (18), (19)

Z,;=1 Yi < 2(402 + 07)6 lec=1 22l+1 exp {—t02 22l_3‘} < C3to—2€ = Cgé%.
By (12) the inequality (9) is proved.
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