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SOME INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS!

By G. AnpErsEN AND T. KawaTa

The Catholic University of America

1. Introduction. We shall deal with the basic convergence problem of sequences
of probability distribution functions in relation to the celebrated Lévy con-
tinuity theorem. One of the simplest ways of proving this theorem was adopted
by M. Logve [9]; it employs the integral characteristic function

(1.1) @) = [if@t)dt = [Z2 (e — 1)/iudF (u),

where f(t) is the characteristic function of the distribution function F(u). This
method was also adopted in [7].

A standard form of the Lévy continuity theorem requires the continuity at the
origin of the limiting function, f(u), of a sequence of characteristic functions.
L. Schmetterer [10] has shown that the continuity of f(u«) can be replaced by
(C, 1) summability of the Fourier series of f(u) to one at the origin. So he con-
sidered the Fejér integral of a characteristic function f(u):

(1.2) L(a) = 7[5 sin® at(ad®) (1) di, (a > 0).
Further, it was noticed by one of the authors [5], that the transform
(1.3) Lo(z, a) = 7' [Y2sin® a(t — 2)(a(t — x)®)7f() di,

a>0,—w <z < 4w, plays a role similar to that of f'(z) in the convergence
problem of sequences of distribution functions.

Here, in place of (1.3), we will take the Fourier transform of the c.f. after
multiplication by the Fejér kernel:

(1.4) L(z, @) = ' [T2% sin” at(af®) f(t)e " dt,

a>0,— o <z < 4 x. The use of this functional allows for simpler arguments,
concerning the convergence problem, than (1.2) and, in some sense, even f ().
This is based on the well-known and easily shown fact that

(1.5) L(z, o) = (20)7 [¢* (F(x 4+ uw) — F(z — u)) du,

where F(z) is the df corresponding to the ef f(¢) in (1.4). In Section 2 we will
illustrate the different roles played by (1.4) and (1.5).

As pointed out by L. Schmetterer [10], the Fejér kernel may be replaced by
other summability kernels. Even so, it is worthwhile to approach this problem
also with the Poisson integral of a characteristic function

(1'6) f(x’ y) = tz P(t -, y)f(t) dt;
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1924 G. ANDERSEN AND T. KAWATA

y >0, —o <z < 4w, where
(1.7) P(u,v) = v/z(v" + ), v >0, —o < u < +o.

This is accomplished in Section 3.

Equation (1.6) obviously defines a function which is harmonic in the upper
half plane, ¥ > 0, and so leads in a natural way to the problem of characterizing
certain harmonic functions to be the Poisson integrals of positive definite func-
tions. We shall consider this question in Section 4.

2. The Fejér integral of a characteristic function. For convenience we suppose
throughout that all non-decreasing functions are standardized:

(2.1) Fu) =4HFu+0)+Flu—0)}, —wo <u< +owx.

Suppose that a sequence {F,(u)} of distribution functions is given. The cor-
responding characteristic functions are denoted by f.(¢),n = 1, 2, ---, and we
set

(2.2) Ln(z,a) = 7' [T2 (sin® at/a)fu(t)e T dl, a>0, —wo <z < +o.

TuEOREM 1. FF,(x) converges to a non-decreasing function F(z) up to additive
constants if, and only if, L,(x, o) converges for every o > 0and z, — o < x < + .
When Ln(x, o) converges, the limit function, L(x, &), can be written in the form (1.4)
with f(t) = [Za ' dF (z).

This theorem is an analogue of Lo¢ve’s weakeon vergence theorem ([9], p. 190).

Proor. The “only if”’ part of the theorem and the last statement are obvious
from (1.5) in the form

(2.3) Lu(z,0) = (20)7" [3¥{Fu(z + u) — Fo(z — )} du,
a >0, —wo < z< + o,

The converse is a consequence of Helly’s selection theorem and the convergence
of L,(x, @) as given in (2.3). The convergence of L,(z,a)(a > 0, — o <2< + o)
implies that f§ {Fo(x +u) — Fo(z — u)} duconvergesforall§, — o < § < + .
Because of Helly’s theorem, {F.(y)} contains a subsequence {F,,(y)} econvergent
to a non-decreasing function F(y). If there exist two convergent sub-sequences
{F..(y)} and {F,,(y)} with limiting functions F(y) and G(y) respectively, then

[§{F(x +u) — F(z — )} du
= [§{G@@ +u) = Gz —uw}du (=0 <&< +o).

This implies that F(x + £) — F(x — £) = G(z + &) — G(x — &) for every «
and almost every ¢ (where the exceptional set £, may depend on z).

It follows easily that F(y) = G(y) + constant for all y, — o < y < + «.
(e.g., for any real x, choose a sequence &, 2 E, such that & | 0 (n — + ) and
pass to the limit in F(z + &) — F(x — &) = Gz + &) — Gz — £.)).

© itz

The last statement of the theorem follows by letting f(¢) = f tae'T Al (2);
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the limit of (2.3) is L(z, &) = (2a)7" f?,“ {F(z 4+ u) — F(x — u)} du which is
equal to (1.4). This completes the proof.

It is of some interest to note that we may avoid direet use of Helly’s selection
theorem and use instead some basic properties of convex functions. This is be-
cause ff, {F.(x + u) — F,(x — u)} du, being a continuous convex function, has
a limiting function J (2, £) which is also convex and continuous in £ for each real
x. But a continuous convex function has right and left derivatives at every point
and they are equal a.e., the exceptional set being at most countable. The con-
vergence of F,(u) — F,(v) follows for all u, v except those in this countable set.

THEOREM 2. F,(x) converges to a distribution function F(x) if, and only if,

(1) La(z, o) converges for every a > Oand x, — o < z < 4+ «, and

(ii) Ln(0, @) = Lu(a) converges uniformly for all « = A, for some A > 0.

Proor. Because of Theorem 1, it is sufficient to show that if {F,(x)} converges
to a bounded non-decreasing function F(z), up to additive constants, then (ii) is
an.a.s.c. for F(z) to be a distribution function.

By Theorem 1, L,(x, @) converges and the limit may be written as

(2.4) L(z, o) = 7' [T% (sin® at/al®)f(t)e " dt,

where f(t) = f—eo e dF ().

Suppose that (ii) holds and set L(0, «) = L(a). Clearly, limy,iw La(a) =
fa(0) =1 for each n. The uniform convergence then implies that
limgoyo L(a) = 1. But limasye L(a) = f(0) = F(4+ ) — F(—«). Hence
F (x) is a distribution function.

Conversely, suppose that F(x) is a distribution function. Then L(+ o) =1
from (2.4) and for each a > 0, limy.4e L.(a) = L(a). Moreover, for each n,
L,(a) is from (2.3) a non-decreasing function on @ = A, for any 4 > 0,
limpse Lu(+ o) = L(+4 ) and limy.yo La(A) = L(A). Hence, since L(a) is
a continuous function, it follows that the convergence of {L,(a)} to L(a) is uni-
form on [4, + « ). This completes the proof of the theorem.

ReEmARK 1. Let {f.(¢)} be a sequence of c¢f’s and {F,(x)} the corresponding
sequence of df’s. If f,(¢) — f*(¢) for every t, —o < t < 4, then L(z, &)
convergeson o > 0, —xo < x < + «, and so by Theorem 1, F',, (x) — F(x) up
to additive constants and L,(a) — L(a) where

(2.5) L(a) = 7' [*3 (sin® at/at’)f(t) di, (a > 0),

with f(¢) = [*% exp (itz) dF (z). On the other hand, from the form of the Fejér
integral, the condition that f,(t) — f*(¢) implies that L(a) equals

(2.6) 7 [ (sind at/at)f (1) d.

Hence, (2.5) and (2.6) are equal. (The equality of (2.5) and (2.6) for all
o > 0, implies only that Ref(¢) = Ref*(¢), —» <t < +.)

Thus, the (C, 1)-summability of the Fourier series of f*(t) at ¢ = 0 to one,
implies that L(a) — 1 as & — -+ «. But this implies that F () is a df as noted in
the proof of Theorem 2. This gives L. Schmetterer’s result [10].
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REMARK 2. If f,(¢) converges to f*(¢) (— o < t < 4 ), then (i) of Theorem 2
holds and if the convergence is uniform on —6 < ¢ = § for some § > 0, then con-
dition (ii) of Theorem 2 also holds and so {F.(x)} converges to a df. This is
Lévy’s continuity theorem.

3. Sequences of Poisson integrals. Let {F.(x)} be a sequence of df’s {f,*(¢)}
the corresponding sequence of ecf’s and f.(z, y) the Poisson integral of
L) (n = 1, 2,---). We shall now prove the Poisson integral analogues of
Theorems 1 and 2.

TuroreM 3. {F.(x)} converges to a non-decreasing function F(x) up to additive
constants if, and only if, {fo(x, y)} converges for everyy > Qandz, — o < 2z < + .
In this case, the imit f(z, y), — o < x < 4o,y > 0, of {f.(, y)} is the Poisson
integral of the Fourier-Stieltjes transform of F(u).

Proor. It is easily seen that

(3.1) Fala, y) = [Xoe™ M AR (w)

y>0,—0o <z +o,n=12---.
Hence, if {F.(x)} converges to F'(z) up to additive constants, then by the
extended Helly-Bray theorem ([9], p. 181) {f.(x, y)} converges to f(x, y), where

(3.2) f(z,y) = [T2 ™" dF (u)

= [Y2P(t — z,9)f (t) dt, y>0, —o<z<Fo,
with
(3.3) 5t = [X2 e dF (u).

Conversely, suppose that {f.(x, y)} converges to f(z, y) on y > 0,
—w < z < 4+ «. By Helly’s selection theorem every subsequence {F, (u)}
contains a subsequence {F,(u)}, —o < z < 4 », converging to a bounded
non-decreasing function F (). The extended Helly-Bray theorem then shows that
fupr (2, y) converges to f(z, y) = [Tae™ 1 dF(2),y > 0, — o< z < + oo.
Hence, f(, y) = f(z, y) in the upper half plane and so #(u) is uniquely deter-
mined (up to additive constants) by f(z,y), — o <z < 4,y > 0. Therefore,
every convergent subsequence has the same limit up to additive constants. The
proof is complete once it is noted that the stated representation as a Poisson
integral of the Fourier-Stieltjes transform of F follows from the integral repre-
sentation of f(z, y).

REMARK 3. It is clear from the proof of this theorem that the results continue
to hold if the sequence of df’s, {F,.(z)}, is replaced by any uniformly bounded
sequence of non-decreasing functions on (— o, 4 ).

TueoreMm 4. {F.(u)} converges to a df F(u) tf, and only if,

(1) {falz, y)} converges to f(x, y) for every x, — 0 < x < 4 andy > 0.

(i) {f2(0, y)} converges uniformly for y > 0.

Proor. Suppose that (i) and (ii) hold. We have that limy.o+ f2(0, ¥) =
fn*(O) = 1 for eachn,n = 1, 2, --- . Hence, (ii) implies that f(0, y) — 1 as
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y — 0. Since from (3.2), (0, y) — f*(0), as y — 0+, where f*(¢) is given by
(8.3), the sufficiency of (i) and (ii) follows from Theorem 3 and f*(0) = 1 =
F(4+®) —F(—®).

Conversely suppose that F,(u) — F(u), where F(u) is a df. Then by Theorem
3, (i) holds. That (ii) also holds follows from the uniform convergence of the
cf’s £, (t) in [—8, 8], 8 > 0, and the inequality

17200, ) — 1] £ [10<s Pt ) If7(8) — 1] dt + 2 [1455 P(4, y) dt,

for any 6 > 0.
ReMARK 4. In Theorem 3, f(x, y) as the Poisson integral of the Fourier-
Stieltjes transform *(¢) of F(u) has the property that

(34) limy.o4 (0, y) = «

HF(+») — F(—x) = a / '
Equation (3.4) is the same as saying that the Fourier series of f () is Abel
summable to « at ¢ = 0.

4. Some classes of harmonic function. Here we consider functions which are
harmonie in the upper half plane and have representation as Poisson integrals of
characteristic functions, or more generally, of Fourier-Stieltjes transforms of fune-
tions of bounded variation.

We will require a characterizing property for positive definite functions. The
following one is convenient and does not seem to be explicitly mentioned in the
literature. Its proof is standard (e.g. H. Cramér [2], T. Kawata [6], Gonzilez
Dominguez [3]).

TuroreM 5. Let f(x) be a bounded continuous function on (— «, +»). Then
f(z) is positive definite if, and only if,

(4.1) 0= (T3 o(a)f(z) da
for all o(x) € Ly, for which
(4.2) (u) = [T2eo(t) dt = 0, —0 <y < + .

Proor. The necessity of (4.1) follows from Parseval’s relation and (4.2).
The sufficiency of (4.1) may be observed by first noting that

[2ae (1 — lt[/a?f(t) dt =z 0, —0 <z < + o,

since the function ¢(t) = ¢ *“(1 — |t|/) for |t| < @ and ¢(¢) = 0, |t| = « has
a non-negative Fourier transform, and then proceeding as in the proof of S.
Bochner’s theorem on positive definite functions (e.g. Loéve [9], p. 208 or Yu.
Linnik [8], p. 42).

The following corollary is an analogue of a result due to S. Bochner [1] and
I. J. Schoenberg [11] concerning Fourier-Stieltjes transforms of functions of
bounded variation over (— o, 4+« ).
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COROLLARY 1. Let f (x) be a bounded continuous function on (— o, 4+ ). If
(4.3) f_w o(x)f(x) de £ k max_wcucio &(u)

for every o(x) in Ly for which $(x) = 0, where k is a constant independent of ¢(x),
then there exists a bounded non-decreasing function F(x) such that

(4.4) f(t) = [*2 e dF ()
and
(4.5) - F(+o) —F(—o) =k

The converse holds.

Proor. Suppose that (4.3) holds, then from the lefthand side of this inequality
we have the existence of a bounded non-decreasing function F(z) satisfying
(4.4) by Theorem 5. Hence, we need only show that (4 5) holds. For this purpose
we introduce the function

e(u) = (reu’) {cos (u(4d — €)) — cosudl},

where A and e are fixed positive constants with 0 < ¢ < A. Then ¢(z) belongs to
L; and has Fourier transform &(¢) given by

@(t) = 1: ‘tl é 4 — €,
=0, gl > A.

Since $(t) = Oforalli (—w <t < 4 ») and max $(¢) = 1, we have from
(4.3) that

0= [I2o(t)dF(t) <
It then follows from (4.6) that
0= [235.dF(z) £k

since k is independent of 4, (4.5) is immediate.
The converse is obvious and so the proof is complete.
We now introduce the family of functions H, by requiring that f(z, y) € H, if,
and only if,
(1) f(a, y) is defined and harmonicon —w < z < 4,y > 0;
(ii) the mapping x — f(z, y) is bounded on (— «, 4+ ») for each y > 0;
(iii) for each ¢(x) & Ly for which &(¢t) = 0

(4.7) 0= —oo ‘P(x)f(x; Y) dr £ M max_w<ucio &(1),

where M is a constant independent of ¢(x) and y (y > 0).

Theorem 6 will show that the members of H, are Poisson integrals of positive
definite functions. For the proof of this theorem we require a uniqueness theorem
for functions which are bounded and harmonic in the upper half plane.
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Levmma. If H(z, y) is a bounded harmonic functionony > 0, — o < z < 4o
and limy.or H(z, y) = 0 for almost oll z, then H(x, y) vanishes on y > 0,
—n < x < Foo.

This lemma follows from the corresponding result concerning bounded har-
monic functions on the unit dise [4] applying a linear transformation taking the
upper half plane onto the (open) unit dise.

TueorewM 6. f(x, y) € H. if and only if f(x, y) @s the Potsson integral of a con-
tinuous positive definite function,

Proor. Suppose that f(z, y) ¢ H. , then for fixed y > 0,z — f(z, ) is a bounded
continuous function on (— «, + « ). Hence, (4.7) and Corollary 1 imply the
existence of a bounded non-decreasing function F,(%) on (— o, +«) and a
constant M > 0, such that

(4.8) fla,y) = [I5e™ aFy(u)
and
(4.9) Fy(+w) = Fy(—w) =M

where M is independent of y. It follows that f(x, y) is bounded on
—o <z < 4w,y >0.

Now let 8 > 0 be fixed and construct the Poisson integral
fl(x7y75>= iﬁP(m—t,y—&)f({,B)dt, —w <z < Fo, y > 0.
Since f(x, §) is continuous for 6 > 0, from a well-known result concerning Poisson
integrals [4], p. 123—-124, we obtain
(4.10) limy.s¢ fi(, y5 8) = f(z, 8)
for every z.

Then, since fi(z, y; 6) and f(z, y) have the same boundary values on y = §,
—ow < z < 4w and f(zx, ) is bounded on the upper half plane, the lemma
implies that
(4.11) flae,y) = JI Pt — 2,y — 0)f(1 8) dt
forally = 6, —0 < 2 < 4 o0.

Using (4.8) and (4.11), a simple calculation yields
(4.12) f(x, y) — fi: igu—(y—o) |u| dF&(u)

forally =2 6, —o <2 < 4.

Let y > 0 be arbitrary, but fixed and {6,} be a numerical sequence,
8 | 0 (n— 4+ o0), withy > 6;.8et Fs,(z) = F.(z). Then (4.12) can be written
in the form

(x y) fi: ezxu—yl ul| dFvn + fi: eiru-ylul(génlul _ 1) (an(u>
= fa(z, y) + In(z, ),

where f,.(z, y) is the Poisson integral of the Fourier-Stieltjes transform of F,(u),
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and
]n(ﬂi, y) _ fi: ixu*ylul(eénlul - 1) an(u),

(n=1,2,---).Itiseasily seen that I.(z,y) — Oforany (z,y) —o <z < + =,
y>0asn— + .

Hence, since 0 < Fy(+ o) — Fo.(—») = M, (n = 1,2, ---), and fu(x, y)
—f(z,y)asn— + o, —w0 << 4w,y > 0, Theorem 3 and Remark 3 apply
and f(z, y) is the Poisson integral of a continuous positive definite function.
Since the converse is obvious the proof is complete.

ReMARK 5. Let f(z, y) ¢ H, and f*(¢) be the positive definite function referred
to in Theorem 6. From a familiar property of Poisson integrals and the continuity
of 1*(1), limyoos f(z, y) = f*(z) for all z, —0 < & < 4. For a given a,
0 < a < 4+ «, we will denote by H.(a) that sub-family of H, consisting of those
f(z, y) € H, for which f*(t) satisfies f*(0) = a. We then have the following:

CoroLLARY 2. The class H.(1) coincides with the class of Poisson integrals of
cf’s.

REMARK 6. It is clear from the proof of Theorem 6 that if (1) f(z, y) is a bounded
harmonic function on — o < x < 4o,y > 0and (i) 0 £ [I2 o(2)f(z, y) dx
for all p(z) € Ly for which $(t) = 0, then f(z, y) € H. and conversely.

Hence, Theorems 5 and 6 combine to yield the statement that every function
f(z, y) which is bounded and harmonic on the upper half plane y > 0 and for which
the mapping x — f(z, y) s positive definite for eachy > 0 is the Poisson integral of
a continuous positive definite function.

In this form Theorem 6 is similar to a result of D. V. Widder [12]. He has
shown that a function u(zx, y) defined on the upper half plane y > 0 is harmonic,
non-negative and absolutely integrable on (— o, + =) for each y > 0 if, and only if,
it 1s the Poisson integral of a (finite) positive measure.

Where Widder’s theorem is analogous to the Herglotz theorem on the unit
disc [4], p. 34, Theorem 6 in the above form is linked in some sense to Fatou’s
theorem [4], p. 33, stating that every bounded harmonic function in the unit duisc
1s the Poisson integral of a bounded function on the circle.

Finally, we introduce the family of functions H, by requiring that f(z, y) ¢ H,
if, and only if,

(i)' f(z, y) is defined and harmonic on —» < & < + =,y > 0;

(ii)" the mapping « — f(z, y) is bounded on (— %, + =) for each y > 0;

(iii)" for each ¢(z) & Li(— o, + =)

(4.13) 32 0(@)f(a, ) dal £ M max_wcucis [$(w)],

where M is a constant independent of ¢(2) and y (y > 0).

Then we have the following

TaeorEM 7. f(z, y) ¢ H, if, and only of, f(z, y) ts the Poisson integral of the
Fourier-Stieltjes transform of a function of bounded variation on (— o, 4 ).

This theorem is easily proved in the same way as Theorem 6 with the applica-
tions of Theorem 3 and Corollary 1 replaced by Helly’s selection theorem and the
following theorem of I. J. Schoenberg [11].
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TuroreM A. A bounded continuous function f(x) is the Fourier-Stielljes trans-
form of a function, G(u), of bounded variation on (— o, 4+ ) if, and only if, con-
dition (iii)" holds with f(x) in place of f(x,y). When (4.13) holds, then

(4.14) e dG(u)| £ M.

(The original proof of Theorem 7 was considerably simplified by a suggestion
of R. P. Boas concerning the application of Theorem A.)
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