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A NOTE ON POSITIVE DYNAMIC PROGRAMMING

By AsHox MAITRA

Indian Statistical Institute, Calcutta

1. Introduction. A positive dynamic programming problem is determined
by four objects, S, 4, ¢ and r. S and A are non-empty Borel subsets of Polish
spaces, ¢ is a transition function on S given S x A and r is a bounded, non-
negative, Borel measurable function on S x A. We interpret S as the state space
of some system and A as the set of actions available at each state. When the sys-
tem is in state s and we take action a, the system moves to a new state s" accord-
ing to the distribution ¢(:/s, a) and we recelve an immediate return r(s, a).
The process is then repeated from the new state s, and we wish to maximise the
total expected return over the infinite future.

A plan = is a sequence ; , 72, - - - , where m, tells you how to choose an action
on the nth day, as a function of the previous history & = (s1, a1, **+ , @1, $n),
by associating with each & (Borel measurably) a probability distribution (- /h)
on the Borel subsets of A. Certain types of plans are of special interest. A semi-
Markov plan is a sequence fi, f2, - - - , where each f, is a Borel measurable map
from S x Sinto A, and f,(s;1, s») is the action we take on the nth day if we start
instates; and thestate on the nth day is s, . A Markov plan is a sequence fi , fa, - -+
where each f, is a Borel measurable map from S into 4 and f.(s) is the action
we choose on the nth day if the nth state is s. A stationary plan is a Markov plan
in which f, = f for some Borel measurable map f from S to A and all n.

A plan = associates (Borel measurably) with each initial states a total ex-
pected return I () (s). We shall assume that the structure of the problem is such
that the optimal return v* = sup, I(w) is a finite function on S. [Note that we
are not assuming that »* is bounded].

This problem has been studied by Blackwell [1], Strauch [6] and Barbosa
Dantas [2]. An example due to Blackwell shows that e-optimal plans need not
exist (see Example 4.1 in [6]) and moreover, that the optimal return need not be
Borel measurable. The purpose of this note is to impose certain topological
conditions on 4, ¢ and r and show that under these assumptions there will exist
e-optimal plans and that the optimal return will be Borel measurable. Specifically,
we shall prove the

TurorEM. Let S be a Borel subset of a Polish space, A a compact metric space
and r a bounded, non-negative, upper semi-continuous (abbreviated, hereafter, by
use) function on S x A. Assume, furthermore, that (s. , an) — (0, @) tmplies
q(+/sn , Gn) converges weakly to q(-/so, ao). Then, for any € > 0, there exists an
e-optimal semi-Markov plan = (that is, I(w) = v* — €)) and, moreover, the optimal
return v* is a Baire function of the second class.

Note that if S is countable and A finite, the conditions of the above theorem
are fulfilled.
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'2. Proof of theorem. Throughout this section, the conditions imposed on S,
4, g and r in the theorem stated above will remain operative.

The proof of the theorem rests on a selection theorem due to Dubins and
Savage [3]. We state it here in a form somewhat different from that in which
Dubins and Savage have stated it but which is immediately applicable to our
problem.

SeLECTION THEOREM. Let u be a bounded usc functwn on 8 x A. Define u*:
S — (—w, ©) by: u*(s) = maxa.s u(s, a). Then u* is usc and there exists a
Borel measurable function f from S to A such that u*(s) = u(s, f(s)) forall s € S.

The proof may be found in [3], page 38 or in [5].

We shall also require the following:

LemmMa. Let v be a bounded usc function on S. Then w: 8 x A — (—, ») de-
fined by: w(s, a) = [o(-) dg(-/s, a) is usc.

Proor. First, note that if »" is any bounded continuous function on S then
it follows from the condition imposed on ¢ that the function (s, a) — [ v'(-) dg-
(+/s, a) is continuous. Next, asv isa bounded usc function, there exists a sequence
{va} of bounded continuous functions on S such that v, | » (by Theorem 3.3.8 in
[4]). Hence, the functions w, on 8 x A defined by wa(s, a) = [ v.(-) dg(-/s, a)
are continuous, and, by the dominated convergence theorem, w, | w. Conse-
quently, w is usc ,which completes the proof of the lemma.

Proor orF THEOREM In the dynamic programming problem denote, for each
n = 1, by u,”* the optimal return over n days of play Each u," is then a bounded,
non-negative function on 8, and, moreover, u,* T u* (say). We shall show by
induction that each u,* is use-on S. Note that

(1) ul*(s) = mMaXs.4 7(s,a) forall ses,

SO that it follows from the Selection Theorem that u;™* is use. Suppose for n = m,
Un" is use. Then it is easy to see that

(2) umi(s) = ma,xam [r(s, @) + [un*(-)dg(-/s, a)] forall seS.

The lemma above together with the inductive hypothesis ensures that the
second term inside square brackets on the right-hand side of (2) isuscon S x A4,
so that the entire expression within square brackets is usc on S x A. Thus, the
‘max’ is Justlﬁed in (2). Consequently, it follows once again from the Selection
Theorem that um,q is usc on S. As «* is a point-wise limit of the use functions
u.", it is a Baire function of the second class. From (2), we get

(3) umpa(s) = [r(s, a) + [un(-) dg(-/s, a)] for all s, a and m.

Keeping s and a fixed, let m — « in (3). By the monotone convergence theorem,
we have:

(4) u*(s) = [r(s,a) + Ju*(-) dg(-/s, a)] for all s and a.

Theorem 2 in [1] now implies that the optimal return (over the infinite future)
v* < u*,
Again from the Selection Theorem and (1) and (2), we get the existence of
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Borel measurable maps, f, , » = 1, from S to A such that

(5) u(s) = r(s, fi(s)) forall seS

and

(6)  unir(s) = 7(s, fara(s)) + Jwa"(-) dg(+/s, fara(s)) ~ for all s and m.

Now we can construct an e-optimal semi-Markov plan as follows: Let ¢ > 0 and
let g be a fixed (but otherwise arbitrary) Borel measurable map from S to 4.
Define

Si = {s:w*(s) = u¥(s) — ¢ and, for n = 2,

S = {s:uﬁ_l(s) < u¥(s) — ¢ unt(s) = u'(s) — .

The sets S, are Borel, disjoint and U5 S, = S. Define g1 = f, on S,, n = 1,
and for m = 2, define gm(s, s') = g(s') if s ¢ Ss;uS;u---uU Sp, and
gn(s, s') = Fuemi1(s),if s& Su,n = m. Thenw = {g1, g2, -+ -} is our required
semi-Markov plan. For, it is easy to see, using (5) and (6), that if
se Su, I(r)(s) = u.*(s) = u*(s) — e. Consequently, I(7r) = u* — ¢, which
proves that (as e is arbitrary) v* = »* and 7 is e-optimal. Moreover, the optimal
return is a Baire function of the second class. This completes the proof of the
theorem.

ReMARK 1. Our theorem is the dynamic programming analogue of Theorem
2.16.1 in [3].

ReMARK 2. Blackwell has given an example in [1], which satisfies the condi-
tions of our theorem, but for which an optimal plan does not exist. The same
example shows that e-optimal stationary plans need not exist. Whether or not,
under our conditions, e-optimal Markov plans exist, we have not been able to
determine.

REFERENCES

[1] BLackwELL, D. (1965). Positive dynamic programming. Fifth Berkeley Symp. Math.
Statist. Prob. 1 415-418. Univ. of California Press.

[2] BarBOsa Dantas, C. A. (1966). On the existence of stationary optimal plans. Doctoral
dissertation. Univ. of California, Berkeley.

[38] Dusixs, L. E. and Savaeg, L. J. (1965). How {0 Gamble If You Must. McGraw-Hill,
New York. ’

[4] McSEANE, E. J. and Botts, T. A. (1959). Real Analysis. Van Nostrand, Princeton.

[5] Ma1TRA, A. (1968). Discounted dynamic programming on compact metric spaces.
Sankhya Ser. A 30 211-216.

[6] STrAUCH, R. E. (1966). Negative dynamic programming. Ann. Math. Statist. 37 871-890.



