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CONSTRUCTION OF ROOM SQUARES

By R. G. Stanton anDp R. C. MuLLIN

Unwersity of Waterloo

1, Introduction. The particular design which has since become known as a
Room square or a Room design was first introduced by T. G. Room in a brief
note [4]. We shall introduce a notation slightly different from that used by Room.
We take the 2n symbols 1, 2,3, --- , 2n — 1, ». Then a Room design of order
2n consists of a square of side 2n — 1 with each compartment of the square
either being blank or containing an unordered pair of the symbols 1, 2, 3, - - -,
2n — 1, . Furthermore, each row and each column of the square contains n — 1
empty cells and n cells containing a pair of symbols; the totality of symbols
appearing in each row and in each column is just the total number, 2n, of symbols.
We further require that each of the n(2n — 1) possible distinet pairs of symbols
shall occur exactly once in a cell of the square.

We shall also find it useful to refer to a Room design of order 2n as a Room
square of side 2n — 1. Room squares may thus exist only for odd integers k =
2n — 1.

Room’s initial note pointed out that a Room square existed trivially for k = 1,
did not exist for k¥ = 3 or 5, did exist for k = 7. Archbold and Johnson [2] gave
a construction for k = 7, 31, 127, - - - | that is, for any k which is less by unity
than an odd power of 2; they also pointed out the applications of Room squares
in statistical design and sketched the appropriate analysis of variance for such a
design. Archbold [1] gave a different construction, based on difference sets, which
produced squares of side k = 7, 11, 19, 23; again this method failed for k = 15,
just as the earlier method had. Bruck [3] pointed out the connection between
Room squares and quasigroups, gave an elegant new construction for the squares
given by Archbold and Johnson [2], and proved that if squares of sides @ and b
existed, then one could use a type of Kronecker product to get a square of side
ab; in particular, this gave a square of side 49. Finally, Weisner [5] constructed a
square of side 9.

The preceding background sketch shows that relatively few Room squares
are known. For instance, the only values of % less than 100 for which squares have
been constructed are k = 7, 9, 11, 19, 23, 31, 49, 63, 77, 81, 99. It is the aim of
the present article to outline a method whereby it appears that Room squares of
any side & (k odd, & > 5) may be constructed; the actual construction has been
carried out for all odd numbers % from 7 to 47 inclusive. Empirical evidence
suggests that there exists a very large number of Room squares of given side k.

2. Construction of a cyclic Room square of side 11. We shall illustrate the
me;,chod employed by discussing the case & = 11 in detail. We shall restrict our-
selves to the construction of cyelic Room squares. These are squares in which the
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CONSTRUCTION OF ROOM SQUARES 1541

entry in cell (¢ 4 1,7 4 1) is found by taking the entry in cell (7, j) and adding
1 modulo 11, where one employs the convention that © -+ 1 = . Also, the
cells are numbered modulo 11; thus, if one has cell (4, 11), then cell (4 + 1,
11 4 1) is eell (5, 1).

The first step is to write down six pairs of numbers with the following prop-
erties. They include all the 11 numbers 1, 2, 3,4, 5, 6,7, 8, 9, ¢, ¢, and the symbol
. The six differences in the pairs are congruent modulo 11 to 1, 2, 3, 4, 5, .
We do not consider differences greater than 5, since the pairs in the cells of a
Room square are not ordered. Alternatively, we may consider the absolute values
of the differences * — y, where z and y occur in the same cell of the Room square

Such a set of pairs can be written down in many ways. Suppose that we select
the set 14, 27, 35, 6t, 89, « e; the differences for these pairs are respectively
3,5,2,4, 1, «. We at once obtain the obvious

LemMA 1. The 66 pairs obtained by adding modulo 11 to these six initial pairs
are all distinct, and hence are just the 66 different pairs obtainable from the 12 given
symbols.

For instance, the given set generates 25, 38, 46, 7e, 9¢, « 1; ete. If we use the
six pairs just found as the first row of a cyclic Room square, then we get all
succeeding rows by successive additions of 1 modulo 11. However, we can not
just place these entries at random in the first row, since we also have to guarantee
that the columns also possess the Room property. It is clear, because of the
cyclic generation of the square, that if one column has the requisite property,
then so have all the other columns; let us look at the last column (the eleventh).

It is convenient to keep « upon the main diagonal; so we place (=, ¢) in
position (1, 1) and add diagonally; this puts the Room square in what may be
called standard form; the eleventh column then consists of the following entries:

(o,e) +10= (»,t); (1,4) +2; (2,7) +y;
(37 5)—'—2, (67t)+u; (879)"‘0’

where z, y, 2, u, v, are distinct numbers chosen from among the integers 0, 1, 2,
-++, 9. In order to determine a suitable set of five such numbers, we make the
following table.

89 6 ¢ 35 27 14

0 89 — 35 27 14
1 — 7e 46 38 25
2 — 81 57 49 36
3 el 92 68 — 47
4 12 — 79 6 e 58
5 23 e 4 — 71 69
6 34 15 9e 82 —
s 7 45 26 — 93 8e
8 56 37 e 2 — 91
9 67 48 13 eb —
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The entries in column 11 must be five pairs chosen from this array under the
restrictions that:

(a) the five pairs give all the ten symbols 1, 2, --- , 9, ¢ (note that « and ¢
already occur in column 11); (b) there must be one entry chosen from each of the
five columns of this array; (¢) there can not be more than one entry from each of
the rows.

It is easy to find a solution. Suppose that we select the pair (6, 7) from the
first column; this cuts our remaining choices down to the following array (since
both 6 and 7 now appear).

—- - 3 — U
- - — 38 25
— 81 — 49 —
—- - - — 58
J— ed —_— J— J—
—_ 15 e

— - & =

7 — — —

From the third column, we must either take 35 or an entry containing e. If we
try 35, then we can exclude seven more entries, namely, 15, 9e, €2, 38, 93, 25, 58.
This leaves only two choices from column four; if we try 49, there is left no permis-
sible choice from column 2. So we must select 82 from column 4; this choice
forces us to take e 4 from column 2 and 91 from column 5, and we thus have a
solution. We need to take the following choices of z, y, 2, u, v.

(8,9) +9; (6,8) +5 (3,5 +0; (2,7) +6; (1,4) +38;

to give a final column of (6, 7), (e, 4), (3, 5), (8, 2), (9, 1). The adders are just
the amounts needed to transport the given pair to the eleventh column. Hence
the first row of the Room square is simply

w ¢ &) 14 — 27 6t — — — — 35.

Since the square is cyclic, we need only state the first row; that determines the
rest of the square by diagonal addition modulo 11.

Actually, the above square was worked out to illustrate the method; the square
originally obtained by the same method was a square with first row

w0 e35— 8927 14 — — — 6f —.

This square, of course, has the same entries in each row (a necessity of the
method, once the first row is prescribed ), but the pattern of blanks is different.

3. Application to other values of k. The method illustrated in detail in the
last section depends upon two things. One of these is that we must be able to
find a “starter”, that is, a set of pairs for the first row. Such a starter must con-
sist of » pairs such that the absolute differences formed from the pairs are the
numbers 1,2,3, -+ ,n — 1, . We immediately find
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LeMMA 2. The 2n — 1 rows formed from such a starter by addition of successive
1’s modulo 2n — 1 have the property that we obtain n(2n — 1) distinct pairs, and
each row obtained contains exactly 2n distinct symbols.

It is clear that such a starter can always be written down, and usually there
are many such. For example (k = 7), if we standardize the first row by fixing
the entry (e, 5) in position (1, 1), then there are only 15 possible ways of
dividing up the symbols 1, 2, 3, 4, 6, 7, into 3 pairs. Of these 15 possibilities,
only three satisfy the conditions for a starter. These are:

12,37,46;  16,23,47; 17, 24, 36.

If we select another standardization by placing ( «, 7) in position (1, 1), these
three starters become (add 2)

34, 52, 61, 31, 45, 62; 32, 46, 51.

To show that a starter always exists, we note

LemMA 3. The set of pairs given by (n — 1,n), (n —2,n+ 1), (n — 3,n + 2),
(n —4,n+3), ---, (1, 2n — 2), together with (o, 2n — 1) has the property
that the absolute differences formed are the numbers 1,3, 5,7, -+, 6,4, 2, «.

For example, when & = 13, this lemma gives the starter as (6, 7), (5, 8),
(4,9), (3, 10), (2, 11), (1, 12), (=, 13) with successive differencesas 1, 3, 5, 6,
4,2, .

The particular starter given by Lemma 3 has the property that each pair has
a constant sum (13 in the illustration). Another way of obtaining a starter for
the case when k is a prime can easily be described. Suppose that a is a primitive
element in the Galois field on k symbols; then the field can be written as 0, a, a,
a, -, o' = 1. We obtain

Lemma 4. The pairs (a) a'n)f (02, an+l)’ (asr a”+2), ] (an_l’ a2n—2)’ (°°;
2n — 1) have the properties required by a starter.

Actually, since a”™ = —1, we see that these pairs are just the pairs (a, —a),
(a’, —a¥), (d*, —d®), ete; they have the property that the two entries in a pair
are of constant sum, and are actually just the starter obtained in Lemma 3, but
written in a different order. For instance, for k& = 17, this method gives the
starter (using 3 as primitive element) (3, 14), (9, 8), (10, 7), (13, 4), (5, 12),
(15, 2), (11, 6), (16, 1), (=, 17). If o’ is another primitive element, then the
pairs obtained from it are just (a’, —a®), (a¥, —a™), -+, etc. These all have
the form (7, —7), and so we have

LemMA 5. The set of starter pairs obtained in Lemma 4 is independent of the
particular primitive element a selected.

Having seen that we can always select a starter, we now turn to the second
problem. We can not write the pairs of a starter in any random position in the
first row. Indeed, if we put the entry (a, b) in position u in the first row, then
k — w is the amount which must be added (modulo %) to obtain the element
generated in the last column of the square. So we need to find a set of adders
for any starter.

For example, consider the starter (0, 17), (3, 14), (9, 8), -+ -, given as an
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example for k = 17 immediately after Lemma 4. We agree to the standardiza-
tion whereby (e, 17) appears in the first row and first column; we then find that
we can define the following adder:

(3, 14) +3; (9,8 +12; (10,7) +5 (13,4 + 15
(5,12) +6;  (15,2) + 11;  (11,6) +13; (16, 1) + 9.

The adder has the property that all the integers used are distinct; also, all the
resulting pairs obtained are distinct; and the element 16 does not occur since
(0, 16) is known to be the entry in position (k, k).

From the adder, we at once deduce that (3, 14) appears in the 14th position
of the first row; (9, 8) appears in the fifth position of the first row; (10, 7) ap-
pears in the twelfth position of the first row; (13, 4) appears in the sixteenth
position of the first row; ete. The elements generated in, the last column are then
(6, 17) in the third position of the last column, (4, 3) in the twelfth position of
the last column, ete.

We thus have illustrated the use of a starter and an adder to find a cyclic
Room square of side 17. A starter is always predictable (of course, there are many
other possibilities besides the patterned starters we have described); the adder
can be found by easy trial as in the last section. Hand application of this method
produced the following Room squares (those for 13, 15, 17, are new, and it might
be mentioned that the methods of [1] and [2] both broke down for & = 15). In
all cases, we write only the first row of the square.

7 0 6 ——14 — 7523

9 The use of a patterned starter produces no square; this point will be discussed
again in a later section when we consider the number of Room squares ob-
tained from the particular patterned starter we have mentioned. However,

another starter produces « 9 58 37 — — — — 46 12
o §5—91 — — — 46 82 te — 37 (using ¢t = 10, ¢ = 11)
© 1229 —38———110561311 —47—
©3510———1831——91578—261214—411

(notice that here we did not use a patterned starter)
k=17 ©17——11698152—161——512107—3 14— 13 4 —

k
k

=
o
_
oo

Once one has reached this size of square, hand application of the methods so
far described becomes a bit tedious. Consequently, in the next section, we shall
describe the adaptation of the method for computer application, and will give
the first rows of cyclic Room squares for all orders up to and including 47.

4. Computer construction of Room squares. Suppose that r is the number
which is paired with « in the starting row. Then the sum of all the other 2n —
2 = k — 1 numbers (omitting « and r) is simply 3k(k + 1) — r. In the pat-
terned starters which we have described in the last section, all pairs have the
same internal sum modulo k; for instance, at the end of the last section, the pairs
in row 1 have sum 10 for k¥ = 11, sum 11 for k¥ = 13, sum 14 for k = 15, sum
17 for k = 17. In general, this sum is equal to

(3k(k + 1) — r)/3(k — 1) = 2rmod k.
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Now let T; be the pair (z, y) with internal difference of 7; we at once find that
we can write T'; as (r — 37, r + 7).

As mentioned before, these pairs are taken modulo %, and we now require a
sequence of integers a; such that the column image of T'; (that is, the last column
of the square) is suitable. This image is 7 = (r — % + ai, r + % + a)
modulo k. Clearly we must impose the conditions a; # a;; Ti' n T/ = 0 for
1 5% j; these impose the restriction

a; # a; &= 3(7 &= j) modulo k.

This results in an algorithm which is awkward for hand computation but which
is easily programmed in Fortran. The results obtained are given below. The
value of % in each case is one greater than the number of symbols in the pat-

terned starter.
PATTERNED STARTER
(12) (46) (73)

POSSIBLE COLUMN IS

(12) 57 36)
The above print-out for £ = 7 must be interpreted in the following way: the pairs (1 2),
(4 6), and (7 3) appear in the first row; they must appear in those positions which will,
on diagonal addition, place them respectively in the positions giving (1 2), (5 7), and (3 6)
in the last column. Of course, the pair (« 5) appears in the first position in the first row.
Hence the other pairs appear respectively in positions 7 — 0=7,7—1=6,and7 — 3 = 4
of the first row. A similar interpretation applies to all succeeding print-outs.

PATTERNED STARTER
Q1) (46) 82) B7)
NO POSSIBLE COLUMN

PATTERNED STARTER
(10 11) (4 6) 91) (37) (82)
POSSIBLE COLUMN IS

(12) 810) (69) 387) (11 5)

PATTERNED STARTER
(1112) (46) (1013) 37) @ 1) 28)
POSSIBLE COLUMN IS

(12 13) (6 8) (2 5) (7 11) (9 1) (10 3)

PATTERNED STARTER
(1213) (4 6) (11 14) 37) (10 15) (28) (9 1)
POSSIBLE COLUMN IS
(13 14) (911) 36) (121) (510) (28) (157)

PATTERNED STARTER
(13 14) (4 6) (12 15) (3 7) (11 16) (2 8) (10 17) (1 9)
POSSIBLE COLUMN IS

(14 15) (6 8) (10 13) (16 3) (27) (11 17) (512) (1 9)

PATTERNED STARTER
(14 15) (4 6) (1316) (37) (1217) (2 8) (11 18) (1 9) (10 19)
POSSIBLE COLUMN IS
(15 16) (6 8) (17 1) (9 13) (5 10) (12 18) (19 7) (14 3) (2 11)

PATTERNED STARTER
(15 16) (4 6) (1417) (37) (13 18) (2 8) (1219) (1 9) (11 20) (21 10)
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POSSIBLE COLUMN IS
(16 17) (6 8) (18 21) (11 15) (19 3) (7 13) (5 12) (1 9) (14 2) (10 20)

PATTERNED STARTER

(16 17) (4 6) (15 18) (3 7) (14 19) (2 8) (13 20) (1 9) (12 21) (23 10) (11 22)
POSSIBLE COLUMN IS

(17 18) (6 8) (19 22) (10 14) (20 2) (15 21) (5 12) (1 9) (7 16) (3 13) (23 11)

PATTERNED STARTER
(17 18) (4 6) (16 19) (3 7) (15 20) (2 8) (14 21) (1 9) (13 22) (25 10) (12 23) (24 11)
POSSIBLE COLUMN IS
(18 19) (6 8) (20 23) (9 13) (11 16) (21 2) (3 10) (17 25) (5 14) (22 7) (15 1) (12 24)

PATTERNED STARTER

(18 19) (4 6) (17 20) (3 7) (16 21) (2 8) (15 22) (1 9) (14 23) (27 10) (13 24) (26 11)
(12 25)

POSSIBLE COLUMN IS

(19 20) (6 8) (21 24) (9 13) (2 7) (12 18) (10 17) (22 3) (23 5) (15 25) (16 27) (26 11)
A 14)

PATTERNED STARTER

(19 20) (4 6) (18 21) (3 7) (17 22) (2 8) (16 23) (1 9) (15 24) (29 10) (14 25) (28 11) (13 26)
@7 12)

POSSIBLE COLUMN IS :

(20 21) (6 8) (22 25) (9 13) (24 29) (5 11) (16 23) (28 7) (10 19) (17 27) (1 12) (14 26) (2 16)
(18 3)

PATTERNED STARTER

(20 21) (4 6) (19 22) (3 7) (18 23) (2 8) (17 24) (1 9) (16 25) (31 10) (15 26) (30 11) (14 27)
(29 12) (13 28)

POSSIBLE COLUMN IS

21 22) (6 8) (23 26) (9 13) (25 30) (10 16) (7 14) (11 19) (27 5) (24 3) (20 31) (17 29)
(2 15) (18 1) (28 12)

PATTERNED STARTER

(21 22) (4 6) (20 23) (37) (19 24) (2 8) (18 25) (1 9) (17 26) (33 10) (16 27) (32 11) (15 28)
(31 12) (14 29) (30 13)

POSSIBLE COLUMN IS

(22 23) (6 8) (24 27) (9 13) (26 31) (5 11) (28 2) (10 18) (3 12) (15 25) (21 32) (17 29)
(7 20) (19 33) (1 16) (14 30)

PATTERNED STARTER

(22 23) (4 6) (21 24) (3 7) (20 25) (2 8) (19 26) (1 9) (18 27) (35 10) (17 28) (34 11) (16 29)
(33 12) (15 30) (32 13) (14 31)

POSSIBLE COLUMN IS

(23 24) (6 8) (25 28) (9 13) (27 32) (5 11) (30 2) (18 26) (7 16) (10 20) (1 12) (17 29) (21 34)
(19 33) (35 15) (22 3) (14 31)

PATTERNED STARTER

(23 24) (4 6) (22 25) (3 7) (21 26) (2 8) (20 27) (1 9) (19 28) (37 10) (18 29) (36 11) (17 30)
(35 12) (16 31) (34 13) (15 32) (33 14)

POSSIBLE COLUMN IS

(24 25) (6 8) (26 29) (9 13) (28 33) (5 11) (30 37) (27 35) (14 23) (12 22) (36 10) (19 31)
(7 20) (3 17) (1 16) (18 34) (15 32) (21 2)

PATTERNED STARTER
(24 25) (4 6) (23 26) (3 7) (22 27) (2 8) (21 28) (1 9) (20 29) (39 10) (19 30) (38 11) (18 31)
(37 12) (17 32) (36 13) (16 33) (35 14) (15 34)
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POSSIBLE COLUMN IS

(25 26) (6 8) (27 30) (9 13) (29 34) (5 11) (31 38) (12 20) (32 2) (18 28) (10 21) (24 36)
(1 14) 3 17) (7 22) (23 39) (16 33) (19 37) (35 15)

PATTERNED STARTER

(25 26) (4 6) (24 27) (3 7) (23 28) (2 8) (22 29) (1 9) (21 30) (41 10) (20 31) (40 11) (19 32)
(39 12) (18 33) (38 13) (17 34) (37 14) (16 35) (36 15)

POSSIBLE COLUMN IS

(26 27) (6 8) (28 31) (9 13) (30 35) (5 11) (32 39) (10 18) (33 1) (15 25) (12 23) (36 7)
(16 20) (20 34) (2 17) (24 40) (38 14) (19 37) (3 22) (21 41)

PATTERNED STARTER

(26 27) (4 6) (25 28) (3 7) (24 29) (2 8) (23 30) (1 9) (22 31) (43 10) (21 32) (42 11) (20 33)
(41 12) (19 34) (40 13) (18 35) (39 14) (17 36) (38 15) (16 37)

POSSIBLE COLUMN IS

(27 28) (6 8) (20 32) (9 13) (31 36) (5 11) (33 40) (10 18) (30 39) (16 26) (14 25) (22 34)
@7 7) (317) (43 15) (19 35) (38 12) (23 41) (2 21) (24 1) (42 20)

PATTERNED STARTER

(27 28) (4 6) (26 20) (3 7) (25 30) (2 8) (24 31) (1 9) (23 32) (45 10) (22 33) (44 11) (21 34)
(43 12) (20 35) (42 13) (19 36) (41 14) (18 37) (40 15) (17 38) (39 16)

POSSIBLE COLUMN IS

(28 29) (6 8) (30 33) (9 13) (32 37) (5 11) (34 41) (10 18) (31 40) (12 22) (14 25) (23 35)
(39 7) (3 17) (45 15) (27 43) (19 36) (24 42) (2 21) (26 1) (44 20) (16 38)

PATTERNED STARTER

(28 29) (4 6) (27 30) (3 7) (26 31) (2 8) (25 32) (1 9) (24 33) (47 10) (23 34) (46 11) (22 35)
(45 12) (21 36) (44 13) (20 37) (43 14) (19 38) (42 15) (18 39) (41 16) (17 40)

POSSIBLE COLUMN IS

(29 30) (6 8) (31 34) (9 13) (33 38) (5 11) (35 42) (10 18) (32 41) (12 22) (17 28) (36 1)
(7 20) (25 39) (47 15) (21 37) (2 19) (27 45) (44 16) (23 43) (40 14) (24 46) (3 26)

5. Concluding Remarks. We have now demonstrated that Room squares exist
for all odd numbers & between 7 and 49 inclusive. The Bruck result on the exist-
ence of a square of side ab, given squares of sides a and b, now settles many other
cases. And there is impressive empirical evidence that Room squares of side &
exist for all odd & greater than 5.

In this connection we cite the following data. We have concentrated not on
the whole class of Room squares, but only on the subclass of cyclic Room squares
And the computer algorithm was written to find only a special kind of eyclic
Room square, namely, the squares which can be obtained from our “patterned
starter.” Let us call these “patterned Room squares” or PRS. Then the algorithm
mentioned produced the following results for PRS; in each case, the Room square
was standardized so that the entry in position (1, 1) was «, 5.

Value of & Number of PRS

7 2

9 0
11 4
13 8
15 44
17 416

E 19 The programme was turned off after the produc-

tion of 967 PRS.
It would appear that the number of PRS goes to infinity very rapidly.
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If we seek some data on the number of cyclic Room squares (CRS), we have
to allow all possible starters. This is easily done. Suppose that we put « k in
position (1, 1). Then we can write down all possible pairings from the integers
1,2,3, -+, k — 1. There are, for example, only 15 such pairings for & = 7 and
105 for k£ = 9. The general formula is easily written down as

FDEE) - (D@30~ DI = 2s1/2'!
where 2s = k£ — 1. Most of these pairings do not give starters; for example, of the
fifteen pairings for k£ = 7, namely:

(12) 34)(56); (12) 35) (46); 12) 36) (45);
(13)(24) (56); 13) (25) 46); 13) (26) (@35);
(14)@23)(56); 14 (25) 36); 14) (26) 3 5);
(15) (23) (46); 15) (24) 36); 15) (26) B4);
(16) (23) @5); (16) (24 35); (16) (25 B4);

it is clear that only three of them give possible starters for CRS, namely,
(13)(26) @45); (15)(23) 46); 16) (25) B 4.

These three starters can then be used to generate CRS; the total number of
CRS for small values of % is given by the following table.

Value of k Number of Starters Number of CRS
7 3 6
9 9 12
11 25 80
13 133 1760

To prove that a Room square of side k exists for any odd %, one method would
be to establish the existence of squares of the following sides: (a) p, where p is an
odd prime greater than 5; (b) 3m, where m is prime to 3; (¢) 5n, where n is
prime to 5; (d) 9, 27, 25, 125. The result would then follow from the fact that
any odd integer can be written in the form 3°5%, where ¢ is a product of odd
primes not involving 3 or 5. It is hoped to discuss this matter in a later paper.
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