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ON SLIPPAGE TESTS—(I)'
A GENERALIZATION OF NEYMAN-PEARSON’S LEMMA

By Irvine J. Hari’ anp Axro Kupd?

Towa State University

1. Introduction. An important class of multiple decision problems is the class
of slippage problems. Although they can be viewed as one area of general de-
cision function theory [17] these problems have been mainly treated in a manner
similar to the treatment of problems in hypotheses testing [8].

Slippage problems were first introduced by Mosteller [11] as a problem of
testing homogeneity of a number of populations against the slippage alternatives
that exactly one of the populations is different. Paulson [13], while treating the
slippage problem of normal mean, was the first to formulate the problem satis-
factorily. Some of the later papers along this line proved optimum properties of
procedures already existing.

The results of Kudo [6] proved that an outlier test proposed by Pearson and
Chandrasekar [14] in 1936 and investigated by Nair [12], Grubbs [4], and Smir-
noff [15], was “optimum’” within a certain class of tests and similarly the results
of Truax [16] proved that a test for homogeneity of normal variances proposed
by Cochran [2] in 1941 was “optimum’ in a certain sense. Others papers include
31, [71, [9].

A prototype of classical slippage problems is as follows. We assume we have
a populations with densities f(z; 6;) (¢ = 1, --- ,a) and we wish to test the
hypothesis Hy : 6, = --- = 0, against @ alternatives H,; : 6y = --- = 6; — A =

- = 6, with a zero-one type of loss function where A > 0. Let D, be the de-
cision to accept H; and Pr(D; | H;) be the probability of taking D; when H; is
true. We impose the requirements that

Pr(Dy|Hy) 21— a« where ac(0,1)
and
Pr(D;| H;) isindependent of 7,

or more explicitly speaking Pr(D; | H;) is a function of A but does not depend
on 2. We call the first a size condition and the second a symmetry condition.

It seems that these two conditions have been regarded as being insufficient for
ensuring an explicit solution and thus the condition of invariance on the pro-
cedures (e.g., invariant under change of scale and shift of location) was im-

Received 3 January 1966; revised 27 March 1968.
! This research was supported by National Science Foundation Grants GP-3918 and GM-

6149.
2 Presently at Sandia Corporation, Albuquerque, New Mexico.
3 Presently at Kyushu University, Fukuoka, Japan.

1693

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. IMNGJY ®

Www.jstor.org



1694 IRVING J. HALL AND AKIO KUDO

posed. When the invariance condition is imposed, a transformation group
G = {g} defined on the sample space must leave the problem invariant and the
decision function ¢(z) satisfies the relation ¢(z) = ¢(gz). These conditions are
also imposed by Karlin and Truax [5] when they considered slippage problems
employing a more general loss function.

The main purpose of this paper is to discuss slippage problems without assum-
ing the condition of invariance of the above type.

For the sake of simplicity we concentrate our attention to a zero-one loss fune-
tion. In this situation we should pay attention to the probability of correct de-
cisions which allows us to use the terminology of hypothesis testing quite anal-
ogously.

In Section II a generalization of the Neyman-Pearson lemma to slippage prob-
lems is given. As in the case of hypothesis testing this allaws us to solve problems
where the null hypothesis is simple and the alternatives are simple and in some
cases where the alternatives are composite. When the null hypothesis is com-
posite the generalization of the Neyman-Pearson lemma can be used in some
cases to obtain a uniformly most powerful test by introducing an adequate least
favorable probability distribution over the space of the null hypothesis.

For some slippage problems a uniformly most powerful test does not exist;
however, under the conditions of Theorem 2 we can be assured of the existence
of a uniformly most powerful test.

It seems that a number of papers on slippage problems has been the repeated
application of Corollary 2 after imposing the condition of invariance, and thus
reducing the problem to one on the space of a maximal invariant.

2. Generalization of Neyman-Pearson Lemma and results. Suppose wehave a
sample space &, a o-field £, with a countable number of generators, and a
o-finite measure u, where a + 1 densities p;(z), (¢ = 0, 1, - -+ , a) with respect
to u are defined. We consider a decision problem involving @ + 1 hypothesis
H; that X has density p;(z)(¢ = 0,1, .- ,a).

We assume that there is a transformation group G on & isomorphic to IT
where II is the permutation group on (1, 2, --- , @) or its subgroup transitive
on (1,2, .-+, a). As G is finite, there is a right invariant probability measure »
on it. We further assume u(A4) = u(gd) for all A ¢ £ and g ¢ G and p;(z) =
Pr,i(gz) for all g e G where 7, is the permutation (1, -+, a) — (w1, -+, ma)
corresponding to g, and 7,0 = 0.

For the sake of demonstration, we consider the slippage problem of normal
mean as treated by Paulson [13] where we have a normal populations with
common variance. There are ¢ 4 1 hypothesis concerning the means, namely
H, : all the means are equal, and H; : all the means are equal except for the sth
one which is larger than the others (¢ = 1, - - - , a). We take n observations from
each population. The minimal sufficient statistic has ¢ + 1 components; the first
a heing the sample means and the last component the sum of squares of all the
observations. In this case G is the permutation group of the first @ components,
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and @ has a! elements and the probability measure » assigns 1/a! to each element.
All the other assumptions are easily seen to be satisfied.

Another example is as follows: We consider uniform distributions on a <4 1
unit circles C; (¢ = 0, 1, - - - , @) with the centers (0, 0) for C, and

(recos2w(¢ — 1)/a, rsin2x(¢ — 1)/a) for C;(z = 1, ---, a).

In this case the group consists of rotations around the origin by the multiple of
2r/a.
A decision function @(z) = (go(x), -+, @a(x)) is of size a if

(1) [ eo(@)Po(z) du(z) 2 1 — &, @& (0,1)
©(x) is of exact size o if equality holds. @) is symmetric in power if
(2) Jo@)m(z) du(z) = -+ = [ ou(@)pa(2) du(e).

The common value will be called the power of .

©(z) is the most powerful symmetric size a( MPSS«) decision function if it
maximizes each term in (2) subject to condition (1) and (2). The above termi-
nologies are concordant with the traditional ones in slippage problems. If ¢(z)
satisfies

0i(t) = oryi(gz) ©=10,---,a forall ge@

we say that it is invariant with respect to G. It is emphasized here that it is dif-
ferent from the traditional assumption of invariance, @(z) = @(hx): where h,
for instance, represents a change of location and/or scale. There is a relationship
between decision functions which are symmetric in power and invariant decision
functions as seen by the following lemma.

Lemma 1. If @ 4s invariant then o is symmetric in power. Also if there exists a
(an exact) size o test, @, then there exists a (an exact) size a test, ¥, which is in-
variant, and if @ is symmetric in power then { can be chosen to have the same power
as .

Proor. The first statement is immediate. Define ¢i(z) = [ onr,i(g2) dr(g),
(¢=0,---,a), then {(x) is invariant. If ¢ is of (exact) size «, then

S vo(@)po(z) du(z) = [[ eo(ga)po(z) du(z) dv(g)(=) 2 1 — a
Also if ¢ is symmetric in power then
P(, ¥) = [vi(@)pu(x) du(z) = [[ on,i(g2)pi(z) du(z) dv(g) = P(4, ¢).

Let ® denote the class of decision functions which are of size « and let ¥ denote

the class of decision functions which are symmetric in power, and let P(%, ¢) be

the probability of making the correct decision when H, is correct. Then Lemma 2

shows that a kind of restricted minimax solution, as in [8] can be found in ® n ¥.
LemMA 2. There exists a @ in ® n ¥ such that

5
(3) SupP@:s inf¢=1,...,,, P(’I,, go) = illfi=1,...,a P(i, (p’).
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Proor. The existence of @ in & satisfying (3) follows from the weak compact-
ness of ® which can be proved in a manner which is exactly similar to Theorem 3
of Appendix [8]. That a solution can be found in ® n ¥ can be proved as follows.
Let o' satisfy (3) and define ¢ the same as in Lemma 1, then P(3, ) is inde-
pendent of 7, (¢ = 1, --- ,a). Thus

infig,..a P(5,¥) = P(5,¥) = [ [ or,i(ge)pi(x) du(z) dv(g)
= a2 %P3, ¢) = infig... o PG, & ).

The following theorem is an extension of the Neyman-Pearson Lemma in hy-
potheses testing to slippage problems, whose proof is essentially similar to that
of Bahadur-Goodman Theorem [1], [10].

TurorEM 1. Consider a rule ¢ of the following form.:

§00(x) =1, ‘E(x), 0 if ma'xipi(x) <, =, > Cpo(:v),
(4) pi(x) = n;(x), 0 if pi(z) =, < maxpi(z),
1= ]_, cee 0,

where £(x) and n;(x) are arbitrary, subject to the condition that ¢ is a decision
Sfunction and C is a constant.

Let & be any other rule.

(i) If Eso(X) = Eopo(X) then D i Bipi(X) < D it Bipi(X).

(ii) If Boo(X) = Eooo(X) and D i1 Epi(X) = Dty Eipi(X), then & has
the form (4) a.e. Furthermore, Eopo(X) = Eopo(X ) unless

Ei¢0(X)=0) j=1-,a
(iii) For every a € (0, 1) there is a rule of the form (4) with £(x) constant, say
sa , such that Eog&o(X) =1-a.
Proor.
(1) Let
(5) L(g, C) = EiCeo(X)] + 2 i1 Eidei(X)] = [ [eo(2)Cpo(x)
+ 2t 0i(2)pi(x)] du(z)
consider L(p, C) — L($,C) = fg(x) du(x). Itiseasily verified that g(z) = 0
a.e.u. Hence
Yo Biled(X) — $:(X)] = CElpo(X) — ¢o(X)] Z 0.

. (ii) Let fo = Cpo(z) and f; = pi(z), A denote the set of integers (0,1, - -- , a),
$ all non-void subsets of 4 and J(C') be an element of § such that

J(C) = {jo, -+, i maxeeafi = [, = - = fi.
Suppose @ is any other rule such that (ii) is true and define
"Ry = {zimaxieafi = fi; = 00 =i, J(C) ={js = -, =i

and for some j ¢ J(C), $;(X) # 0}.
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Suppose u(R;) > 0 for some J and consider L(g, C) — L(4, C);
Lo, C) — L(@,C) = 2ses Jry 250 l0s(X) — 5(X)If5(X) du(X)]

where L{®, C) is defended in (5). It can be shown that the integral, g;(z) for
any J is positive. Therefore,

2t Ei(ei(X) = 6:(X)) > Eo($o(X) — (X)) 2 0,

which gives a contradiction and the first part of (ii) is proved.
To prove the second part of (ii) suppose there exists a rule é as in (ii) such
that Eogo(X) > Eopo(X) and E;40(X) > 0 forsomej (j = 1, - -+, a). Define:

(6) Yo(z) = 0, (1 — Néo(z) it go(z) =, >0, Xe(0,1),
Yi(x) = 1, ¢i(x) + (Ma)do(z) i &i(z) =, <1.
Now
Epo(X) = [ipo=0) Go()po(2) du(z) + (1 = \)[rpiso) &o(2)po(x) du(z)
= (1 — N)Eopo(x) = Eopo(X) for some A & (0, 1).
Also,
DUAEdi(X) = 20 eieimn di(2)pi(2) du(z)
b Yt f e [8:(2) + (Va)eo(2)Ipi(2) du(z)
= 2iaEgd(X) + Ma 2 Eiqo(X),

and since the last term is positive, we have our result.

(iii) This can be proved in a manner similar to the proof of Theorem 1 in
Chapter 3 [8].

CoroOLLARY 1. For any « there 1s a MPSS « decision function.

Proovr. Consider a rule as given in Theorem 1. This can be made invariant by
taking n;(x) = (1 — &)/k(z) where k(xz) is the number of times
max,—,... o p:(2) is attained, and this is a MPSS « decision function.

It is quite revealing, and also amusing, to apply this theorem to the example
of @ -+ 1 unit circles stated in the beginning of this section. There is no problem
when these a + 1 circles do not intersect each other. If they do, and moreover
the probability content of Cy n (ui_; C:) is less than «, then there is a test with
size less than « and with the maximum power. In this case, an increase in size
no longer contributes to an increase in power.

Corresponding to the theory of hypotheses testing, I[lpand H; ( = 1, --- , a)
may well be composite and the notion of uniformly most powerful symmetric
size a decision function can be introduced.

As in the case of hypothesis testing, Theorem 1 can be applied to derive a
uniformly most powerful decision function when H, and/or H, are composite.
In case H, is composite, Theorem 1 is applicable by introducing an adequate least
favorable probability distribution over the space of the null hypothesis.

Exampre 1. We assume here that we have n random observations
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(Ziz, »+* ,Zwm)(z =1, .-+ ,a) from each of a N(6;, ¢) populations (¢ known)
and we wish to decide if all the means are equal or if one mean is larger than
the rest. Namely, Hy: 6, = --- = 6, = 0and H;: 6, = --- = 0; — A =

- = 6, = 0 where A > 0 and both 6 and A are unknown. Consider the sub-
problem where A and 6 are specified under H; (i = 1, - - - , a). H, is made simple
by placing a degenerate a priori distribution on 6 at 6 = 0 + A/a.

Theorem 1 now gives the most powerful symmetric size o decision function,
©, of this reduced problem where

(7) @ =1 if max; (& — .’l=:)cr_1 < C (t=1,--,a),
(8) 0; =1 if max; (& — &)o' = & — Io ' > C,

where & = Dt @i;/n, & = D41 &:;/a and C is chosen to satisfy the size con-
ditions. Since ¢ is independent of the specified value of 8 and A under H; it is
the uniformly MPSS« decision function.

A uniformly most powerful symmetric size « decision function does not always
exist. However, under certain conditions, we can be assured of the existence of a
uniformly most powerful symmetric size « decision function as seen by Corollary
2. Corollary 2 is essentially included in the paper by Karlin and Truax [5], but
is not stated explicitly and we shall state it here for the sake of clarity and com-
pleteness.

Let p(x; 6) be a family of densities of a random variable X which are indexed
by a parameter § where 0 is a point in Euclidean space. Assume the existence
of @ curves in the parameter space which are given by 6§ = 6,(7),0 < 7 <
(i =1, ---,a) with the common starting point 6, = 6,;(0). Assume also that
(a) p(x; 6:(7))/p(x; 6y) is nondecreasing in a real valued function 7T';(z)
(i=1,--,a) (b) p(x; 0(7)) >, =, <p(x; 0;(7)) for all 7 as Ti(z) >, =,
< T,(a:)

Conditions (a) and (b) are essentially the requirements that the density
p(z; 0,(7)) has monotone likelihood ratio on the curves 6 = 6;(7).

TuaroreM 2. Consider a rule @ of the form

(9) eo(z) = 1, &), 0 if max, T; <, =,> C,
pi(x) = 9;(x),0 if T; =, < max;Pi(x),
where £(x) and n;(x) are arbitrary and C is a constant. If & is any other rule with
Epo(X) = 1 — a, then
2t Eipi(X) £ 25 Epi(X).

This is proved by using Theorem 1.

If we now assume a transformation group G on X as we did at the beginning
of this section which is isomorphic to the permutation group II on (1, --- ,a)
such that p(z; 0:(7)) = p(gx; 0x,i(7)) for all 7 (0, ), all ge @G, all X ¢ X,
and u(4) = u(gd) for all g £ G, and that Ti(z) = Tryi(gz) forallge@G (¢ =
1, .-+, a), we get the following corollary.
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CoOROLLARY 2. Under the conditions above, for any a & (0, 1) there is a rule of
the form (9) with n;(x) constant, which is MPSS o uniformly in = for testing
Hy:0=6against H; : 06 = 0,(7) (j=1,---,a).

It seems that a number of results in slippage problems are the repeated appli-
cation of Corollary 2 after assuming invariance in a suitable manner. & is then
the space of a maximal invariant.
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