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INFORMATION AND SUFFICIENT SUB-FIELDS!
By S. G. GHURYE?

Indiana University

0. Introduction and summary. This paper is the result of an attempt to
clarify and improve some results in the theory of statistical information.

The term information is used to denote different things in different contexts.
First of all, there is Shannon’s information, — 2, p; log p:, defined for proba-
bility distributions on a finite sample space; this measures, in an esthetically
satisfactory way, the entropy or amount of uncertainty in a distribution. Then
there is Wiener’s information, f f(z) log f(x) dx, defined for an absolutely con-
tinuous distribution on the line (or in n-space); it was introduced by Wiener,
with an acknowledgment to von Neumann, as a ‘“reasonable measure” of the
amount of information, having the property of being ‘“‘the negative of the quan-
tity usually defined as entropy in similar situations” ([10], p. 76). Finally, there
is “information of one probability distribution P with respect to another @,”
commonly known as Kullback-Leibler information. On a finite sample space,
this has the form Y p;log (ps/qs) = — > pilogqgi — (— > pilog p;), and
thus has some relationship to entropy; note that the second term, which is the
entropy of {p:}, is the minimum of the first expression over all distributions {q,}.
An interesting idea due to Gelfand, Kolmogorov and Yaglom [3] establishes a
connection between the Kullback-Leibler information for a finite probability
space and that for any space: If P, @ are probability measures on a measurable
space (2,F), P<K Q,and {A4;,7 =1, .-+, n} is any finite measurable partition
of Q, then the supremum of Y_;log [P(A4:)/Q(A;)IP(4;) over all finite meas-
urable partitions is [q log (dP/dQ) dP. The only published proof of this result
seems to be that due to Kallianpur [5], which uses martingale theory.

In Section 1, we shall obtain a rather simple direct proof of this result (Theo-
rem 1.1) and extend it to the case where @ is any o-finite measure (Theorem 1.2).
Wiener’s information is then seen to be the supremum of > log [P(A:)/
Q(A;)IP(A;) over countable partitions, with @ = Lebesgue measure. Section 2
will be concerned with Kullback-Leibler information. We shall define conditional
information relative to a sub-field, establish a relation between this conditional
information and sufficiency of the sub-field (Theorem 2.2), and also show that
this conditional information equals the difference between information contained
in the field and that in the sub-field (Theorem 2.3). These are extensions of re-
sults obtained by Kullback and Leibler in a somewhat limited context.

1. Integral of a convex function and amount of information. We begin with
some notation and definitions, followed by statements of two theorems and
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comments regarding these; the proofs of the theorems will be given at the end
of the section.

Let f be a non-negative integrable function on a o-finite measure space (2, &, u)
and let »(S) = f sfdu, SeF. Let ¢ be a continuous convex function on [0, « )
and ¢ = max (¢, 0), ¢~ = min (¢, 0).

Derintrion 1.1. For any countable family @ of disjoint measurable sets, let

(L1) L% %, 8) = Due 0" Tv(A)/u(A)]u(4)

= D olavaflu(4), a= 4, —.
If at least one of these two quantities is finite, let
(1.2) L(e; v, @) = L(e"; v, @) + (¢ s v, @).

In case both terms on the right hand side are infinite, I,(¢; », @) is undefined.
Throughout this paper, the same symbol will be used to denote both a family

of sets and the o-ring generated by it. For any o-field G, let IIx(G) be the class of

finite G-measurable partitions of ©. Note that if u(Q) < «, I.(¢; v, @) exists

for all @ € T#(Q), since ¢ cannot be unbounded both below and above.
DerFiniTIoN 1.2. For any o-field G, let

(1.3) I(¢;7,G) = Supeenp@ Lu(e; v, @).
TuroreM 1.1. If u(Q) < «, and ¢ is continuous convex on [0, ), then
(14) L¢3 %, %) = fao(f) du.

ReMARK 1.1. We shall next try to remove the restriction u(2) < o, imposed
in Theorem 1.1. A few simple considerations immediately show that Theorem
1.1 is not true in case u(2) = . For example, if ¢(0) > 0 and u(Q) = o,
then avef = 0 and ¢(avef)u(R) = « irrespective of the value of [q o(f) dy;
similarly, if ¢(0) = 0 and @~ = {w: ¢[f(w)] < 0} has infinite measure, we have
I.(¢; v, 5) = 0, since we can use partitions having @~ as an atom. It turns out
that the theorem can be extended to s-finite measure spaces if we restrict the
class of partitions in (1.3) by the condition that all atoms of a partition must
have finite measure. For this purpose, we replace Definition 1.2 by Definition
1.3 or its equivalent Definition 1.3".

DeriniTiON 1.3. For any o-field G, let I1¢(G) be the class of all countable
G-measurable partitions whose atoms are of finite measure, and let

(1.5) L(¢% v, §) = subeenocg Lu(e%; v, @), a= 4, —.
If at least one of these two quantities is finite, let
(1.6) Iu(e; v, §) = L(e™; %, §) + L(¢ 75 v, Q).

In case both terms on the right hand side are infinite, I,(¢; », §) is undefined.
Drrintrion 1.3". With the above notation, let

(17) IM(‘P; v, 9) = Sup(2€Hc(9) IM(‘p; vy G’)y



2058 S. G. GHURYE

in case the latter quantity is defined, with the convention that if there exists an
®o € U¢(g) with I.(¢™; », ®) > — o, then sup L.(p; », @) > — o, even though
I,(¢; v, @) might be undefined for some Q.

TuroreEM 1.2. If u is o-finite and ¢ is continuous convex on [0, =), then

(18) L‘-(‘P; vy {F) = fﬂ ﬂo(f) d:u;

whenever the integral exists.

ReMARK 1.2. Note that if u(Q) < «, we obtain the same result whether we
use finite partitions or countable partitions.

Remark 1.3. In these two remarks and in the next section, we shall be con-
cerned with the function

(1.9) @w(x) = zlogz, x>0,
= 0, z =0,

and shall write simply I,(», §) for I.(¢; », §); we shall refer to it as the “u-infor-
mation of » in ¥’. When u, » are both probability measures, I,(v, ) is the “in-
formation of » with respect to u in F,” or Kullback-Leibler information.

REMARK 1.4. Theorem 1.2 provides us with one justification for regarding
Wiener’s information as ‘“‘a reasonable measure” of the amount of information.
Suppose we are concerned with a statistical experiment whose outeome is known
to be real-valued. In the absence of any additional information, it is heuristically
reasonable to regard the outcome as being equidistributed on the real line in the
sense that the “probability’” of the outcome belonging to any Borel set is pro-
portional to the Lebesgue measure of the set. Suppose now that some knowledge
about the experiment suggests the hypothesis H that the outcome has a distri-
bution with density function f. In actual practice, we are able to measure the
outcome on countable scales of varying accuracy. Roughly speaking, [ ¢olf(2)] dz,
if it exists, is then the maximum amount of information that can be obtained
from the experiment, by the use of countable scales of measurement, for dis-
criminating in favor of H against the hypothesis of equidistribution. Unfor-
tunately, Wiener’s information suffers from the serious handicap that the inte-
gral does not exist for every density function f.

Proor or THEOREM 1.1. To begin with, let us observe that the value of the
integral in (1.4) is either a finite number or 4 . This follows from the fact that,
on account of convexity, ¢ has a line of support ax -+ b, so that

Joo(f) du = av(Q) + bu(2).
As another important consequence of convexity, we have
(1.10) Le; v, @) = Lu(e; v, B)

whenever @, ® ¢ Ip(F) and @ C ®. This follows from the fact that every atom
of @ is a union of atoms of ® and from Jensen’s inequality. One more conse-



INFORMATION AND SUFFICIENT SUB-FIELDS 2059

quence of Jensen’s inequality is

(L11)  olp(4)/u(A)u(4) = elava f(@)u(4) = [4 olf(o)lu(dw),

where av 4 stands for “average over 4 with weight-function du/u(4 ),” and hence,

(L.12) L(¢; v, @) = [ao(f) du.
Taking the supremum over all @ ¢ IIz(F), we have
(1.13) L(g; »,5) = [ae(f) du

In order to establish the equality, we shall use the following fact: If 4 is either
non-negative and measurable or bounded and measurable, then

fg hdu = SUpPgenp@) ZAsa [infs A(w)lu(4).

Note that the convexity of ¢ implies the existence of a partition of [0, « ) into
four intervals J;, ¢ = 1, - -+, 4, such that ¢ is non-negative and non-increasing
on Ji , non-positive and non-increasing on J; , non-positive and non-decreasing
on J3 and non-negative and non-decreasing on J; . Some of these intervals may,
of course, be empty. Let K; = f(J;), s =1, --- , 4.
Given any partition @ of Q,let @; = @nK;,7 =1, --- , 4. Since {®;, 7 = 1,
- , 4} is a finer partition of Q@ than @, we have

(1.14) Lu(e;», @) = Llp; v, {Qi, i =1, -+, 4] = 2 L(e; », Q).
Hence,

L(¢; v, §) = supe 2i Iu(e; v, Qi) = 3 supe; Lu(e; v, ).
Now notice that if 4 £ @; u @, , we have

infy ¢ff(w)] = elsups f(w)] = elava f(w)),

and if A € @; U Gy, we have

inf4 ¢[f(w)] = ¢linfs f(w)] £ plava f(w)].

But @; is a finite measurable partition of K; and ¢[f(w)] = 0 for w e Kyu K, .
Therefore,

(1.15) Jxur, o(f) du = supe D acayues [infa o(F)u(4)
< supg Iu.(e; v, Q1 U Qy).

Next suppose ¢ to be bounded below. Then ¢ is a bounded function on K, u K .
Hence,

(1.16) Jraums ©(f) du = SUpe 2 acasuas [infa o(f)]u(4)
supe Lu(¢; v, @2 U @s).

A
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Thus, in case ¢ is bounded below, we have

(1.17) Jao(f) du = L(g; v, 7).

Inequalities (1.13) and (1.17) prove the theorem in case ¢ is bounded below.

Finally, suppose ¢ is unbounded below; then it is bounded above, and the
integral is finite. We shall now see that I.(¢; v, ) is arbitrarily close to the
integral. For this purpose, let —ax + B(a > 0) be a line of support for ¢(z)
at £ = ¢o for some ¢, such that ¢(¢y) < 0; then ¢(z) = —ax + B for ¢ > ¢ .
Let B(¢) = {w: f(w) > ¢} and note that the finiteness of »(Q) and f(p(f) du
and the fact that ¢ is non-increasing permit us to choose ¢ so that |[ e ¢(f) du
and »[B(c)] are arbitrarily small. Further, for ¢ > ¢, , we have

(1.18) le(avsw NulB(c)] = lelavse f) + [8llulB(c)]
arlB(c)] + [BlulB(c)] = (a + [B]/c)v[B(c)).

I

Now, consider any partition of the form @ = {B(c¢), @}, where @ is a parti-
tion of @ — B(c¢). On Q@ — B(c), ¢(f) is bounded and hence, asin (1.16), we have

(1.19) Jose (f) du < supg, Lu(e; v, Qo).
Hence,

(1.20) I.(e;» )

v

SUpq, Lu(e; 7, Qo) + e(avee flulB(c)]
Jao(f) du — [5e (f) du + o(avae HulB(c)].

By (1.18), we can choose ¢ so that the last two terms are arbitrarily small.
Hence, (1.20) together with (1.13) completes the proof.

Proor oF THEOREM 1.2. To begin with, observe that we have u(4) < «
for every atom of @eIlo(F), and hence ¢(avs f) < [4o(f) du by Jensen’s
inequality. Consequently,

(1.21) L(g; v, @) = [ao(f) du.

Now suppose u(2) < o, and let @ be a finite partition C @. Then Jensen’s
inequality yields

v

(1.22) L(¢; v, @) = L(g; v, @).
Hence, (1.8) follows from (1.21) and Theorem 1.1.
Next let () = « and suppose fg o(f)du = — . Then (1.8) follows im-

mediately from (1.21). Thus it remains to consider only the case [ o(f) du >
— .

Forany A eF,let A = A nQ% a = 4+, —, and for any @ ¢ H¢(F), let @* =
an@a=+,—Let® ={B,,n=1,2 -} ellc(F). Then [o- o(f) du =
> an— o(f) du. Since u(B,”) < o, we have supg [u(¢; », @ n B, ) =
an_ e(f)dp, n = 1, 2, ---, and I.(¢; », @) = L(e; v, @0 ®) =
> L(¢; v,@n B,”). Hence supe- I.(¢; v, @) = [o- ¢(f) du, which is assumed
finite. Therefore, there exists an @ ¢ Il¢ such that I.(¢; v, @ ) > — o, and so
I.(¢; v, F) is defined and > — «. Now, let @ ¢ o(F) with I.(¢; »,G7) > — .
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Then

(1.23) Lu(e; v, @) = Lue; v, @) + Li(e; v, @7).
Consequently,

(1.24) Lu(e; v, §) = sup Li(e; v, @) + sup L(e; », @7).

We have already seen that the last quantity = f a- ¢(f) du and by a similar
argument, we deduce that sup I,(@") = f o+ ¢(f) dy, thus completing the proof.

2. Conditional information and sufficiency. In this section, we shall be con-
cerned only with the function ¢, as defined in (1.9) and mainly with the case in
which p and » are probability measures, i.e., with Kullback-Leibler information.
It was proved by Kullback and Leibler in a somewhat limited context that if
G is a sub-o-field of F, then I, w(v, §) = L(», Q) with equality holding in case
I,(v, §) is finite if and only if G is a sufficient sub-field of F for the pair of proba-
bility measures u, ». It is easy to construct examples in which I,(»,F) =
I.(»,G) = =, but Gis not a sufficient sub-field. It might be of interest to obtain
a relation between sufficiency and the amount of information which holds with-
out the restriction that I,(», F) be finite.

For this purpose, we study the notion of conditional information which has
already been defined by Kullback (I7]) for the kind of probability spaces he
dealt with. In order to obtain an appropriate definition of the conditional in-
formation I,(», § | G) in general, we shall first establish an important property
of conditional information when the fields involved are countable; this is done
in Theorem 2.1 in which, for completeness and for future use, we permit u to be
o-finite. Theorem 2.2 states that J «(v, F]G) = 0if and only if G is a sufficient
sub-field of &; finally, Theorem 2.3 states that Li(»§) = L(»,GQ) + L(», ).
These results extend to fairly general situations the corresponding results first
obtained by Kullback and Leibler. Proofs of all these results are given at the end
of the section.

Let Q, F, u, v be as in Section 1, and let G be a o-field C §. For any o-field Je,
we shall denote the class of J¢-measurable partitions simply by I(5) and shall
understand that II = II, if w(Q) = o, whereas if #(2) < o, one may take
Il = 1Ir. Let A, B represent typical atoms respectively of @, ® e II(F), and let
@v B={AnB,4A¢e@,Be®}. Then

(21 L, @) = 2 al(4)/u(A)u(4) = X log [r(4)/u(A)p(4),
and

(2.2) L(r,@ v ®) = L(y,®) + L(», @ | ®),

where

(23)  L(na|®) = 2s{Ziwlv(4]B)/u(A | B)uA | B)»(B).

Here we have used the notation of conditional probability and denoted
#(A nB)/u(B) by u(A | B) when #(B) > 0. Note that if ¢ © Fis a o-field and
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F e, then u(F n @), G £G, is a measure on § which is absolutely continuous
with respect to p and has a Radon-Nikodym derivative u¥(F, w) with respect
to u on G. Hence, u(A | B) is the value of u®(A4, w) for w & B; note that u® and
»® are probability measures on @ for almost every w [»]. The expression in { }
in (2.3) is then the u®-information of »® in @. Denoting it by I,%(», @, w), or
simply I,%(», @), and using &, to denote the integral with respect to » over
(2, ®), we can write (2.3) as

(24) L(,e|®) = &L q) = [o 22 el™(A)/u®(A)(d) dv.

Notice that, for almost every w, I,®(», @, ) is defined and non-negative even if
 is not totally finite. The same holds true if @ is replaced by any o-field § C §,
and we have

(2-5) I,,(V, a I 9) = 8,,[,,9(;;, @)

defined and non-negative for every @ ¢ II(F). Properties of this conditional
information analogous to those of conditional entropy can be easily derived (for
a good discussion of conditional entropy, see Billingsley [1]). One such property
which we shall need is monotonicity in @; this follows from the fact that, for
almost every w, I,5(», @) is the information of one probability measure with
respect to another. Hence, @, @ ¢ II(F) and @ D ®imply L5(», @, ) = L5 (», ®,
w) a.e. on (2, G, »). Consequently,

(2.6) L(»,@|G) =2 I.(y,®|G) for @ ®el(F), QD&

There is an important monotonicity property possessed by conditional entropy
which conditional information does not have; this is monotonicity in the condi-
tioning field. Whereas in the case of entropy, ¢ C ¥ implies H(® | ) = H(@ | F),
it is not true that I.(», @ | Q) = I.(v, @ | F); an inequality of this type which
does hold is given by

TueorEM 2.1. If (Q, §, u) is a o-finile measure-space, @, &, CcI(F) and
@D ®D C,then

(2.7) L(v,a|e) = L(»a|®) + L(» &|C) 2 L(»,&|®).

We shall now use these considerations to define conditional information
I.(v, 5| Q) when &, G are o-fields with §¢ C &. Relations (2.6) and (2.7) suggest
two ways of extending the notion of conditional information from finite or
countable fields to arbitrary o-fields; these are stated now.

DerintrioN 2.1. For o-fields §, ¢ with ¢ C &, let I,(», @ | Q) be as defined by
(2.5), and let

(2.8) I(»,5|G) = supeen Lu(v, @[ G).
The quantity so defined will be called “the conditional u-information of » in &

relative to G.”
Alternatively, we could set

(29) L'(»,5| Q) = infgeug sUpaen Lu(v, @ | ®),
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and define 7,/ (», § | ) as the conditional information. Under usual conditions,
the two quantities will be seen to be equal; the reason for preferring (2.8) to
(2.9) is that it leads immediately to

TueorEM 2.2. Let M be a dominated family of probability measures on (Q, F)
and let G be a o-field C F. Then G is a sufficient sub-c-field of & for the Samaly M
if and only of I,(v, F|G) = O forall p, ve M.

Finally, it remains to extend the relation (2.2) to the case of arbitrary o-
fields; this is done, under the slight restriction of separability of G, in

TueoreM 2.3. Let v be a probability measure on a probability space (2, F, u),
v K p, and let G be a separable sub-o-field of 5. If I,(v, §) s finite, then

(2'1()) Iu(”; ¥ | 9) = IM(V) 3:) - In(”; 9)

RemaRk 2.1. Combining Theorems 2.2 and 2.3, we now see that if I,(v, &)
is finite and G is separable, then G is a sufficient sub-field of & for the dominated
family M of probability measures if and only if I,(», §) = I.(», G) for all u,
velM.

ReMARK 2.2. Note that ® ¢ TI(G) implies I,(v, § | B) = L.(», F) — L(», ®),
and taking the infimum over II(G) we get from (2.9)

(2.11) I#,(V> F16) = L, F) — L(» §).
Consequently, when the assumptions of Theorem 2.3 are satisfied, we have
(2.12) IM(V’EF|9) = Iu’(”"c-”g)-

Remarx 2.3. Finally, suppose that (2 &) is a Lusin space (Blackwell [2]).
Then, for every o’ ¢ Q, u5( , ') and (o) are probability measures on (@, F).
Suppose further that, for every o’ £ @, »%( , ') K 18( , ) K won (2, F). Then
there exist functions A(w, ') and m(w, ') which are measurable on (2 X Q,
F X G) such that, for each ', & and m are respectively the Radon-Nikodym
derivatives dv%/duS and duS/du (Meyer [8], p. 154). We then have

(2.13) L(»,5|G) = [axa co(h)m d(u X »)gxg ,

which is a generalization of the formula given by Kullback ([7], p. 13).

Proor or TuEOREM 2.1. Since @ v 8 = @ v € = @, the assertion is an
immediate consequence of (1.10) and (2.2) if I,(», @) is finite. It is proven in
general by direct computation. For this we first note that every atom of @ is a
union of atoms of ®, and each atom of ® is a union of atoms of @. For simplicity
of notation, we shall denote typical atoms of @, ®, € respectively by 4, B, C
without suffixes. Let

J(@,C) = {2 aelv(A | C)/u(4 | C)u(4 | C)}n(C)
(2.14) = {2ua: acar al(v(4)/5(C))/ ((A)/u(C))u(4)/u(C)}»(C)
= 2t ace {log [P(A)/u(4)] = log [+(C)/u(C)»(4)
I,(v,@n C) — log [»(C)/u(C)v(C),

I
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and define J(@, B), J(®, C) similarly. Note that all of these are non-negative
and that

(215) L(v,ale)= 2cJ(aC)= 2cil(s,anC) —log[»(C)/u(C)(C)}
and
(216) L(n,®|€) = D cJ(® C)

= 2ocu(y, ®n C) — log [»(C)/u(C)»(C)}.

Now, I,(v,@n C) = I,(v, Bn C) since @ D B. Hence, I,(v, Bn C) = o for
some C implies that I,(», | €) = I,(», @ | €) = «, so that (2.7) holds. Sup-
pose therefore that I,(», 8 n C) < o« forall C ¢ @ Then

L(r,a| ®) ZBJ(@;B) = ZC Z(B: scey J(@, B)
(2.17) = 2o s scey {1u(v, @0 B) — log [(B)/u(B)W(B))
= Y e{Iu(»,@nC) — I(», ®n C)}.

Again if I,(v, @ n C) = « for some C, then I,(», @ | C) = I.(y, Q| ®) = =,
so that (2.7) holds. Hence let us also assume that I,(v, @ n C) < o for all C.
The relation (2.7) then follows from (2.15), (2.16), (2.17) by noting that
I(v,c| @), I.(v, @ | ®) and I,(», B | @) are sums of series with non-negative
terms and the typical term of the first is the sum of the corresponding terms of
the second and third series.

Proor or THEOREM 2.2. Since M isa dominated family, G is a sufficient sub-
field if and only if it is pair-wise sufficient (Halmos and Savage [4]); and, by
definition of sufficiency, G is a sufficient sub-c-field of & for the pair (u, ») of
probability measures if and only if, for every F ¢ &, u$(F, w) = v(F, w) for almost
every w.

Now suppose G is a sufficient sub-field. Then, for every @ ¢ IL(F ), I,5(», @, w) =
0 for almost every w. Thus, by (2.5), I,(», @ | §) = 0 and hence I,(»,5|g) = 0.

Conversely, if I,(», $|G) = 0, then I,(», @|G) = 0 for every @ ¢ II(F).
But this implies that, for every @ e II(F), I,5(», @, w) = 0 for almost every w,
since this quantity is almost everywhere non-negative. But the uS-information
of % contained in the finite field @ is zero if and only if the two measures agree on
@; i.e., if and only if u¥(F, w) = »5(F, ) for almost every w.

Proor or THEOREM 2.3. Since G is separable, there exists an increasing se-
quence {®,} of finite partitions such that G is the o-field generated by u @, .
For each F ¢ F, we have {u®(F), v*(F} — {u(F), »*(F)) a.e. [»] (Billingsley
[1).

For each atom A of a finite F-measurable partition @ of @, let M, =
{w:u5(A4,w) > 0}, Ny = {w:¥(F,w) > 0}. We may assume that M, n N ¢ ®,
for all A ¢ @ and all n; since if this is not the case for some n, we can replace
®, by a finer partition ®, obtained by sub-dividing each atom of ®, into its
intersections with the M ,° n N,°, A ¢ @, and their complements, which are all

I
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G-measurable. Then we have: u$(4, w) = 0 = »5(4, w) for we M, n N,°; and
since {u®™(4), v™(4)} = &[{uS(4), 5(A)} | ®, also p®(4, w) = 0 =
v® (4, w) ae. [)] on M,° n N, Further, p(ML 0 A) = [a,eub(A)du =
0= »(Ms nA) = 0;ie., [u,e5(4)dv = 0, and hence, »(M, n N,) = 0.
Finally,

v (4, @)/u™ (A4, 0) =154, 0)/i8(4, 0) ae. bl on M.
Now, let 7 (4, ) = eov™ (4, ©)/u® (4, 0)u® (4, ) and h(4, ©) = ¢[5(4,
w)/u8(A4, 0)u¥(A4, »). From the preceding considerations, we have
ha(4, 0) = h(A,w) ae. on (G, ») forevery Aca,
and hence, I,%(v, @, w) = D¢ ha(4, 0) = Do h(4, w) = LE(», @, ) ae. on
(2, G, v). From (2.3) and (2.4), we then have
(2.18) L(v,a|®) = fI#CB”(% Q)gn dis,

where g, = &{f| ®,} is a uniformly integrable martingale converging to g =
&(f1 G} = dv/dulg]. Now, I,%"(», @)g, is a B,-measurable function whose value
on a typical atom B" of ®, is

2aely(4 n B")/u(4 n B")u(A n B*)/u(B") — ¢ilv(B")/u(B™)].

Using Doob’s application of martingale theory to the theory of derivatives, as
done by Kallianpur ([5], p. 269), we see that I,(», @ | ®,) is the integral of a
uniformly integrable sequence which converges a.e. to I,5(», @)g. Therefore, we
have

(2.19) L(v @ | ®) = [L(», @)gdu = I(»,a|G).

On the other hand, from (2.2) we have

(220) L(»,@|®) = L(»Q v B,) — I(»,®,) > I.(»,@ v §) — (v, Q).
Combining (2.19) and (2.20), we get

(221) I#(V) @ l g) = IM(V) @ v g) - I#(V7 9)’
and taking the supremum over all @ ¢ II(F), we obtain (2.10).
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