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SOME RESULTS ON THE COMPLETE AND ALMOST SURE CON-
VERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT
RANDOM VARIABLES AND MARTINGALE DIFFERENCES!

By WiLniam F. Stoutr
Unaversity of Illinois

1. Introduction. Let (2, F, P) be a probability space with (Frr=1) an increasing
sequence of o-fields such that 5 C §. Let (Di, Firx1) be a martingale dif-
ference sequence; i.e., each Dy is 3, measurable and E(D;|%._;) = 0 a.s. for
all k = 2. Let a. be a matrix of real numbers,

Aw = 2 iidh, Tom = 2omiawDy and T, be the a.s. limit

of T'nm as m — o whenever this limit exists. 7', is said to converge completely
to zero in the sense of Hsu and Robbins [8] if X a—; P[T,| > €] < o for all
¢ > 0. It should be noted that 7', converging completely to zero implies that 7',
converges a.s. to zero and that the two types of convergence are equivalent if
the T%’s form a sequence of independent random variables. The purpose of
this paper is to present various sets of conditions for the complete or a.s.
convergence of 7', to zero.

Sections 3 and 4 deal with the special case where the (Dx, k = 1) are in-
dependent random variables, Section 3 treating the identically distributed case
and Section 4 treating the non-identically distributed case. The results given in
these two sections extend or improve results given by Hsu and Robbins [8],
Erdés [4], Pruitt [11], and Chow [1]. The double truncation method of proof
developed by Erdés [4] and improved by other authors ([1], [5], and [11] for
example) is fundamental. The work of Franck and Hanson [5] is closely related
to that presented here. The main results are given by Theorems 1 and 3 with
more specific applications given by Corollaries 1-3. Theorem 2 is of special
interest since it shows that the double truncation method of Erdés used in [4]
to obtain sharp results about complete convergence can sometimes be modified
to obtain sharp results about almost sure convergence.

According to Chow [1], a random variable D is generalized Gaussian if there
exists an « = 0 such that for every real ¢, E exp (tD) = exp ({@’/2). The mini-
mum of these numbers a is denoted by 7(D). Special cases of generalized Gaussian
random variables include normal and bounded random variables each with
mean zero. (See [1], p. 1482.) In Section 5 we extend to the martingale case a
result of Chow ([1], p. 1483) concerning the complete convergence of 7', to zero
when the (Dy, k = 1) are independent and generalized Gaussian with *(D;) < 2.
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2. Preparatory lemmas.

LemMa 1. Let (Dy, k = 1) be independent with ED) £ K < «, ED;, = 0,
i > 0, Ay < o and D maexp (—NAa) < o for all N > 0. Let Do =
DiIla.xDy = n”°] for some p > 0 and Tom = Oomy @neDni. Then Trm COnvErges

a.s. to a random variable T as m — « and
(1) > PIT, > ¢ < o foralle>0.

Proor. According to the Kolmogorov convergence theorem, ([10], p. 236)
Bty ow T = T exists a.s. since 9 ee a2 ED;E < . Since Y pey P[Di # D
= Y maPDy > n"/au] = KA,n” < o, it then follows that Trm CODVErges
a.s. to a random variable T, as m — . Fix ¢ > 0. Let ¢ = min (¢/(24,), n°).
Since @Dt < 1, it then follows that E exp (@mDnit) < exp (BamDurt +
Ea’iDo4) using the easily established fact ([1], p. 1488) that E exp ¥ =
exp (EY + EY?) for a random ve,u'iable Y < 1. Since EanDnit < 0, we obtain
E exp (aiDuit) = exp (a2 ’EDn:). Assuming without loss of generality that
ED)’ £ 1, it then follows by the independence of the D.w’s in k that B exp (¢tT%)
< exp (£’4.,). By the Chebychev inequality, P[T, > ¢ < exp (—et)E exp T
< exp (—é) exp (£*4,). If ¢/(24,) > n’, we obtain P[T.' > €] < exp (—en®/2).
On the other hand, if ¢/(24,) < n°, then P[T.' > ¢ < exp (—¢/(44.)).
Hence D a1 PIT, > ¢ < « forall ¢ > 0.

Lemma 2. Let (Zy, k = 1) be independent with 0 < |an| = Kn™ for some
a > 0. Let either Zay = Zilllam|Ze > ¢/N) or Zux = Zil[lamZi| > ¢/N] for
fized ¢ > 0 and positive integer N. Let Trw = 2wy @uiZns and assume Tom
converges a.s. to a random variable T.” asm — . Let f.(j) be the number of sub-
scripts k such that |a.| > ¢/ (Nj) for integersn = Landj = 1. Let g; = [(FKN /e)"'®
where [+] is the greatest integer function. Then
(2) XA PUIT| >4

< i 2 fa(g) supk Pl — 1 = |Ze] <] and
(3) na PIT."| > ¢

< 2 2 (fa(g) — fa(G = 1)) supe PIZe] 2 7 — 1.

Proor. T, is well defined by hypothesis.
PIT.)| > d < P[AKS|awZi > ¢/N] £ 220 PllZi] > ¢/ (Nlaw)]
< T (ud) — i — ) supe P2 2§ — 1]
since fa(j) — fa(j — 1) is the number of subscripts & such that j > ¢/ (N |@ar|)
= j — land P[|Zi > ¢/ (N|an|)] < sups P[|Z| Z j — 1]if ¢/(Nlaw|) =27 — L.
Now |ane| < Kn~* implies that f»(j) = 0 for n > g;. Thus
TILPITS| > d £ X 2ia () — fu(§— 1) supkPllZi] = j — 1)
Thus (3) is established. Similarly,
P[EAES [amZi] > N7 = P[Uie Uiey {lamZil > N7, — 1 =] Zi| < j}]
< Yi i PllawZ > N, — 1 = |Z < ]

> i Pllawjl > NPl — 1 = |Za] < ]

<
< afa(g) sups Pl — 1 = |Zi] < gl
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Hence
Do PUT| > d £ 2 2 tiafa(d) supk Plj — 1 < |Zy] = ]

Thus (2) is established.

Lemma 3. Let (Zi, k = 1) be independent with E|Zk|” < 1 for some» > 0
and |an| > 0. Let either Zny, = Zplln™/|aus| < Zx < ¢/ (Nlawm|)] or Znp =
Zil[n "/|ank| < |Zi| = G/(Nlankl) forﬁxedp > 0, ¢ > 0, and positive integer N.
Let T = Zk_l anank and assume that T, converges a.s. to a random variable

T," as m — . Then
(4) PIT"| > d £ (2% |anln™)
Proor. T,” is well defined by hypothesm
PIT."| > d £ PANKs3|Zx| > n™"/(|am])]
S (2 PlZel > 27/ (laah)D™ = (205 lamn™)Y

using the fact that P[|Z:] > z] < 27 for any z > 0.

LemMA 4. Let (Dy, k = 1) be independent with E|Dy|” = K < o for some
1=v<2, |aae] £ Kn~* for some a > 0, and Dy |am|” < Kn~ » for some A > 0.
Let Dui = Dill|laDi| < n™"] for some 0 < p < min (a, \/») and Trp =
o ankD,,k Let either Zk_l |@ni| < K and EDy = 0 0r D ey |@mi| — 0 asn — oo,
Then Tom converges a.s. to a random variable T, as m — o« and T, converges
completely to zero.

Proor. Since Zk—l lank|E|D,.k| Z;:;l |ank|E|Dk| < o, it follows that T;m
converges a.s. to a random variable T, as m — . E|Di|” < K for » > 1 implies
that the D;’s are uniformly integrable. Thus, if ED; = 0 and » > 1, then

|EDo| = |EDWI(|Dy| > n™*/lanll < ElDWIIID:| > n~***/K]] — 0

as n — o« uniformly in k. Thus |D pm @uBDni| £ Y ones |tk EDni| — Oas
n — o for the case ED; = 0 and » > 1. Since |ED..| < E|Di| £ K, it follows
that 2 et @D — 0 as n — o for the case D e |au | — 0 asn — o, Since
these are the only two cases which may oceur under the hypotheses, it follows
that Zk=1 @Dy, — 0 asn — . Let Yuy = Dny — EDpy and ¢ = n/2.
Since EY = 0 and |anYort| < 1,1t follows by a lemma of Chow ([1], p. 1482)
that E exp (am¥Vnit) < exp (tankEY,,k) We decompose

exp (£aiB(YVnr)?) = exp (£lane] Elane Y i | Yril”).

2 —» > 0and |auYne| < 207" together imply |auYo/*™” < 0™ (2'”)22,'". We
assume without loss of generality that E |Dk| < 1. Then E |an| |EDxi| and
the ¢, inequality ([10], p. 155) yields E|Y " < 2’. Combining the above yields
exp (£a2E(Yni)?) = exp (flam|n"®4). Hence

E exp (t 2 nmamYnr) = exp (£ o |am/n*®74) < exp (Pn"®"7MK).
Fix ¢ > 0. A Chebychev argument yields

P> i amY il > €l < 2 exp (—et) exp (' *@7MK).
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Since t = n°/2, it follows that Y w1 P[|D et @uc¥ni| > ¢ < oo. Since
> iamED,, — 0 asn — o, it follows that Y mwy P[|T.'| > 2¢ < «. Hence
T,' converges completely to zero.

LemMa 5. Let E(exp (tDy)|Fey) < exp (£%) a.e. for every constant t and let
A, < . Then T, is generalized Gaussian with *(T,) < 24

Proor. For fixed ¢ and m, let ¥; = exp (1Tn; + £ D pjsrani) forj = 1, 2,

., m, using the convention D 11 (-) = 0. Choose j # 1.

E( Yj | gj_l) exp (tTn =1 + t2 Z’;cn=j+1 af,k)E exp (tan,-D,- | 3:7'_1)
=< exp (tTh,j + S iand’) = Y ae.

Hence EY; < EY,. By induction, EY,, £ EY1, EY,, = E exp (tTnn) and
EY, = E exp (tauDy) exp (£ D psai) =< exp (£ dSmaaki) £ exp (£4.).
Hence E exp ({Tam) < exp (£°4,). It is easy to see that ED;’ < 2. Thus (E|Twn|)
< ET:.+ 1= > ria2ED? 4+ 1 £ 24, + 1. Hence T converges a.s. to
T, as m — o by the Doob martingale convergence theorem ([2], p. 319). It
then follows by an application of the Fatou lemma that Eexp (t1T.) =
exp (£4,).

ReMARK. The manner of constructing the Y;’s so that they form a super-

martingale was learned from a paper of Dubins and Freedman ([3], p. 804). A
slightly different proof can be given which does not use this technique.

3. Convergence in the independent identically distributed case. Let the
(Dx, k = 1) be independent 1dentlcally distributed random variables.

TueorEM 1. Let || < Kn™* for some « > 0 and E|Di|*™ ' < o where
B> —1—a.

G If (1 +a+B8)/a=2 A £ Kn®% D noiexp (—t/A.) < » for all
t > 0, ED;’ log" |Di| < o and ED;c = 0, then T, converges completely to zero.

() If (1 + a4+ B)/a =2, 2mlaw|” < KEn*®7 for some 0 < 6 < 2
and ED;, = 0, then T, converges completely to zero.

(i) If1 £ (1 4+ o + B)/a < 2, Ay = Kn®% D e |aae |“TP/* < Kn™
for some v > 0 and either Y |am| < K and ED;c = 0 0r ) s l|au| — 0 as
n — o, then T, converges completely to zero.

(iv) IfO <A+ a+pB)/a<l, A,, < Kn®% X || TP < K7
for some ¥ > 0, and @ = 0 for k > nf where ¢ < va/(1 + a + B), then Ta

converges completely to zero.
Proor. (i) and (ii).Fix ¢ > 0. According to the Kolmogorov convergence

theorem, ([10], p. 236) limm-w Tun = Tn exists a.s. Since > aiEDY < .
We may decompose

T, = Zloco=1 a;ka - Z;co=1 aZka
vhere an; > 0 and ang > 0.
P[lTnl > 2¢ = P[|Zl?=1 a;ka[ > € + P[|Zl°:=1 aZka| > €.
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Hence, without loss of generality, we assume @,, > 0 throughout the remainder
of the proof of (i) and (ii). Let Dyi = DillamD; < n™*] where p > 0 will be
chosen later. Let Ty, = i @D - By Lemma 1, Tom converges a.s. to a
random variable T, as m — o and D_a—y P[T,) > € < .

Let Dy = Dil [ankDf > ¢/N] where N is a positive integer to be chosen later.

Let Thw = 2y @D .
S waP[Du # 0] = > i P[Dk > ¢/(Naw)] SCN’A,/é < .

Thus, by an application of the Borel Cantelli lemma, it follows that Tm COD-
verges a.s. to a random variable T,." as m — «. Applying (2) of Lemma 2 with
Zk = Dk yields

SeaPIT. > d £ 22 ()Pl — 1 = IDil <l

where f.(7) and g; are defined in the statement of Lemma 2. We now consider
(i). By the definitions of A, and fu(7), A» = fa(j)€/(N7)®. Since A, < Kn ™,
it follows that f,(j) < Kn®"*N’"/¢. Thus

SraPIT > d £ (BN'/&) 25 20’ Plj — 1 = [Di] < gl
Elementary computation shows that % P < KjE et g — o %= —1
and > %, " < K'logjforj = 2if 8 — @ = 1 where K’ is a fixed constant
independent of j. ED;* log" [Di| < « implies that

2im1i log Pl — 1 £ D] < j] < .
Similarly, E|Ds|*"*"/* < o implies that
Do jTPRP — 1 £ Dy < g < w.

Hence w1 P[T,” > €] < » in the case of (i). We now consider (ii). Since
S fanl” = Kn*®P7 it follows that fu(j) < Kn*®"7*(Nj/e)’. Thus

Y aaP[T > d £ (BENY/&) 25m 20an™ P77 P — 1 = Dy < gl

Elementary computation shows that > %, 2P < K% where K is a
fixed constant independent of j. ED’ < o implies

2Pl — 1 2 [Dif < j] < oo

Thus, D a1 P[T." > ¢ < o in the case of (ii).

Let Do = Dy — Do — Dy, ie., Duy = Did[n*/aw < Di £ ¢/(Naw)].
Let Tow = Dy anDure . Trm = Tom — Trm — Tom converges a.s. since Tom,
Twn, and Tnn. each converge a.s. Without loss of generality we assume
E|D;|****®/* < 1. Then, applying Lemma 3 with Z, = D" andy = (1 + a
+ B)/a implies that

Z:=1 P[ITn”/‘ > e] < Z:=1 (Z:;l |ankl(1+a+ﬁ)/anp(1+a+ﬁ)/a)N
:=1 (n—1+ﬂ (+a+p) /dK/)N

1A
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for some constant K’. By choosing p sufficiently small and N sufficiently large,
the preceding sum becomes finite. Combining the above results for T, T.,
and T,”, it follows that ) n— P[T% > 8¢] < «. Replacing Dy by —Dx in the
above arguments yields Y ney P[—T» > 3¢] < . This completes the proof of
(i) and (ii).

(iil) Since Y g1 |aw|EDi| < o, it follows that Tw. converges a.s. to a
random variable T, as m — . Fix e > 0. Let Dy = DillamD:| < n™°] where
0 < p < min (o, ya/(1 + a + B)). Let Thm = 2o amDni. By Lemma 4,
T converges a.s. to a random variable T, asm — « and T, converges com-
pletely to zero.

Let D%, = DuIl|anDx| > ¢/N] where N is a positive integer to be chosen later.
Let TV = > amDm. Since Yot |amlE|Ds| < o, it follows that Tam
converges a.s. to a random variable T,” as m — . Applying (2) of Lemma 2
with Z, = Dy yields > gt P[|T0"| > o £ 25m 2 % fa(H)PLi— 1 = [Di| <]
where f.(j) and g; are defined in the statement of Lemma 2. By the definitions
of A, and f.(j), An = fa(§)€/(N7)?. Since 4, < Kn®™®, it follows that f.(j) =
Knf*N%/¢. Thus,

“LPT| > d £ (BKN*/&) X5m 2 %an” Plj — 1 = [Di] < 4l.

Elementary computation shows that 2 7L P < K'j(ﬁ_““)’ * where K’ is a
constant independent of j. E|Dy|“"**’* < « implies that

Z;?=1j(l+a+ﬁ)/ap[j —1 é ‘Dk‘ < ]] < .
Hence D a1 PT."| > ¢ < .
Let
Dzlk = Dk - D:Lk - DZk, i-e°7 Dl?l:k = Dkl[n—p/|ank| < |Dkl é e/(Nla”kl)]'

/4 n 1/ . /4 .
Let T2 = 2oy amDnm. Tum converges a.s. to a random variable T since
> i |ank|EIDi| < . Without loss of generality, we may assume

B|Dy| P < 1.
Applying Lemma 3 withZ; = Dyand»y = (1 + a + B)/a implies that
PIT| > d = (X5 1| TP LRy
Since Yot |ani] T4’ < Kn™?, it follows that
PIIT."| > § = (Kn "Feroriey,
By choosing p sufficiently small and N sufficiently large, it follows that

nm

> 2 1 P[T."| > € < ». Combining the above results for 7', T" and T,
it follows that T. converges completely to zero thus completing the proof of
(iii).

“(iv) Fix ¢ > 0. Let D = DilIllamDi| < n™*] for some p > 0 to be chosen

’

later and let T = Dot GupDnie | D e @ukDrni| £ D |@nkDni| < n°. Hence
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74 P|T./| > €l < « by choosing p > ¢. Let Dny = Dillla.Di| > ¢/N]
where N is a positive integer to be chosen later and let T, = Z?;l @nkDins -
Applying (2) of Lemma 2 with Z, = D yields

2naPlT| > d £ 22 iLafa()Pli — 1 = Dy < 4]

where f,.(7) and g; are defined in the statement of Lemma 2. By the definitions of
A, and £.(7), An = fu(j)E/(Nj)2. Since 4, < Kn®™®, it follows that f,(j) <
Kn"N%?/é. Thus,

2onaPIT.| > ¢ < (ENY/&) 25m 2 n Pl — 1 = |Dif < .

Elementary computation shows that > %,n® ™ < K'j®*™/* where K’ is a

constant independent of j. E|Di|*"**/®* < <« implies that
Z;?=1j(1+a+ﬁ)/ap[j _ 1 é |Dkl < }] < o,

Hence Y n—t P[|T."| > ¢ < . Let
DV = Dy — Duy — Dy, ie., D = Didln™/|am] < |Di| £ ¢/ (Nlau))].

Without loss of generality, we may assume E|D;|*"™*®/* < 1. Applying Lemma
3 with Z;, = Dyand v = (1 + o + B8)/a yields
P[lTn”' [ > (-:] < (Z;c;l Iankl(1+a+ﬁ)/anp(1+a+ﬁ)/a)N < ( Kn—'y+n(1+a+ﬁ)/a)1v.

We now choose p < (ya)/(1 4+ a + B) such that p > { is satisfied. It then
follows for sufficiently large N that Y n— P[|T."| > €] < «. Combining the
above results for T, T,.”, and T,”, it follows that T, converges completely to
zero. The proof of (iv) and of the theorem is complete.

CoroLLARY 1. Let E |Di|"'* < o for somea > 0, ED; = 04f0 < a < 1,
| £ Kn™%, @, = 0 for k > n, and D exp (—t/An) < o forallt > 0. Then
T, converges completely to zero.

Proor. Let 0 < a < 1. Then |a.] < Kn™* and a. = 0 for k > n together
imply that 4, < K’n'*. Thus for § = 1 — «, the hypotheses of Theorem 1 (i)
are satisfied. Let « = 1. Then for § = 1 the hypotheses of Theorem 1 (ii) are
satisfied. Let 1 < o = 2. Then, letting 8 = 1 — «, one set of hypotheses of
Theorem 1 (iii) is satisfied. Let & > 2. Thenfor = 1 — aand { = v = 1, the
hypotheses of Theorem 1 (iv) are satisfied.

REemARKs. The fundamental result of the above type on complete convergence
states that if B [Di/”* < o for some © > a > 3,

ED,=0 if 1=2a>3%,
oy =n " for kK =n and
any =0 for k > n,

then T, = i Di/n” converges completely to zero. This result is due to Hsu
.and Robbins [8] for & = 1 and Erdés [10] for & # 1. Corollary 1 includes the
above result and generalizes it to a triangular matrix of coefficients satisfying
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certain restrictions on the magnitude of its entries. Theorem 1 generalizes this
result still further by replacing the hypothesis of trlangularlty by more general
hypotheses on the a,x’s. In [4] Erdos also states that 1f ED\ < » and ED; = 0,
then there exists an r > 0 such that for a,, = 1/ (n (log n)") when k < n and
@i = 0 for k > n, it follows that T, = sy Di/(n*(logn)") converges com-
pletely to zero. Corollary 1 and Theorem 1 generalize this result also. From
Corollary 1 it is easy to see that r = 1 4 & for any § > 0 works in the statement
of the Erdos result. Obviously the (logn)" term in the denominator cannot be
dropped entirely since »_py D/ n obeys the central limit theorem ([10], p- 247).
This shows that the condition ) w—y exp (—#/4,) < o for all ¢ > 0 cannot be
dropped from the statements of Theorem 1 (i) and Corollary 1. For, if it could
be dropped, ED' < « would then imply > e Di/nt converges completely to
zero. For use in applications of Theorem 1 (i) and Corollary 1, it is interesting to
note that 4, = o((logn)™) implies that Y _m— exp (—¢/A4,) < « forallt > 0
and that 4, = 0((logn)™) does not imply that Dy exp (—t/4,) < « for
allt > 0. The condition 4, = o((logn)™") is easy to verify in practice and by the
previous remark only slightly stronger than Y m— exp (—t/4,) < « for all
t> 0.

Recently, Chow ([1], p. 1488) has proved that if E |Dy|"* < «,0 < a < 1,
ED, = 0, |au]| < KAnfork < n, a. = Ofork > n,and 4, < Kn % then T,
converges completely to zero. It was this particular result which motivated the
present work. Corollary 1 improves and generalizes this result by replacing
lan] < KA, fork £ n, and A, £ Kn™® by weaker conditions on the a.; matrix
and by extending the result to the case where E |Dy|** < « for some & > 1 but
ED,? = . Theorem 1 generalizes this result further by replacing the hypothesis
of triangularity by more general hypotheses on the a.x’s.

Erdés [4] has established that Z;’;l Dy/n® converging completely to zero
implies that E |Dy/”* <  if @ > % (and implies that ED, = 0ifi < a < 1).
Hence, Corollary 1 is sharp for @ > 3. Even for o < %, Corollary 11is rather sharp
since it says that if EDi* < « and ED;c = 0, then Dty Di/ (n%(log n)¥?) con-
verges completely to zero for all § > 0. But, taking the Dk s to be normal random
variables with ED;, = 0, it is easily seen that Y D/ (n}(log n)?) does not con-
verge completely to zero, even though EDy' < o and ED; = 0.

COROLLARY 2. Let E IDle” * < o and || £ Kn~* for some a > 0.

i) If0 < a < 1,ED, = 0,and A, = Kn™°, then T, converges completely to 0.

(i) If a =1,EDy = 0,and D p || < Kn'™ for some 0 < & < 2, then Th,
converges completely to 0.

(ifi) If @ > 1 and either Y ney |am] < K and EDy, = 0 or D 5y |am| — 0 as
n — o, then T, converges completely to 0.

Proor. (i) is immediate from Theorem 1 (i) with 8 = 0.

(i) is immediate from Theorem 1 (ii) with e = 1 and 8 = 0.

i (iii) is immediate from Theorem 1 (iii) with 8 = 0.

REMARKS. Pruitt [11] has proved that for matrix conditions somewhat stronger
than regularity, i.. 2 et @t — L asn — ©, 2 oy || < K and |au] < Kn™®
for some a > 0, it then follows from E |Di|'*"/* < w that T, converges completely
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to ED; . Corollary 2 implies this result and generahzes it by replacing
> lane] = K by a weaker condition when a =< 1. Pruitt gives an example
to show his result is sharp. Hence, Corollary 2 (i) and (iii) are sharp and Corol-
lary 2 (ii) is sharp for § = 1.

COROLLARY 3. Let E [Dy|"" < .

(i) If0 < 7 £ 1,ED;, = 0, ED}’ log" |Di| < «,and A, < Kn™", then T, con-
verges completely to 0.

(ii) Ifn = 1, EDy = 0, and D i1 |aus]’ < Kn™"" for some 0 < § < 2, then'T,,
converges completely to 0.

(ili) If 1 < n £ 2,4, £ Kn", D ry |aa]’™ < Kn™" for some v > 0, and either
D i am] £ K and EDk = 00r Y 1 |au| = 0asn — o, then T, converges com-
pletely to 0.

(iv) If n > 2, D i |aws|”” < Kn™" for some v >.0, A, < Kn™", and @, = 0
for k > n* for some ¢ < (ny)/2, then T,, converges completely to 0.

Proor. Let 0 < 9 < 1. A, < Kn™" implies that |a.| < K'n "> Hence for
B = —n/2 and a« = 19/2 the hypotheses of Theorem 1 (i) are satisfied and
(1 4+ a+B8)/a = 2/9.Lety = 1. Choosing a = %, (ii) is then immediate from
Theorem 1 (ii), noting that Y |@° < Kn ™" implies that |a.] < K%
Let 1 < n < 2. Then, as above, |a.] < K'n ™% Hencefor 8 = —n/2and a = /2
the hypotheses of Theorem 1 (iii) are satisfied and (1 4+ a + 8)/a = 2/7. Let
n > 2. Again |a.| £ K™% Hence for 8 = —7/2 and @ = 7/2, the hypotheses
of Theorem 1 (iv) are satisfied and (1 + o + 8)/a = 2/9.

RemArk. If we assume that the Dy’s are identically distributed, a,, = 1/n
for somen > 0, and a.; = 0 for k 5 n, then T, = D,/n"* converging completely
(a.s.) to zero implies that E |Dy|*'” < o since D _pe P[|Di| > k"*] < < is equiva-
lent to E [Di*” < . Thus Corollary 3 (i) is sharp for < 1, Corollary 3 (ii) is
sharp, Corollary 3 (iii) is sharp for ¥ = 1 and Corollary 3 (iv) is sharp fory = 1
and ¢ = 1.

THEOREM 2. Let A, < Kn™® for some 8 > 0, a2y < Kk, ED;® = 1, and
EDy = 0. Then T, converges a.s. to zero.

Proor. Fix € > 0. limye Thn = T, exists a.s. by the Kolmogorov convergence
theorem. Without loss of generality, we assume a,; > 0 throughout the remainder
of the proof. Let D,.k = DillauwDy = n ~?] where p > 0 will be chosen later. Let
Trm =>m, @D . By Lemma 1, Ty, converges a.s. to a random variable T,
asm — o and D my P[T, > ¢ < w.

Let Dy, = DiI[a.Dy > ¢/N] where N is a positive integer to be chosen later.
Let

Tram = 2.8 @Dk, 2 5 P[Dyy 5 0]
= Zl?=1 PID; > ¢/(Naw)] £ N°4,/¢é < .
Hence, T, converges a.s. to a random variable T,” as m — «. By the Holder
inequality,
TP £ An 28 (D)’
= Au 2w DPIDy, > ¢/ (Naw)] £ Kn™° D iy DIIIDY > €k/(N°K)]

nl2



1558 WILLIAM F. STOUT

since ar £ Kk™. But X = K D sy DZIDE > &k/(N’K)] < « a.s. since
D e PID > €k/(N*K)] < « follows from the fact that the D’s are identically
distributed with EDy® < . Thus |T,."|* £ Xn "’ a.s. and hence T,” converges
a.s. to zero.

Let

DZ,k =D — Dk, - Dk”, i.e., )
DY = DiIn™"/au, < Dy < ¢/ (Naw)].
/4

Let Tow = Dors @ueDrse . T converges a.s. since T , Trm and T, each con-
verge a.s. Applying Lemma 3 with Z; = Dy and v = 2 implies that

Z:=1 PIT." > ¢ = Z:=1 (Z;co=l aiknh)N = Z:=l (K’n_sHp)N.

By choosing p sufficiently small and N sufficiently large the preceding sum be-
comes finite. Combining the above results for 7., T,.", and T , it follows that
T.)t = max (0, T,) converges a.s. to zero. By symmetry it follows that

(T,)” = —min (0, T») and hence T, converges a.s. to zero.
RemArks. Chow ([1], p. 1484) has recently proved that
(5) ED < o, ED,=0, nd,—1

asn — o and a. = 0for k > n,implies that T, converges a.s. to zero. Theorem 2
includes this result and generalizes it by replacing the assumption of triangularity
of the a.x matrix by a weaker condition and weakening the condition on the
magnitudes of the 4,’s. Unlike the proof given by Chow, the present proof makes
no use of the strong law of large numbers.

It is interesting to compare Corollary 3 (i) and (5). Corollary 3 (i) does not
imply (5). However if in (5) we were to assume the finiteness of a slightly higher
moment than the second, i.e., ED;* log™ |Dy| < o, we could drop the assumption
of triangularity and conclude that T, converges completely to zero by Corollary
3 (i). Chow [1] has established that (5) is sharp; hence, it follows that Theorem 2
is sharp also.

4. Convergence in the non-identically distributed case. Let the (D, &k = 1)
be independent random variables. An examination of the proof of Theorem 1
shows that the identically distributed hypotheses may be dropped by slightly
strengthening the moment condition assumed. This yields Theorem 3.

TuroreM 3. Let |a.i| < Kn™® for some a > 0.

(i) If E |Dk|"“t®!* (log® |Di|)*™* < K for some £ > 0,

(l+a+8)/az2  ED(ogt D)™ <K, ED,=0, A,=<Kn"

and D m_1exp (—t/A,) < o forallt > 0, then T, converges completely to zero.
(ii) If ED;* < K, EDy, = 0, and 2 s |am|’ < Kn*® 7 for some 0 < 6 < 2
and £ > 0, then T, converges completely to zero.
(iil) If E |Dy|“T*P* (log" |Di)'** £ K for some £ > 0,

1S (1 +a+Bf)/a<2 A= K™ 2ilaw|"* = Kn™"
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for some v > 0 and either Y ey |ani| = K and EDy = 0 or Y g1 || — 0 as n
— oo, then T', converges completely to zero.
(iv) If E |Di| "' (log* |Di|)*™* < K for some £ > 0,

0<(14+a+B)/a<l, A,=2EKd  Diglaw|*" P < Kn™

for some v > 0 and an, = 0 for k > nf where { < ¥(1 + o + B)/a then T, con-
verges completely to zero.

Proor. We establish (i) only, the proofs of (ii), (iii) and (iv) being omitted
because of the similarity of their proofs to (i). Fix e > 0 and assume without loss
of generality that a.. > 0. Let Dy, = Dipl[aD; < n "] where p > 0 is chosen
later in the proof, Dny = Dil[amDi > ¢/N] where N is a positive integer to be
chosen later, and Dy = Dy — Diow — Doy Let

/ ’

Toam = Z;c”=l AnkDnk )
4 ”

Tnm = Z;cn=1 afnthk ) and
" m

Tnm. = Z;c”=l amk-an .

In Theorem 1 (¢) the proof of the facts that T, converges a.s. to T\, as m —
m

o, Trm converges a.s. to T, asm — o, S ey PIT, > ¢ < o, Tom and Thn
each converge a.s. to random variables Tn and T,” respectively as m
— o, and that D wey P[T? > €] < o in no way depended on the additional
assumption of the random variables D; being identically distributed. Thus the
proof of these facts is the same here and we therefore omit repeating their
proof. We thus need only to establish > 4 P[T." > ¢ < = to complete the
proof of (i). Applying (3) of Lemma 2 with Z, = D, yields
A PIT. > e £ 2050 2200 (fa(f) — fa(G — 1)) supe P[IDy]| Z 5 — 1)],

where f,(j) and g; are defined in the statement of Lemma 2. By the Chebychev
inequality,

PDi| 2 j — 1] £ K(j — )7 (log" (j — 1))™.
Likewise

PIDy| 2 j — 1] £ K(j — 1)~ (log" (j — 1))”™**.

To show that ) w1 P[T." > €] < =, it is sufficient to show that

2oiet 200 (fa(§) = fa(G — 1)) supe P[[Ds| > j — 1] <

since g; < o« forj = 1,2, and 3.
We now consider two cases. First, if (1 + « + 8)/a = 2, then

Doia 2 (fa(g) — fa(G — 1)) supe P[IDe| 2 5 — 1]
S K27 2% (fad) — G — 1)G — 1) (og (5 — 1))

By the definitions of A, and f.(j), it is clear that A, = f2(7)E(NF)?. Since
A, < Kn® ™ by hypothesis, we conclude that f,(j) < Kn®*N%"/. Inversion of
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the order of summation and summation by parts thus yields
2050 2250 (FaG) = fa(G — 1)) sups P[D| > j — 1] £ K'N*/¢
225G = 1) log (j — 1)) — T (log 5)T™) ilan

Since Y %, nf™ = > %, n" < K’ logj, where K’ is independent of 7, it then
follows by elementary computation that the preceding sum is finite. Thus
S * 1 P[T.” > € <  in the first case. Secondly, if (1 + a + 8)/a > 2, then

Tt 200 (fald) = fald — 1)) supe P[IDs| > j — 1]
K 35 2200 (fa() = fald — 1)) (G — 174 (log (7 — 1))
= K'NY/é 205407 ((5 — 174 (log (5 — 1)) 700 — ool

-(log j) ~**®) 220y nf
Since D %y nf* £ K'j® ™/ where K’ is independent of 7, it then follows
by elementary computation that the preceding sum is finite. Hence
D m= PIT." > € < o and (i) is established.

ReMARKS. The assumption of the Dy’s being identically distributed can obvi-
ously be dropped from the statement of Corollaries 1-3 in an analogous manner
as done above in Theorem 3. Statements of these corollaries are therefore omitted.
Theorem 3 was motivated by a result given by Chow ([1], p. 1489) for the non-
identically distributed case. His result states that if ED; = 0, E |Dy|"™/*.
(log" |Di])? £ K, |ani| < KA, for k < ', au = 0 for k > ', and 4, < Kn™®
where A = 1 and 0 < o = 1, then T, converges completely to zero. Theorem 3
extends this result by treating the case where the rows of the a,; matrix may have
infinitely many non-zero entries and the case where the second moments of the
Dy’s may be infinite. Setting 8 = 0 shows that the moment condition given in
Theorem 3 is sharper (except for the special case @ = N = 1 where the Chow result

is sharper).

IIA

5. A martingale convergence result.
THaEOREM 4. Let E(exp (tDy)| Fr_1) < exp (£) a.e. for every constant t, A, < =,
and Y _n-1exp (—N\/A,) < « for all N > 0. Then T, converges completely to zero.
Proor. By Lemma 5, T', is generalized Gaussian with 7(T,) £ 24, . From
this, it follows easily by a Chebychev argument (see [1], p. 1483) that
P[|T.| > €] < 2exp (—é/(44,)) for all e > 0. Thus D me P[|Ts| > ¢ < o for
alle > 0.
ReMARK. Chow ([1], p. 1483) proves that
(6) (Dy, k = 1) independent generalized Gaussian with
(D) £ 2, An < o, and )_nexp (—NA4,) < o for
all A\ > = 0 T, converges completely to zero.
Theorem 4 generalizes this result to the martingale case. The key step in the
proof of Theorem 4 as well as (6) is the establishment of Lemma 5.
CoroLLARY 4. Let |Dy| = K as. for some K < «», 4, < o, and

>ow_sexp (—MA,) < o forall X > 0. Then T, converges completely to zero.
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Proor. Without loss of generality, we assume K = 1. By Theorem 4 it is suffi-
cient to show that E(exp (tDy)| Fr1) < exp () a.e. for each t and k& = 2. Con-
sider ¢ > 0.If ¢ = 1, then exp (¢D;) < exp (’) a.e. Consider 0 < ¢ < 1.

Exp (tDy) £ 1+ tDp + D onst®/nl £ 1 4+ tD; + £ ae.

Hence E(exp (tD3)|Fra) =1 + £ = exp(#®) for 0 < ¢t < 1. Thus
E(exp (tDy)| F1-1) < exp () a.e.foreach ¢ > 0, for eacht < 0 by symmetry, and
for ¢t = 0 trivially. §

Remarks. Corollary 4 has been proved by Hill ([7], p. 405) in the special cz‘iSé
where (Dy, k = 1) are independent and P[D; = 1] = P[D; = —1] = . Even
for this case, Erdoés ([7], p. 404) gives an example which shows that
D maexp (—\/4,) < o« forall X > 0 cannot be replaced by 4, = O(log™ n).
Hence the statement of Theorem 4 is rather sharp. As an example of the applica-
tion of Theorem 4, one may take an = 1/(n*(logn)*™?) for k < n and @ue = 0
for & > n, where > 0. Then it follows that E(exp (tDi)|Fi-1) < exp (') a.s.
implies that T = >y Di/(n*(log n)?) converges completely to zero. This
example is given by Chow in the independent case ([1], p. 1484). The papers by
Hill [7] and Chow [1] may be referred to for other applications of Theorem 4 since
the examples given there will apply in the more general martingale case.

6. Concluding remark. In Sections 3 and 4, we can redefine
Tnm = ZZ;I anank )

where (Dax, k = 1) is a sequence of independent random variables for each
n = 1. Likewise, in Section 5, we can redefine Tpm = D my @upDnw where
(Dary Fur, & = 1) is a martingale difference sequence for each n = 1. All results
stated in Sections 3-5 then remain valid with the exception of Theorem 2. More-
over, this generalization is trivial since all proofs given remain valid without
modification. In anticipation of possible application of the results of this paper we
have called attention to this slightly more general formulation of the results given
in this paper.
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