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CONVERGENCE RATES FOR THE LAW OF THE ITERATED
LOGARITHM

By James AvEry Davis!

Unaversité de Montréal

Introduction. Let {X,} be a sequence of independent identically distributed
random variables and S, denote the partial sums Y - X . For such sequences of
random variables, with mean zero and variance one, the Law of the Iterated
Logarithm states that P[lim sup S.(2nlg lgn)_i = 1] = 1. In this paper prob-
abilities where this law is applicable are considered and appropriate convergence
rates are determined.

According to Levy’s terminology, for a given sequence of independent random
variables {X,} a monotonic sequence {¢,} is said to be in the lower class £ if
P[S, > n'p, infinitely often] = 1. Otherwise the above probability is zero and
the sequence is said to be in the upper class U. In 1946 Feller [6] characterized
the upper and lower classes for independent identically distributed random
variables with EX = 0, EX® = 1, and EX’lglg |X| < «. Namely, {¢a} is in
the upper (lower) class if the series ) one " 07! converges (diverges).

In this paper, the initial results are directed toward obtaining a convergence
rate for Plsuprss [Sil(2 + €)klglg k¥ > 1] for independent identically dis-
tributed random variables satisfying the above moment conditions. In Theorem 3
it is shown that under a somewhat stronger moment condition Feller’s criterion
(> one ™ < ) is equivalent to the convergence of . onn 'P[|Sa| >
n*p,]. Finally, random variables with EX = 0 and EX® = 1 are considered and
it is shown that a weaker criterion than Feller’s is sufficient to guarantee a con-
vergence rate for P[|S,| > n*pn]. Thus there are monotonic sequences {¢n} such
that P[S, > nion infinitely often] = 1 and yet the series D n"P[|S.| > n%q:,,]
converges. To obtain some of the preceding, extensive use has been made of
results and techniques developed in [8] where Friedman, Katz, and Koopmans
applied the convergence rate concept to the Central Limit Theorem.

In this paper {X.} denotes sequences of independent identically distributed
random variables with common distribution function F; ®(z) represents the
standard normal distribution function, and [z] will stand for the largest integer
less than or equal to z. Also

lgz = log,z, z>1
=0 otherwise.

REesvvrs. Initially, it is easily observed that in [8] the following somewhat
stronger result is actually proven.
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TueoreM (Friedman, Katz, Koopmans). If EX; = 0, EX;® = 1 the series
Dowan tsup, [P[Sant < 2] — ®(z0, )|
converges, where
o = [laicnt 22 dF — ([1a1<nt z dF)".

More generally, if in addition it is assumed that E | X" < o, for 0 < 8 < 1,
then the series

A n®sup, [P[Sant < 2] — ®(z0,7Y)|

converges.
Lemma 1 allows the second theorem of [8] to be stated in a form more suited
to application in the following.
LemmA 1. Let X be a random variable with EX = 0 and EX® = 1, and let

0.2 = [la1<nt 22 dF — ([1z1<m z dF)™
Then
Yaa(l —ednTt < » o EX'lg|X| < .
Proor. Notice
1 =0 = [laznt & dF + ([1zzm v dF)°
so that
Jlogm @ dF £ 1 — ;" £ 2 [(450 2 dF.
Thus it suffices to show
>on [z 2 dF < o < EX*1g|X| <

which is easily done by standard techniques.
TueoreM (Friedman, Katz, Koopmans). If EX; = 0 and EX;" = 1 then
EX.’1g |X1| < o 4s equivalent to the convergence of

Dot sup, |PIS T < a] — ®(x)].

In [9], which has appeared since the initial preparation of this paper, Heyde
proves the above theorem. It is interesting to note the existence of these two
radically different methods of proof for this result. The following results, Theorem
1 and Proposition 1, are directed toward the proof of Theorem 2, but each is of
some intrinsic interest. The first of these is motivated by and proven essentially
as the corresponding result of [8].

Tueorem 1. EX; = 0, EX{® = 1, and EX{"Iglg |Xi| < o« imply that

D mmsn tglgnsup, |P[S.n~F < 2] — &(207")| < o,

where
0’ = [loi<m & dF — ([1s1<m @ dF)™.
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Prorposrrion 1. Let EX; = 0 and EXy® = 1. If
2nan T lglgnP{[S.| > [(2 + e)nlglgn]’}

converges for all € > 0 then the same s true for

D mes (nlgn) Plsuprsn |SH(2 + )klglg k] > 1.

Proor. Fix ¢ > 0 and choose a > 1 such that (2 4+ ¢)/a" = 2 4+ 5 > 2:
2 on=s (nlgn) " Plsupiza [Si(2 + eklglg k7| > 1]
< o 2.7 (gla]) 7 Plsupkzai [S(2 + eklglg k7| > 1]

€ Doims T D gms PM8Xai chcaitr [Sil(2 + )k Iglg k7Y > 1]
D it Dy PImaxai spcaitt |[Sk — u(Sk — Staiti)(2 + ek Iglg k] 7|
> 1 — maXei gheait |u(Sk — Spi+1))[(2 + )k lglg k7]
C3 Z:;a it Z;Lz
- P{maXai sheaitt [[Sk — #(Sx — Si+n)](2 + e)a'klglg k™| > 1)
Co Qg ® " D mi P{maXei chcaitt |Sk — u(Sk — Spai+y)]
> [(2 + )a”d’Iglg ]}
203 D ims T 2 5mi P{[Staitn] > [(2 + €)oo’ Iglg o]}
0a 2ot 1 205 P{ISwi+n| > [(2 4 €)oo Iglg o™}
cx 2 5ms P{|Stai+ny] > [(2 + €)oo’ Iglg o™} 31447
o 25 1g1g o'P{|Sn| > [(2 + €)a e’ Iglg o)
cs 2gms o Iglg o™ DAL YIS > (2 + e nlglgnl)
o7 2om=sn " lglgn P{|S,] > [(2 + 8)nlglgnl')
< o,

A

IIA

fIA

(1)

IIA

IIA

(2)
(3)

(VAN

I\

(4)

IIA

I\

(1) follows from
|u(Sk — Siai+1))| = |[p(Sk — Spi+yy) — E(Sk — Spai+1)]

< {20°(8k — Spii)}?

< {20°(Sta) — Staiviy)}?

= [2/(X1) o' (a — D)L
Thus
max [u(Se — Swi+)|[[(2 4 €)o’lglgal™

< [26°(X0) (@ — 1)/(2 + o) Iglga — 0

and (1) holds for & > 1.
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(2) obtains by Levy’s inequalities.
(8) follows from
M glg o™ (d’lglga’) ™ < o® forall j = jo.
(4) can be shown using Levy’s inequalities. Let o’ £ n £ o’*'. Then
P{|Swn| > [(2 + e)a ' Iglg T}
< Plmaxaiciga Sk — u(Si — Sa)| > [(2 + €)a *d’Iglg o)
— MaXaigk<a [(Sk — Sa)l]
P{maxai gizn [Se — #(Se — 8a)| > [(2 + o 'o’lglg o}
2P{|S,| > [(2 + &)’ Iglg o’]}}
2P{|Sa] > [(2 + e)a e’ Iglg o)
2P{[84] > [(2 + )a " Iglgnl).

With this result the proof of Theorem 2 is straightforward. It should be noted that
this conclusion has been demonstrated earlier in [1] under somewhat stronger
hypotheses. Various considerations seem to indicate the assumptions made here
cannot be improved significantly. In comparing this theorem with others for con-
vergence rates, it seems the proof is extremely laborious. This is related to the
dependence of the results on the actual magnitude of the variance. For example,
it is for this reason that the ordinary application of symmetrization fails.
TureorEM 2. EX; = 0, EX,® = 1, and EX,’lglg|X.| < o imply that

2n=s (nlgn) ' Plsupizn [SH(2 + e)klglg k7l > 1] < w.
Proor. The random variables satisfy the hypotheses of Theorem 1, thus
>owsn "t lglgn supeeg |PlSxn ] — ®(z0nt)| < .
Specifically, taking [(2 + ¢) lglgn]* for z, one obtains the convergence of
2oman g lg n|P{|Sa] > [(2 + enlglg )t} — 28(—[(2 + ¢) Iglgnl'e )|
But one obtains by the approximation of ® in the tail
25-anT g lg n®(—[(2 + ) lglg o)
< ¢ X Rmon lg lg ne RO (2 4 o) Iglg ™

. . 2
which converges since o5~ 1.

A A TIA

IIA

Thus, since this series eonverges absolutely, it must be that
2man T glg nP{|S.] > [(2 + enlglgn)} < =
and the hypothesis of Proposition 1 is satisfied. Hence
2n=s (n 1g n) ' Plsupiza [SK(2 + Ok lglg K7 > 1] <
for all e > 0.
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In Theorem 3 an attempt has been made to determine convergence rates for
arbitrary functions from the upper class according to Feller’s criterion. It was
found, however, that a more restrictive hypothesis was needed on the random
varibles. Again, a similar conclusion was drawn in [1] under stronger moment
conditions.

TueoreM 3. Let EX; = 0, EX)® = 1, EX,"Ig |X4| lglg |X1| < » and o be a
nonnegative increasing function on [1, «). Then the series

2 n= @' (n)n " Pl|Sa| > nle(n)]
converges, if and only if,
o)™ < .
Proor. From [4], p. 70, one obtains
& (n)nPlIS.| > ne(n)] — 2(1 — ®(p(n)))]
< n7supozo (1 + 2)|P[ISn7% > 2] — 2(1 — ®(x))|
< 207N (2/x)}(d + 1)a7¢ " + 5a’A(n))

where =4a are continuity points of P[S./n} < z] and A(n) = sup, lP[Sn/n; < x]
— ®(z)|. Now € can be chosen arbitrarily small and positive such that 4a, =
+[(2 + ¢) lg lg n]! are continuity points for each n, and one obtains

S () PISa| > nle(n)] — 2(1 — ®(e(n)))|
< {2+ ¢) lglgn + 1}{n[(2 + ¢) lglg nl (g n)?}
+ (2 4 ¢ Iglg nn'A(R)].

The series formed from the first terms above converges, and now one must
consider

Se_sn g lg n sup. [PS:n~? < 2] — ®(z)]
< Do antlglgn sup, |PS.nt < 2] — ®(z0n )]

+ D omsn g lg nosup, [®(zent) — &(x)].
Here
o = [laizm @ dF — (f1z1zm z dF)"

Now the hypotheses of Theorem 1 are satisfied, and hence the first series con-
verges. As in [8], the convergence of the second is equivalent to

dowantlglgn(l — o) < .

This, in turn, can be shown to be equivalent to the existence of EX,* Ig |X;|-
Ig lg | Xi|. Thus

2ona @ () |PlISa] > nle(n)] = 2(1 — @(e(n))] < <o,

Now consider

2aae'(n)nT (1 — @(e(n))).
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By [5], p. 166, this converges or diverges with
[Pt e O @t

and the theorem is proven.

The final result considers a weakening of Feller’s criterion for sequences of
the upper class. A convergence rate result is obtained for random variables with
only two moments satisfying this criterion, and thus applies for certain sequences
from the lower class. It is then possible to exhibit sequences {¢,} such that
P[|S.] > ¢un infinitely often] = 1 and yet the prescribed convergence rate
holds.

THEOREM 4. Let ¢(t) be a positive increasing function on [1, « ). Then (1) and
(2) are equivalent:

(1) JEeo O (O] dt < o,
(2) wan PS8, > nle(n)] < o,

for all sequences {X,} with EX; = 0 and EXy® = 1.
Proor. Clearly (1) and (2) diverge if ¢(n) is bounded. Thus without loss
of generality assume ¢(n) T .
(1) = (2). Let o, denote the variance of the random variables truncated at
% Y
n’. Then
nan PS> nle(n)] £ 2{ X7 (sups [P < 2] — @(aon )]
+ 2 nan ' ®(—e(n)o,) 7.

Now by Theorem 1 of [8], the first series above converges. Considering the latter
the approximation for the tail can again be used:

S B (—p(n)en ) < ¢ roae N g (n)]
< o [T ()] dt.
Thus, if the integral is finite, the convergence of

>aan PS> nled]

is demonstrated.
For (2) = (1) let each X, have the standard normal distribution. Then

PlISa] > nlo(n)] = 2(1 — ®(e(n)) & 2(27) ™" p(n)]™
and
w0 > Yrn PS> nfe(n)] 2 ¢ [T e (1) dt.

Exapples of sequences from the lower class £ which satisfy the hypothesis
[Te* WP,($)] " dt < =, thus the prescribed convergence rate holds, are
provided by

Sn) =21glgn +olglglgn
forl <6 £ 3.
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