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By DonaLp L. IeLEHART AND HowAarRp M. TAYLOR
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1. Introduction and summary. Consider a production process which exists
in one of two states, in-control and out-of-control. Production begins in-control
and while there a chance event occurs after each item is produced so that the
probability of remaining in-control is (1 — =) and the probability of a transi-
tion out-of-control is =. Once out-of-control the process remains there until
trouble is removed.

Associated with each item produced is a measurable characteristic or quality
which is a Gaussian random variable whose mean depends on the underlying
process state. Let the mean in-control be wo, the mean out-of-control be u
and the common variance be o°. It costs K units to repair the process and the
operating cost rate in-control is ¢y and out-of-control, ¢; . The true process state
is unknown and a rule is desired which specifies when to repair, based on the
quality history, so as to minimize some function of the cost components.

This model of a production process was first studied by Girshick and Rubin
(1952). They show that when the criterion is long run time average total cost
to repair plus operation, the optimal rule is of the form: “Stop and repair after
production of the kth item if and only if Z(k) = ¢ for some critical value ,
where Z(k) is a monotonic function of the posterior probability, given the ob-
served history, that the process will be out of control for the & + 1st item. Un-
fortunately, no easy method for computing the critical value ¢ was given.

Shiryaev (1963) studied a similar model but in continuous time and with
a slightly different criterion. The continuous time process was a diffusion process
and the operating characteristics of the control procedure could be found by
solving a second order linear differential equation, thus enabling the appropriate
critical value ¢ to be found.

Taylor (1967) applied the continuous time computations of Shiryaev to the
discrete time model of Girshick and Rubin and plotted the optimal choice for
¢ as a function of the costs and other system parameters. No proof of the va-
lidity of the continuous time approximations to the discrete time process was
given, however. This paper fills this gap by exhibiting a sequence of Girshick
and Rubin processes that converges to the continuous process of Shiryaev, and
by showing that the corresponding cost functionals also converge. This procedure
of obtaining a limiting continuous process from a sequence of discrete processes
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is very naturally carried out as an application of the theory of weak convergence
of probability measures; cf. Billingsley (1968).

More precisely, let (X; :7 = 1,2, --- ) be a sequence of independent Gaussian
random variables with zero mean and unit variance. Let S, = 0, S, = Xl +
oo+ Xpfork = 1,2, ---, and define forn = 1,2, --- and k = 0, 1,

n, Xp(k) = Sk/n Let T, be a geometrlc random Va,nable with P[ = ]]
(r/n)(1 — a/n) " forj = 1,2, --- ,andn = [7] + 1, [«] + 2, --. . Define
0.(k) =0 for 0k<T,
=0k — T, +1) if T, =<k,
where k = 0, 1, -+, n. Finally let Y,(k) = 6.(k) + X.(k). One interprets

Y.(k) as the cumulative sum up to item % of observations in a truncated (at n)
Girshick and Rubin process where yo = 0, g, = 1/n, ¢® = 1/n and the proba-
bility of leaving control between any two items is =, = /n.

Let Un(k) be the posterior probability that the production process will be
out-of-control for the production of the (k¥ -+ 1)st item, assuming no repair is
made. It is convenient to take as our control variable, Z,(k), the monotone
function of U,(k) given by

Then using the recursion for Un(k) (cf. Taylor (1967)) it is easy to show by
induction that Z,(0) = Oand fork = 1,2, --- , n

Za(k) = ma(l — m)™ 22520 (1 — ma) ™ exp {Va(k) — Yu(k — ) — j/2n}.

Since our analysis will treat probability measures on C[0, 1], the space of con-
tinuous, real-valued functions on [0, 1] with the metric (p) of uniform conver-
gence, it is convenient to introduce continuous versions of the processes { X, (k)} ,
{6n(k)}, {Va(k)}, and {Z.(K)}. We define z,(¢) = X, (k) -I- (nt — k)(Xa(k +
1) — X.(k)) wherekn " <t < (k+ 1) k=0,1,--- ,n— 1, and 0 < ¢{< 1.
Observe that z,(t) = X,(k) for ¢ = k/n and is deﬁned by linear interpolation
for other values of ¢. In a similar manner define 6,(t), ¥.(¢), and 2,(¢). Clearly,
Yn(t) = wa(t) + 0.(t). Let ¢ be a fixed positive number and z & C[0, 1], then
define 7(2) = inf{t: 0 < ¢ < 1, 2(t) = ¢} if the set {£: 0 < t < 1,2() = ¢} is
not empty and 1 otherwise. A cost functional whose expected value may be used
to measure long run time average cost of operation plus repair (Taylor, (1967))
is given by

Cr™ (2) = 2425 fe(n™)2n(k/n) (1 + 2a(k/n))™ — v/m)

where v is a constant related to K, the repair cost.

For the continuous version of Shiryaev (1963) let {x(¢):0 < ¢ < 1} be Brown-
ian motion and T, an exponential random variable, independent of {z(¢): 0 <
t < 1}, with density =™, ¢ > 0. Define the continuous time process (6(¢);

0t=1)by
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8(t) = 0 if ¢=T
=t—7T if t>T.

Let y(t) = 6(t) + x(t). The control variable here is 2(f) = = f6 exp {ws +
y(t) — y(t — s) — s/2} ds (Shiryaev (1963)), and the cost functional is C¢(z) =

0@ [ez(s)(1 + 2(s))™ — v] ds. This is the process whose operating charac-
teristics concerning C¢(z) are computed in Taylor (1967) and assumed to hold
approximately for the discrete time process.

Our principal objective in this paper is to establish in a rigorous fashion
the manner in which the discrete processes converge to the continuous process.
We show that the measures induced on @, the Borel sets of C[0, 1], by the proc-
esses {yn(£): 0 < ¢t < 1} and {2.(¢): 0 = t = 1} converge weakly as n — o
to the measures induced by {y(¢): 0 < ¢ < 1} and {2({): 0 = t < 1} respec-
tively. As a consequence, we also show that the distributions of 7(z.) and
C™ (2,) converge weakly to the distributions of 7(2z) and C;(2), respectively.

2. Weak Convergence of the Process {y.(-)} and {z,(-)}. In this section we
shall discuss the weak convergence of the sequences {y.(-)} and {z.(:)} to
y(-) and z(-) respectively. For background material the reader is referred to
the book of Billingsley (1968), whose notation and terminology we shall follow.
We begin with some definitions.

Let u be a measurable mapping (random element) from a probability space
(Q, ®, ®) into C[0, 1]. The destribution of u is the probability measure P = eu™
on (C[0, 1], ). We say that a sequence {u,} of random elements of C[0, 1]
converges weakly to the random element u if E[h(u.)] — Elh(u)] asn — « for
all bounded continuous functions k& on C[0, 1] and we write u, = w.

Now for the processes {z,} and z defined in Section 1 it is known by Donsker’s
theorem that z, = z; cf. Donsker (1951) and Billingsley (1968, Section 10).
Also it is easy to see that P[T./n > &) = (1 — =) — ™ = P[T > ],
or T./n — T. Therefore using Skorohod (1956 ) one can construct a probability
space and random variables {T,*, T*} with the same distribution functions as
(T, , T}, but for which T,"/n — T* a.s. Hence p(6,%, 6%) — 0 a.s., where the
random elements 6, and 6 are defined like 6, and 8 but in terms of T,* and T™.
Thus we have 6, = 6% and therefore 6, = 0.} Since ¥, = z, + 0, and the ran-
dom elements z, and 6, are independent, an application of the continuous map-
ping theorem (cf., Billingsley (1968), Section 5) completes the proof of

TueoreM 1. Yn = Y.

To prove that z, = z we use the same method used to show 6, = 6. Since
» = ¥, there exists a probability space and random elements {yn", ¥} of C[0, 1]
having the same distributions as {y. , y} for which p(yn*, y*) — 0 a.s. Define

2% and 2* like 2, and z but in terms of ¥, and y*. In order to show that

3 We are grateful to the referee for indicating this simpler proof of the fact that 6, = 6.
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p(2.%, 2*) — 0 a.s., we introduce the estimates
(1) £ m 205 7 exp {msi + yN (1) — yF(t — s) — 5i/2)
and
w'(t)zm 2w exp{—(j +1)In (1 — =)
+ g (0l ™) — ya" (It ™ — ;) — s;/2}
—~0(n™),
where s; = j/n, s; < s/ < sju, and
exp {ms; + y(t) — y(t — s) — si/2}
= MAaX,; <s <57, [€XP {78 4+ y(¢) — y(t — s) — s/2}].
Using the estimate ¢ — ¢ < (¢ — b)e*V® we have
(1) — 2" = v 255 nTn(s = s) 4 v (1) — w" (It ™)
~y*(t = i) + g ([t ™ — s;5) — $(s/ — ;)] X exp (O(1)}.

Now using the fact that o(y.*, ¥*) — 0 a.s., we obtain the fact that
maxp<¢ <1 (2*(t) — 2,*(t)) — 0 a.s. A similar argument shows that the
maxo<e <1 (2.*(t) — 2"(t)) — 0 a.s. and thus p(2,%, 2*) — 0 a.s. Consequently,
2.t = 2* and therefore we have

THEOREM 2. Zn = 2.

3. Convergence in distribution of the cost functionals, C,,(¢). Let ¢ be a fixed
positive number and let 7(y) be the first passage time to ¢ for the path y ¢ C[0, 1]
as defined in Section 1. Since 7 is continuous almost everywhere with respect
to the measure induced by the process 2, an application of the continuous map-
ping theorem yields 7(z,) —1 7(2). For z ¢ C[0, 1] define the cost functional
Ci(z) as in Section 1. Another application of the continuous mapping theorem
yields Cy(2,) —1 C¢(2). Next we show that C¢™ (2,) — C¢(2x) —» 0, where

Ci'™ (2a) = 205 07 {clew(kn ™)/ (1 + 2a(kn™))] — 9.

Using Riemann approximating sums one can easily show that C:'™ (y) — Ci(y)
uniformly for y in a compact set of C[0, 1]. Let P, be the measure on € induced
by 2, . Since z, = z and C[0, 1] is a complete separable space, Prohorov’s (1956)
theorem states that for every ¢ > 0 there exists a compact subset, K. , of C[0, 1]
for which P,(K.) = 1 — e for all n. Thus the

Puf |G (20) — Celza)] > ¢ = Puf|Cy™ (20) —C(2a)| > €| 20 & K4
X Pu(Ko) + Puf|C:™ () — Colza)l > €| 2
g K4 X P.(KS)
< Po{|Cs™ (2) — Ci(za)| > €| 20 ¢ Kd + e
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Since ;™ (- ) — C; uniformly on compact sets, we have Cy™ (2,) — C(2) —» 0.
Finally, an application of Theorem 4.1 of Billingsley (1968) yields
THEOREM 3. 0™ (2,) =1 Ce(2).

4. Remarks. We have exhibited a sequence of discrete time control processes
which converges to a continuous time process. While we have worked with the
time interval [0, 1], clearly the results are true for any interval [0, T]. In our
particular case the practical conclusions are that when (w1 — w)/o and = are
small the continuous results of Taylor (1967) may be used to approximately
evaluate a control limit for the discrete time Girshick and Rubin (1952) model.
More generally, as Chernoff (1967) has noted, approximating discrete time
problems by continuous time problems often makes it possible to apply the
methods of partial differential equations to problems of sequential decisions.
The path we have followed should be valid in justifying such approximations
in other control problems.
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