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ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING
OF TRUNCATION PARAMETERS!
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1. Introduction. In an earlier paper [2] an asymptotic property of the Bayes
sequential testing regions was proved for exponential families. With ¢, the cost of
an observation, tending to zero, the regions, scaled down by a factor of —log c,
were shown to approach a limiting region. The limiting region depends on the
a priort distribution only through its support, and is easily and explicitly de-
seribed in terms of a modified maximum likelihood statistic. In this paper these
results are extended to families with truncation parameters, that is, parameters
that govern the range of the random variables.

The result in [2] is obtained by: (1) bounding the Bayes regions within and
without by constant a posteriors risk regions, and (2) studying the asymptotic
behaviour of the latter. The first part of the result is easily extended beyond
exponential families, and this has been done by Kiefer and Sacks [1]. The second
part is extended to truncation parameter families in this paper (Theorem 2).
In order to make the paper self-contained, a simple proof of the extended first
part is included (Theorem 1). A number of examples conclude the paper.

2. Truncation parameters. In a family P(-, 5, 6) of distributions, 8 is a trunca-
tion parameter if it is real-valued, and if there exists a random variable 7 such
that for 6, > 6;, P(-, n, 02) is obtained from P(-, #, ;) by conditioning on the
event {1' = 6:}. The families we are concerned with here depend on a finite
number of parameters, some of which are truncation parameters, with the rest,
if any, appearing as exponential parameters. Such a family we call an exponential

truncation family P(-, 61, -+, 6;, 7, -+, 7s), characterized as follows: there
exist on (2, B) a measure u and { 4+ s random variables Ty, --- T, Yy, -+, Y,
such that the density of P(-, 6., -+, 6., 71, - -+, 7s) With respect to u is given
by

exp {(n-Y) — 0(0,n)} when T; =6, for k=1,--- ¢
and

0 otherwise.

Herc 6 = (017 ) 0;), n = ("717 T 7'8)7 Y = (yvl’ ] YS): <'>Stands

for the dot product, and b is the real-valued function required to normalize the

density. The parameter space © is the Borel set of all (8, n) for which such a b

exists.
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For example: if  is the real line, u is Lebesgue measure, s = t = 2, 1y = —aw,
To = w,¥Vi=wand ¥y = o, P(-, 601, 02, 1, 72) is a normal distribution with
mean —7:/29; and variance —1/27,, truncated at —6; on the left and at 6,
on the right. The parameter space in this example consists of all (6;, 6, 71, 72)
such that 6, < 6, and 0 < 9,

The family of normal distributions with unknown mean and variance, trun-
cated at three standard deviations on either side of the mean, is not itself an
exponential truncation family; it is, however, a subfamily of the previous ex-
ample.

TFor n independent observations w;, - -+, w, from an exponential truncation
family, the s 4+ ¢ dimensional statistic

2ot Yi(ws), -, 2ot Yi(wr), max; Ta(wi), -+ -, max; Ty(w:),
or, for short,

(22t Y(wi), max; T(wi)),

is easily seen to be sufficient. For our purposes, the equivalent statistic
(211 Y(wi), n max; T(w:)) will be more convenient. We denote it by (S, M)
and proceed to study stopping regions in the s 4+ ¢ + 1 dimensional space of the
vector (n, S, M).

3. Constant a posterior: risk boundaries. Two disjoint Borel subsets of the
parameter space, the hypotheses, are denoted by Ho and H, . Consider first any
one of the hypotheses, say Ho, and let Ly(0, n) be the loss incurred when H,
is rejected while the ‘“true’ parameter point is (8, n). We assume Lg to be a
bounded measurable function on ®, positive on Hy and zero on the rest of ©. By
W we denote an a priors distribution, a probability measure on the Borel sub-
sets of ©.

After having observed w, -+, w,, the a posieriori risk of rejecting Hy is the
conditional expectation of L(6, n) given w;, - -+, w, . We denote it by Ry, and
though it is a random variable on @ x --- x @ x 0O, it is easily expressed as a
function of the sufficient statistic (n, S, M):

Denoting by A = A (n, M) the set of all (8, n) in © such that n <6, (the
kth component of M) for k = 1,2, --- , ¢, we obtain

Ro(n, S, M) = [,exp ((n-S) — nb(8, n))Le(0, n) dW
[Jaexp ((n-S) — nb(6,n)) dW]™.

It is convenient to adopt this as the definition of Ro(n, S, M) for arbitrary,
rather than integer-valued, positive n. Accordingly, we define ®Ro(7) for1 > r > 0
by ®(r) = {(n, S, M):Ry(n, S, M) = r}. Now consider the intersection of
®o(r) with a fixed ray p emanating from the origin of (n, S, M)-space.

Along the ray p, the ratiosm = M/n and s = S/n are constant, and since the
set A depends only on M/n, it is the same set for all points of p. For fixed » > 0,
consider the point on p whose first coordinate n = — v log r. This point is an ele-
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ment of Re(7) if and only if
Jaexp (((n-s) — b(6,n))n)L(6,n) dW[[ 1 exp {((n-s) — b(6,n))n} dW]™" = 7.

Now we take the nth root of both sides. On the right, since n = —vlogr, we
obtain /" = ¢,

On the left hand side, the nth roots of the integrals are best expressed as
L,-norms with p = n. The root in the numerator is the L,-norm of exp ({n, s)
— b(0, n)) on A, with respect to the measure Lo(0, n) dW; the root in the de-
nominator is the L,-norm of the same function on 4, with respect to the measure
aw.

If we now hold p and » fixed, and send r to zero, n = —yvlogr tends to in-
finity, and the L,-norms tend in the limit to L.-norms, that is, to the essential
suprema, modulo the measures L, dW and dW, of the integrand on the set
A(n, M). Since L, is positive on Hy and zero off Hy, the essential supremum
modulo Lo dW taken over A, is the essential supremum modulo dW over A n H, ,
and the limiting inequality becomes

sup (mod W) anm, exp ({n-s) — b(8, n))/sup (mod W) 4 exp ({n-s) — b(0, n))

é e—l/v-

Solving for », we obtain
v = [(supa — supnm,)(mod W) ({(n-s) — b(6, n))]™"

as the necessary and sufficient condition for the point (v, »s, vrm) = (», S, M)
to be an element of the “asymptotic shape” lim,.o (—log 7) ' ®o(r).

Combining this with similar considerations for H,, and defining ®(r) =
Ro(r) U Gu(r) as the set where at least one of the two available decisions leads to
an a posteriort risk of at most r, we obtain:

TuEOREM 1.

lim,.o (—log ) "'®(r)
= (n, S, M):(sups — mini—o,1 (supsnz,))(mod W) ((n-S) — nb(6,n)) = 1.
CoROLLARY: Let A(n, S, M) be the ‘“two-sided maximum likelthood statistic”
A = supgexp ((n-S) — nb(0, n))/min;—,1 (supanz; exp ({(n-S) — nb(0, n))).
If the support of W contains all of O, then
limyao (—log ) 7'®(r) = {(n, S, M):(n, S, M) = ¢.

4, d-testable hypotheses. The hypotheses Ho and H, are d-testable, if there
exists a fixed-sample-size-test of H, against H, based on d observations, whose
probability of error is bounded on Hy u H; by a number smaller than 3.

Lemma 1. If Hy and H, are d-testable, there exist tests of H, against H, , based
on N observations, whose error-bounds decrease geometrically with N.

Proor. Let 7(wi, -+, wg) be a test whose probability of error is bounded
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above by a < %. Let 7* be the following test, based on (2k — 1)d observations:
Reject Hy whenever at least &k among the tests 7(wi, *--, wi), 7(wagr, *-,
wag)y **t y T(WEk—2a41, *** , waw—na) reject Hy . Since for any parameter point
6 in H, we have Py(7 rejects Hy) < a, we obtain

Po(7" rejects Hy) < Dzt (*H)a’(1 — a)* 717,
Furthermore, since o < % implies that the largest term in this sum is the first
term,

P(7* rejects Hy) < k(*3Ha*(1 — o)™ < 2%k (1 — )™
= (4a(l — a))’k(2(1 — &))"

which ultimately decreases geometrically with k. The conclusion of the lemma
now follows by putting k& equal to the largest integer such that (26 — 1)d < N,
and repeating the argument with H, replaced by H. .

Lremma 2. If the hypotheses are d-testable and the loss function is bounded, there
exist, for sufficiently small cost ¢ per observation, fixed sample size procedures whose
risk 38 O(clog ¢ ™).

Proor. By Lemma 1, there exists for every N a test based on N observations,
such that for some A > 0 and B < 1 the error probability is at most AB".
Introducing L for a bound on the loss function, and combining the penalty for
error with the observation cost, the bound ALBY 4+ ¢N is obtained for the risk.
Choosing for N the integer closest to (log ¢™)(log B™)™", the conclusion of the
lemma follows easily.

5. Criteria for d-testability. We now prove two sufficient conditions for d-
testability, the first being a special case of the second, and two relative condi-
tions, that infer the d-testability of some pairs of hypotheses from the d-testa-
bility of others.

(a) In the purely exponential case, if Hy and H, are compact, disjoint, and con-
tain no boundary points of the parameter space, they are d-testable.

Proor. At any interior point n of the parameter space, E,(Y) = grad b(n).
The Jacobian matrix of the mapping n — grad b(n) is the covariance matrix of
Y, and therefore positive definite, and the mapping is one-to-one and continuous.
The images of Hy and H, under such a mapping are also compact and disjoint.
Let € be the distance between them, and let B be the maximum over Hy u H,
of the eigenvalues of the covariance matrix of Y. Then, with d > 8Be ™, and
s = d7' D % Y(w:), the test that accepts the hypothesis to whose image under
grad b the point s is closer, has error probabilities bounded by P, (||s — grad b|| =
¢/2) < 4Be’d ' < i, by the Chebyshev inequality.

In the case of exponential truncation families, different points of the param-
eter space may correspond to the same distribution, and this redundancy can be
eliminated as follows: a parameter point (6, n) is proper if sup (mod Py,,,) T =
0, for k = 1, -+ -, t. The family is uniquely parametrized by the proper param-
eter points. For interior points of the parameter space, the propriety of (0, n)
depends only on 6.



2042 GIDEON SCHWARZ

(b) If Py, 7s an exponential truncation family, and Ho and H, are compact
disjoint sets of proper interior parameter points, they are d-testable.

Proor. Consider the images of H, and H, under the mapping (0, n) —
(8, grad, b), where grad, is the vector of derivatives with respect to the 7:. As
in (a), the mapping is one-to-one and continuous, and we can denote the distance
between the images by e. For given d, define B and s as in (a), and let m =
(maxi<ica Ti(wi), -+, maxi<izq Te(wi)). Accept the hypothesis whose image
under (8, n) — (0, grad,, b) is closer to (m, s). A wrong decision can occur only
if |(m, s) — (6, grad, bl = €/2, which implies that one of the events I|s —
grad, bl| = ¢/2-2" or [m — 0|| = ¢/2-2" occur. The ﬁrst has its probability
bounded by 8Be*d™", which is less than + when d > 32B¢ > The second event
implies 6, — my, > e/ 3¢ for some 1 < k £ ¢, or equivalently, 0 — Tr(ws) >
¢/3t = sforsomel < & < ¢ forall 1 £ ¢{ £ d. Denoting the maximum of 8
on Hyu H, by =, we have

Pem(ek—Tkﬁa) =P1,n(0k—Tk§51T§0)

=P1m(0k_Tk§5 and T = 0),

which is continuous in n and lower semi-continuous in 0, and therefore achieves
its minimum on Hyu H; . Denoting by A; this minimum, which has to be positive
by the assumption of proper parameter points, we have

Pen(ek - Tk(wz) > 5) 1 — Ak,
Py o(0; — max Ty(w:) > 6) < (1 — A
Poo(l0 — m| = 6/2‘2%) < Dia (1 — anf

1

which for sufficiently large d is less than i, yielding Py, (|[(m, s) —
(0, grad, b)| = ¢/2) < 3.

(e) If (Gs, H;) is dijtestable for ¢ = 1, -+, I and 7 = 1, --- J,
then (u:G; , u;H ;) is d-testable.

Proor. Itisenough to prove the case [ = 2, J = 1. By Lemma 1 of Section
3, there exist tests 71 and 7, for (G1, H) and (G2, H) respectively, with error
probability bounded by . If we carry out both tests, with a separate batch of
observations for each, and accept Gi u G whenever 7, accepts Gi and/or 7,
accepts G , we have

P(we accept H) = P(7: accepts H)P (s accepts H)

which is bounded from above by % on Gy u @, and bounded from below by
(1— 1) = < onH.
The following is obvious:

(d) Subsets of d-testable hypotheses are d-testable.

6. The main theorem. The two are lemmas, together with Theorem 1, the main
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steps in proving the following:

TurorEM 2. Let P(-, 0, n) be a truncation family with parameter space ©, and
let Hy and H1 be two d-testable hypotheses. For a priori distribution W, bounded loss
Sfunction L, and cost of an observation c, the Bayes stopping regions ®. for testing
H, against H, fulfill the asymptotic shape relation:

limeo ((log ¢ )™ ®,
= {(n, S, M) :(sups — mini,1 (Supsnz;))(mod W)({(n-S) — nb(0,n)) = 1}.

Proor. If at some stage of sampling the a posterior: risk reaches below c,
stopping right there is better than any strategy that takes at least one more
observation, therefore ®; D ®(c). On the other hand, Lemma 2 assures the
existence of sampling procedures with risk of Kclog ¢ at most, for some fixed
K, and c¢ sufficiently small. If at some stage of sampling sequentially the a posteri-
ori risk still exceeds K¢ log ¢, following one such procedure is better than stop-
ping, and hence

®(Kcloge™) D ® D &(c).

The application of Theorem 1, and the observation that (log (K¢ log ¢ ™))/
log ¢ — 1 finish the proof of the theorem.

7. An example. Let w; be uniformly distributed on (—a, b) and let (M, M)
be the sufficient statistic (—#n min w;, 7 max w;). We test the hypotheses
Hy:g = go and Hy:g = ¢: about the midrange ¢ = (b — a)/2, but in order to
make these hypotheses d-testable, we have to limit the parameter space to the
region {(—a, b):0 £ a + b = V} for a fixed V. If we assume that W has this
whole region as its support, the region lim (log ¢ ") ™'®, in (n, My, M,) space
can be expressed in terms of the sample range ¢t = (M, + M) /n and the sample
madrange g = (My — M1)/2n as follows:

lim (log ¢ Y 7'®e = {(n, My, Ms):dy + 2min (V — ¢, (/" — 1)) < ¢
or ¢ =d — 3min (V-1 (' — 1)0)}.

Therefore the procedure corresponding to the approximate Bayes region (log ¢ ™)
lim (log ¢ )™ ®, can be described by “continue sampling as long as

d—imin (V — 1, (¢ = 1)) £ g < do+ 2min (V — ¢, (" — 1)0).

As soon as one of the inequalities is violated, stop, and make your final decision
according to which of the inequalities made you stop.”
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