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ON A THEOREM BY DOBRUSHIN

By CuARLES STONE
University of California

1. Introduction. In 1956 Dobrushin obtained in [2] an interesting theorem on
the asymptotic convergence to the Poisson process of a randomly translated
one-dimensional infinite particle system. Within the context of his Theorem 1
a necessary and sufficient condition for convergence was obtained.

It was pointed out by J. Goldman that Dobrushin’s sufficiency proof was
wrong, a serious error occuring in equation (17) of [2]. It turns out also that
equation (22) used in giving a trivial proof of the necessary condition is wrong,
and the necessary condition is incorrect as stated in the theorem.

In this paper we will correct these two errors of Dobrushin and also generalize
the results to d-dimensions. Also we will consider analogous results when the sets
may possess boundaries having positive measure.

Finally, we will give examples where the conditions are satisfied. These exam-
ples which have been treated in special cases by other authors, involve renewal
theory, random walks, and processes with independent increments, and processes
with random constant velocities.

In addition to the cited work of Dobrushin, related work has been done by
Doob [3], Marayuma [6], Watanabe [10], Lamperti [5], Breiman [1], Thedeen [8],
Goldman [4], and Warnshuis [9].

2. Definitions and statements of results. Let X denote a d-dimensional closed
subgroup of R®. With no loss of generality we can assume that X is of the form

X ={z= (- ,2% | 2" are integers for d; < k& < d}.

Set Z* = {z | 2" are integers for 1 < k < d}. If d; = d, then X = R?; and if
dy = 0, then X = Z°.

Set A, = {zeX |0 = 2" <mforl <k < d} andset A = A, .Set Z,* =
Z% n A, . Finally, set

U= {ueZ|u =1 forsomek, and v’ = 0 forj = k}.

Then U consists of d “unit vectors.” For 0 < a < w andze X, seta ©® z =
(axl) ) axdl) xd1+1’ B xd)‘

Let | | denote Haar measure on X, defined as the product of Lebesgue measure
on the first d; coordinates of X and counting measure on the last d — d; coordi-
nates. Let & denote the collection of all relatively compact Borel subsets of X.
All subsets of X considered later on will be members of ®. Let @ denote the
subcollection of sets A € ® such that [94] = 0.

Let the time parameter set T be given either as T = {0,1,2,---} or
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T = [0, «). Consider random counting measures N 4(¢), { ¢ T and 4 & ®, where
N 4(t) denotes the “number of particles” in A at time ¢. Set N4« = N4(0). Let
v, t & T, be measures defined by v{(A) = EN 4(1), and set » = »; . The particles
in X at time zero are assumed to be translated independently according to sto-
chastic processes isomorphic to a fixed stochastic process Y (¢), te T. Let u.
denote the distribution of Y, . Then

(2.1) Ve = V¥, teT.

Our first result depends only on the relation (2.1).

TurorEM 1. In order that for some fized X, 0 = X < o, and all measures v
such that
(2.2) liMmsw 7(2 — Ap)m™ = \
uniformly for x ¢ X, it should follow that for each A € @
(2.3) lim,e (v % p)(xz + A) = NA|
uniformly for x € X, it 1s necessary and sufficient that for each w e U and a > 0,
(24) liMpw Ponezd ju(a © (n 4+ u 4+ A)) — ula © (n + A))| = 0.
Suppose for each A e ® such that |A| = 1, and each a > 0 and compact set C
of X, that
(2.5) LMo D nezt SUPsect (@ © (n + 2+ A)) — p(a © (n + A))| = 0.
Then for any measure v satisfying (2.2) s follows that (2.3) holds for all A ¢ ®.

Note that if d = 1 and X = R, then (2.4) reduces to

WM Domeo le(fan , a(n + 1)) — p(fa(n — 1), an))| = 0;
ifd = 1and X = Z, then (2.4) reduces to
limg,e Z:=—oo [ue({n}) — w({n — 1})] = 0.

An important role in the proof of this theorem will be played by the following
lemma, which minimizes the apparent difference between equations (2.4) and
(2.5). The main purpose of the lemma is to correct the error of Dobrushin in his
equation (17) of the proof of Theorem 1 of [2]. The proof of the necessity part
of Theorem 1 corrects an error in equation (22) of the proof of Theorem 1 of [2].
Though our Theorem 1 is closely related to his, the real extension of Dobrushin’s
result comes in Theorem 2 below.

Lemma 1. Suppose w;, t € T, ©s such that (2.4) holds. Then for each a > 0 and
compact subset C of X

liMyse D mezd SUPzec-|ui(a@ @ (z + n + A)) — p(a © (n + A))| = 0.

If No, A ¢ @, defines a Poisson process with parameter A, then according to
a theorem of Doob [3), this property is preserved for all time. We say that N 4(¢),
A £ @ (A £ ®), is asymptotically distributed as a Poisson process with parameter
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Nifforalln > 1and Ay, -+- , 4,6 @ (A1, -+, A, € ®B), the asymptotic joint
distribution as t — o of N4 (t), ---, N4, (t) is that of a Poisson process with
parameter A. The next theorem is an extension and correction of Theorem 1 of [2].

THEOREM 2. In order that for some X\, 0 = X < oo, and all initial point processes
N 4 such that

(2.7) limyseo B |[Nooa,m™ — N\ = 0

uniformly for x € X, it should follow that N +(t), A & @, is asymptotically distributed
as a Poisson process with parameter \, it 1s necessary and suffictent that (2.4) hold.

If (2.5) and (2.7) hold, then N4(t), A ¢ B, is asymptotically distributed as a
Poisson process with parameter \.

The remaining results provide examples in which the conditions of the above
theorems are satisfied.

ExampLE 1. (Renewal process). Let d = 1. Then either X = R = (— o, »)
or X =7 ={0,+1, £2,---}. Let S,, —o < n < o, be X-valued random
variables such that Sp = 0 and S, — 8,1, —© < n < o« are independent
identically distributed random variables having finite positive mean 1/X. Let
N 4 denote the number of values of n such that S, ¢ A. We say that N, comes
from a renewal process with finite positive mean drift 1/\.

THEOREM 3. Let N 4 come from a renewal process with finite positive mean drift
1/A. Then (2.2) and (2.7) hold.

ExampLE 2. (Random walks and processes with independent increments). Sup-
pose that w,y; = us * u; for s, £ T. Then Y (¢) is called a random walk or a
process with independent increments according as T = {0,1,2,--:} or T =
[0, ©). We say that Y (¢) is non-degenerate if for no ¢ > 0 is u, supported by a
translate of a proper closed subgroup of X.

TuEOREM 4. Let Y (1) define a non-degenerate random walk or process with inde-
pendent increments. Then (2.4) holds. If some p; is non-singular with respect to | |,
then (2.5) holds.

ExampLE 3. (Random constant velocity). Let X = R®. We say that Y(¢) has
random constant velocity V if Y(¢) = Vi, t ¢ T, where the random variable V
is independent of T'.

TureoreM 5. Let Y (t) have random constant velocity V such that the distribution
of V is absolutely continuous with respect to Lebesgue measure on R*. Then (2.5)
holds.

Maruyama [6] (completed by Watanabe [10]) considered the case when N4
comes from Example 1 and Y (¢) comes from Example 2. He gave a rather
special proof of (2.3). He also stated that convergence to the Poisson process
holds, as stated in the first part of our Theorem 2. In his proof of this result,
however, he incorrectly assumed that the S,’s are independent (this error was
also pointed out by J. Goldman).

Special cases of the results on Example 3 were obtained by Breiman [1],
Thedeen [8], Goldman [4], and Warnshius [9]. Special cases of the results on
Example 2 were obtained by Warnshius [9] as well as Marayuma [6] and Wata-
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nabe [10]. None of these papers, other than Dobrushin’s consider the type of
assumption on N, by (2.7).

3. Proofs. We first prove Lemma 1 starting out with
LeMMA 2. Let p denote a probability measure on X. Then for m = 1

(3.1) D,z maxizpu(mn +k+ A) £ m™
+ D oneze MaXuew |u(n 4+ u + A) — u(n + A)]
Proor or LEmma 2. For n ¢ Z° choose b, ¢ Z,* such that
(3.2) p(mn 4 by + A) = maxyez,a u(mn + k + A).
Then for k ¢ Z,,°
(33) w(mn + b, + A) — p(mn + k + A)
S D ezt MAXyer [u(mn + 2+ u+ A) — p(mn + 2 + A)|.
Consequently,
(34) 2nezap(mn 4 by 4 A) £ Paeza p(mn + k + A)
+ Dnezmaxuy u(n + w + A) — u(n + A)].
Summing over k ¢ Z,,%, we get that
(3.5) m*Y ez p(mn + b, + A) £ 1
+ M neze MaXuew u(n + u + A) — u(n + w)|.

Equation (3.1) follows from (3.5) by dividing both sides by m.

Proor or LEmma 1. In proving (2.6) it suffices to consider the case C = A.
Consequently, with no loss of generality, we can assume that di = d. Also we
need only prove (2.6) for a = 1. Under these specializations (2.6) becomes

(3.6)  liMise Donezi SUPea [e(n + 2 + A) — p(n + A)| = 0.
Let m denote a positive integer. Then
1im SUDsaes D mezd MAXkez,4 [pe(n + km™ 4+ A) — p(n + A)]
= 1im SUPsace D nezd MAXgez, 4 |ne(m ™ (mn + k + mA))
— wi(m™ (mn + mA))|
< lim SUDraw D mezd D kezyd MaXuer |ue(m  (mn + k + u + mA))
— (™ (mn + & + mA))|
= lim SUPrae D mezé MAXyer |ue(m ™ (n + u + mA))
— w(m™ (n + mA))| =0
by (2.4) since U is a finite set. In other words,
(3.7) 1liMesw Donezt MaXpez,a [me(n + km™ + A) — py(n + A)| = 0.
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By Lemma 2
D nezd MAXpoz, pe(n + km ™t + mA) = D ezd M8Kpes, 0 pe(m " (mn 4+ k + A))
S m% 4 D ezd MAXuew lwe(m ™ (n + u + A)) — w(m ™ (n + A))| — m™®
as t — . In other words,
(3.8) lim sups.e« anzd MaXpez,d pe(n + km™ + mTA) = m™.

Let V denote the set of 2 points in Z° whose coordinates are all zero or one.
Choose zeA. Choose k = (K, -,k eZ,® such that (k')/m = z <
(" + 1)/mfori= 1,2, ... ,d. Then

lu(n + 2 4+ A) — w(n + km™ + A)
< 2'(m 4+ 1) Xy maXpez,a pe(n + v + km™ 4+ mTA).
Thus by (3.8)
(3.9) Lim SUPiaw D mezd SUPzex MiNgez, 4
un + 2 + A) — w(n + km™ + A)| £ £(m + 1)T'm™
Choose ¢ > 0. Choose m such that
(3.10) m+1)7'm 0 < e
By (3.7), (3.9), and (3.10), there is a t, such that for ¢ = £
(811) D nezt MaXpezya [me(n + km™ 4+ A) — p(n + A)| < ¢/2,
and
(8.12) X nezd SUDes Mingez,a [we(n 4+ = + A) — pe(n + km™ + A)| < ¢/2.
Therefore for ¢t = ¢,
(3.13) D onezd SUPzea [me(n + = + A) — py(n + A)| < e

Since e can be made arbitrarily small, this completes the proof of (3.6) and hence
also of Lemma 1.

Proor oF Surriciency PArT oF THEOREM 1. We first prove (2.3), assuming
that (2.2) and (2.4) hold. It suffices to prove (2.3) for sets of the form

A={zeX|0=a"<r for 1 <k =<d,
and =0 for di <k <d.

By a change of scale, it suffices to prove (2.3) for A = A.
By Lemma 1 we have that

(8.14)  limMpw D onezd SUPges,, lue(n + y + A) — p(n + A)| = 0.
Observe next that for k ¢ Z,.°
H e | (v % ) (2 + A) — D neza v(z — mn — Ap)u(mn + k + A)|
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= 1t | 2onezt frntan »(z — dy) iy + A) — pa(mn 4 k + A)]]
£ 2 limysew SUPnezd ¥(T — mn — Ay)
+ 2ozt SUPyea,, [we(mn +y + A) — pi(mn + A)| =0
uniformly for z ¢ X by (3.14) and (2.2). Summing on k ¢ Z,,, we get that
(3.15) limise [(¥ % pe) (@ + A) — m 2 ezt v(x — mn — Ap)(mn + A,)] = 0

uniformly for z ¢ X.
Choose € > 0. There is an m > 0 such that

(316) N—e=<v(z—mn —A)/m*EA+e 2eX and neZ’
Then
(317) N — e m™ Y vz — mn — Ap)p(mn + An) N+ ¢ relX.

Equation (2.3) follows from (3.15) and (3.17) since € can be made arbitrarily
small.

In proving that (2.3) holds for all A ¢ ® if (2.4) holds, we can assume that
|A| = 1. The proof is then almost exactly, the same as that given above with A
replaced by 4 in (3.14) and (3.15).

Proor oF SurricIENCY PART oF THEOREM 2. By arguments of Dobrushin [2]
it suffices to prove that for A ¢ @ (or A ¢ ® in the second statement of Theorem 2)

(3.18) limesw B [Neay me(y + A) — M|A|| = 0

uniformly for z ¢ X (the uniformity in X is not actually needed). By reductions
similar to those used in the proof of Theorem 1, we need only consider A such
that |A| = 1 and for each m = 1

(3.19)  liMyw Donezt SUPges, le(n + y + A) — w(n + A)| = 0.
Observe that for k ¢ Z,.*

lim supraw E| [Naoay me(y + 4) — > a Necmnen,, pe(mn + k + A)]

im SUp e B | D_nezt [mnsan Noeay 1e(y + 4) — pe(mn + &k + A)]|

=< 2 SUpneze EN(x — mn — A,,)

-Hm SUPtae D _nezt SUPges,, [pe(mn + y + A) — p(mn + A)| =0
uniformly for « ¢ X. Summing over k ¢ Z,, we get
(8.20) 1imiue B | [No—ay pe(y + A) — m ™D nezi Nomnsp, pe(lmn + A,)| = 0

uniformly for z ¢ X.
Choose € > 0. By (2.7) there is an m > 0 such that

(3.21) E|Nepnoa,/m* =N <¢ 2e¢X and neZ’.
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Then for this m
(3.22) E lm_dz:nezd Nz—mn—Am ut(mn + Am) - )‘l
=FE |Znszd (N:c—mn—Am/m_d - )\)ﬂt(mn + Am)l S

uniformly for z ¢ X. Equation (3.18) now follows from (8.20), (3.22), and the
fact that |4]| = 1.
Proor or NECEssIiTY PART oF THEOREM 1. We are going to show that if

(3.23) limse (v % p) (@ © A) = Ao O A

for all measures » satisfying (2.2) and concentrated on a ® Z¢, then (2.4) holds.
We can assume that @ = 1. The general case now reduces to the lattice case
di=0and X = Z°. ‘

Assume now that di = 0, so that X = Z°. For n ¢ Z%, set »(n) = »({n}) and
we(n) = w({n}), te T. We need to show that if

(3.24) liMeseo Domeza v(—m)pe(n + k) =N,  keZ?
for all v satisfying (2.2), then

(3.25) limesew D omezt |e(n 4+ u) — w(n)| =0, wueU.
Note that if (3.24) holds for all » satisfying (2.2), then

(3.26) limg,e pe(n) = 0, nel.

It also follows from (3.24) that for all w e U

(3.27) limse D onezt v(—n) (me(n + u) — pa(n)) = 0.

In order to obtain (3.25), we will suppose that (3.26) holds but for some
u e U, (3.25) doesn’t hold. We will then show that (3.27) doesn’t hold for this
value of u.

Thus we suppose that for some fixed u ¢ U

(3.28) lim SUPts D mezd [ue(n + u) — wn)| = 4¢ > 0.
Let T denote the set of ¢ ¢ T' such that
(3.29) D onezd lme(n + u) — wi(n)| = 2.

Then T is unbounded from above.
For t e T, let P, denote the collection of n ¢ Z* such that

pe(n + u) — m(n) 2 0.
Let T, denote the subset of T on which
(3.30) ZneS; (me(n + u) — p(n)) 2 c.

We can assume that T, is unbounded.
Let m be a positive integer to be chosen later. Fort ¢ T and n ¢ Z%let x, = (1)
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be in mn + Z,* and such that

(331) pi(mn 4+ u) — we(xn) = MAXpemniz,d (T + u) — pe(z).

Let »* denote the measure supported on —8; = {—z,(t) | n & Z% and defined by
(3.32) V({—x)) = m?.

Then »* satisfies (2.1) with A = 1. Set »(n) = »'({n}).
Let P/ = P'n S;. Thenforte T,

(3.33) 2onerer V(—n) (ue(n + u) — w(n)) = c.

Let Q' = (Z° — P:) n 8,. Then by (3.31), the definition of U, and the fact
that u,(z) = 0 for z ¢ Z°, it follows that for n ¢ Z° and z, ¢ Q/

(3.34) w(mn + An)
Z ' (m — 1)(m — 2)[— (u@n + u) — p(2a))].
Consequently
2onears V'(—=n) (mil(n + u) — pe(n))
(3.35) z —[2m [(m — 1)(m — )71 20 w(mn + An)
= —2m/[(m — 1)(m — 2)]".
Choose m such that
2m/[(m — 1)(m — 2)]7 = ¢/2.
Then from (3.33) and (3.35) we have that fort e T,
(336)  Donezs ¥'(—n) (mu(n + u) — mi(n))
= ¢ —2m/[(m — 1)(m — 2)* = ¢/2.

For n e Z° set |n| = ((n')* + -+ + (n*)*)!. We next define an increasing

sequence of points ¢, &, -+ in T». Choose #; ¢ T and set ay = 0. Once a;_;
and ¢; are chosen, choose a; = a._1 + 7 such that
(3.37) Diniza; Mlue(n + w) — pe(n)| < c/16.
Once t; and a; are chosen, choose ¢;1 &€ T» such that ¢, = # + 1 and
(3.38) 2tnicas M|t (0 + u) = prga(n)] = ¢/16.
('This is possible by (3.26).) Clearly,
(3.39) limi,e & = .
Define » by

(3.40) v(fn}) = »"({n}), a1 S Inf < a
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and set »(n | = v»({n}). Then » satisfies (2.2) and for 7 = 1
2onezs v(—n) (ues(n + u) — pe(n))
2 Daiisini<a; ¥ (=) (i (n + w) — pi(n))
= Dinicaios Wi 4 w) = b ()] = Linizas mlus(n + ) — pey(n)]
= Znezd v (—=n) (pe(n + u) — pe(n)) — 2md2|»|<a; e (n + 1) — pe(n)]
— 2m° Y iniza lu(n + w) — py(n)| Z ¢/2 — ¢/8 — ¢/8 = ¢/4,

by (3.36), (3.37), and (3.38).
In summary, v satisfies (2.2), t; = « and

(341) D neza v(—n) (e, (n + u) — i (n)) = ¢/4 > 0.

This contradicts (3.27) and completes the proof of the necessity of Theorem 1.

Proor oF NEcessiTY PART oF THEOREM 2. Suppose (2.4) doesn’t hold. Then
by the proof of the necessity part of Theorem 1, we can find a measure » con-
centrated on ¢ © Z such that (2.2) holds for », but the equation

(3.23) limt_m (V * [.tt)(a O] A) = >\]a © AI
doesn’t hold.

We can construct a random counting measure N, such that EN, = »(4),
N, is a Poisson distributed random variable and, for disjoint, 41, -+, 4.,
the random variables N4, , ---, N4, are independent. Then N,ca(t) is a Pois-

son distributed random variable with mean (v * u;)(a@ © A). Since (3.23)
doesn’t hold N, 0a(?) can’t possibly be asymptotically distributed as a Poisson
variate with mean Aa © A|.

Proor oF TuEOREM 3. The main theorem of renewal theory implies that

(3.42) limgjnw ENgia = A,

Direct computations show that

(3.43) SUPzex ENija < o,

and

(3.44) limjs_yiow (ENz+aNyia — ENaENyia] = 0.
It follows easily from (3.42)-(3.44) that

(3.45) limpse B((N_a,m™ —2)?) =0

uniformly for ¢ X, and hence that (2.7) holds.

Proor oF THEOREM 4. We begin with

LemMa 3. Suppose (2.4) holds and for some fixed A ¢ ® with |A| = 1, that
(2.5) holds. Then for this A and each a > 0 and compact subset C of X
(3.46) limg, o Znezd SUpPzec I(So * .Ut)(a' O] (n + 2z + A))

—(p*xp)(@O® (n+A))[ =0
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uniformly over all probability measures ¢ supported on X.
Proor or LEmMma 3. In proving (3.46) we need only consider the case a = 1,
where (3.46) reduces to

(3.47) liMisw D nezd SUPzec [(p *ue)(n + 2+ A)
—(p*w)(n+4)[ =0

uniformly over all probability measures ¢ supported on X.
Let C, be a compact subset of X containing C — A and —A. Then

2 nezi SUPzec [(@ * ) (n + 2 + @) — (¢ % u)(n + A)|

= D nez? SUPsec | [x 0(dy) (pe(n + x — y + A) — p(n — y + A))|

= [xe(dy) Dnezt SUPzec | pen + ¢ — y + 4) — pln —y + A)

= D ezt [i4a @(AY) Donezt SuPsec [w(n + 2 — y + A) — pln — y + A)|

= D ezt [r4a @(AY) D nezd SUDzex lu(n + 2 — (y — k) + A)
—u(n = (Y = &) + 8) £ Diess [ira 0(dy) Donezt supacc, |wi(n + 2
+ A) — pln + A)| + Dozt [rva 0(dY) D onezt SUPsec, |ue(n + = + A)
— w(n 4 A)| = 2 nezt SUPec, lue(n + & + A) — p(n + A)|
+ Donezt SUPzec, |ue(n + & + A) — p(n 4+ A)|— 0

as { — o uniformly over ¢. This completes the proof of Lemma 3.

We return to the proof of Theorem 4. If 7' = [0, » ), then u: = pe(gup -
Thus by Lemma 3 the general case is easily reduced to the random walk case.
Assume then that T = {0, 1,2, ---}.

We can write

(3.48) m = (o * x),

where ¢ and x are probability measures supported on X, x is non-degenerate and
has finite covariance, and if some iterate of w; is non-singular, then so is some
iterate of x. Note that

(3.49) pe=m? = D mo ()27 % X,

where x denotes the s-fold convolution of x with itself.

By using (3.49) and Lemma 3, we can reduce the general case to the case of
finite covariance.

Suppose then that u, has finite covariance. Let &, and X denote its mean and
covariance. Then by the local form of the central limit theorem (Stone [7])
ford e @

(3.50) lime.. [(* %z + A) — Ps((z — tm)/t) 4] = 0

uniformly for x ¢ X. If some u, is non-singular, then (3.50) is known to hold for
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A & ®. Since A ¢ @, (3.50) holds for A = A. The conclusion of Theorem 4 fol-
lows very easily from (3.50).

Proor oF THEOREM 5. Let p(x), ¢ R®, denote the density of V. Then Y (t)
has density ¢ *p({'y). We can find densities pi(z), = ¢ R, which are continuous
and have compact support and are such that

(3.51) limysw [re [pa(z) — p(z)|da = 0.
Note that

Jre ICpe(C70) — ()| de = [ra Ipe(z) — p(2)| da.

By (3.51) and (3.52) we can reduce the general case to the special case in which
p is continuous and has compact support. Also in proving (2.5) we can take
a=1.

Equation (2.5) is now easily reduced to the result that for any compact sub-
set C of R

(3.53) it yse £ 4D neze SUpee |p(6 7 (n + 2)) — p(t7'n)| = 0.

But (3.53) is clearly true whenever p is a continuous function having compact
support.
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