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INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES'

BY RicHARD SCHWARTZ®

General Electric Company

1. Introduction. Throughout this paper the phrase “invariant Bayes test”
used without further qualification will mean a test which is (proper) Bayes
among all tests and which is also invariant.

In a variety of problems arising in normal multivariate analysis Kiefer and
Schwartz (1965) (hereafter K-S (1965)) have constructed fully invariant proper
Bayes tests. In K-S (1965) each problem and each test for a given problem are
treated somewhat separately. There is little indication of a general method of
constructing a priori distributions which yield invariant tests or of the require-
ments on the problem in order that the method be successful, or of the class of
tests which can be constructed in this way.

The present paper is focused on testing problems concerning the parameter
of an exponential family of probability densities when the problem remains
invariant under a locally compact group. 4 prior: distributions are constructed
in such a way that the role of the transformation groups leaving the problem
invariant is clarified. Verification that the resulting Bayes tests are fully in-
variant does not depend on an explicit computation of the tests.

The basic idea of this paper arose from the realization that the methods used
in K-S (1965) are intimately related to Stein’s method of obtaining the prob-
ability density of the maximal invariant under a group, G, as an integral over G
with respect to Haar measure. Although Stein’s representation of the probability
density of the maximal invariant motivates the construction of the a prior:
distributions in Theorem 1 of Section 3, neither the construction itself nor the
invariance of the resulting Bayes tests depend upon the validity of the representa-
tion.

However, when Stein’s representation is valid, the Bayes tests obtained in
this paper have an interesting interpretation, and this interpretation permits
the characterization of a wide class of invariant Bayes tests (Theorem 2).

In Section 2, requisite notation and definitions are given, along with back-
ground material on Stein’s representation. Section 3 gives the main general
results on invariant Bayes tests. One specific example, the MANOVA problem,
has been worked out in Schwartz (1966) using explicit computations rather than
the general results based on Stein’s representation, and that paper also contains
a sketch of the general results. (Without the example and background pro-
vided by Schwartz (1966) the formulation of Section 3 below will probably seem
unmotivated and difficult to follow!) Section 5 is devoted to a second example:
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BAYES TESTS FOR EXPONENTIAL FAMILIES 271

the problem of testing independence of sets of variates. Section 6 discusses,
briefly, the problem of testing equality of proportional covariance matrices for
which it is known that every fully invariant test is inadmissible.

2. Notation, definitions and background. Throughout (X, 8§, u) will be a
o-finite measure space and G will be a locally compact group of transformations
on X. Let \ be a fixed (left) Haar measure on the Borel subsets, ®, of G.

DeriniTioN 1. Let G be a transformation group on X. The measure space
(X, 8, u) will be called invariant if 4 ¢ 8 and ¢ ¢ G imply g4 ¢ 8 and
u(gAd) = u(4).

DreriniTiON 2. Let G be a group of measurable transformations on (X, 8, u)
and {Py: 6&®} a family of probability measures on 8 with corresponding
densities ps wrt p. The family {pe; 0 ¢ ®} is invariant if 6 ¢ ® and g ¢ G imply
Pyg™! = Py for some 6’ ¢ ©.

If {ps; 0 ¢ O} is invariant then we shall always assume 6 > 6’ implies ps and
pe- are not densities for the same measure. Then, if the random variable X has
density ps, define a map g — § by stating that ¢gX has density pzs. The set of
all images 7 is a group, G, called the induced group of transformations on ® and
the map ¢ — § is a homomorphism.

For g € G define N, on @ by N\,(B) = ABg). Then (G, ®, \,) is invariant for
each ¢ and therefore A, = (A(g))\. The function A(g), so defined, is a homomor-
phism into the positive real numbers and is called the modular function. If
A(g) = 1, G is called unimodular.

Let B C X contain exactly one representative per orbit. Define F: X — R by
the condition that F(z) and z belong to the same orbit so that F is a maximal
invariant function. Under appropriate conditions there exists a measure vy
on R such that if f is a probability density wrt u, then f* the probability density
of F wrt v is given by

(1) () = [ef(gy) a\(g) = [af(gz) dN(g)A(g0)

where x = goy with y € R. If f; and f are both pdf’s wrt u then from (1) the
probability ratio of the maximal invariant is

(2) AW /FE* W) = [ehilgn) dNg)/ [afalgm) AN (g)

for every « in the orbit of y.

The expressions (1) and (2) are Stein’s representation of the probability
density and ratio respectively of the maximal invariant F. (Note that (2) gives
the probability ratio of every maximal invariant.) The most useful conditions,
in terms of common applications, for the validity of Stein’s representation have
been given by Wijsman (1967) where, among other results, the validity of (2)
is proved for all the usual normal examples. A somewhat different approach is
followed in Schwartz (1968).

The validity of (1) and (2) requires among other things that (X, 8, u) be
invariant. Usually the probability density f will not be given with respect to an
invariant measure, but instead with respect to another measure u; (e.g., Lebesgue
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measure) which is absolutely continuous wrt u. In order to apply Stein’s repre-
sentation as stated, it is then necessary to compute dui/dp and to write the density
wrt p. Equation (3) below gives an alternate expression for the probability
density f*. If one is concerned only with the probability ratio fi*/#.*, then use
of equation (3) avoids the explicit computation of an invariant measure p and
of dui/du.

Equation (3) also suggests the way in which the methods used in K-S (1965)
can be combined with Stein’s representation to obtain a general method of con-
structing invariant proper Bayes tests for exponential problems.

If {fo; 6 ®} is an invariant family of probability density function then
(fo) * depends only on 6%, the orbit of 6. It is convenient to write for for (fa)* so
that f. is a probability density on z or R depending on whether o ¢ ® or o & ©*.

Let w; be a measure on (X, 8) absolutely continuous wrt u (the latter in-
variant). Suppose {fs ; 0 £ ®} is an invariant family of probability density func-
tion wrt u; . If = goy with y ¢ R and 6, 6;, and 6; ¢ © then (1) implies

(3) ‘ £ () = A(go) (dw/dw) (z) [afs-10(z) AN (g)
and (2) implies
(4) (fﬂx'/fﬂz')(y) = ijﬁ'lol (CE) dx(g)/f(?fﬁ—loz (CE) d%(g)-

The proof which is given in Schwartz (1968) uses the fact that, since u is
invariant it follows from Lehmann (1959), p. 252, that

(4,) a=10(x) (du/dp) (x) = fo(gz) (du/du) (gz) a.e. [u].

3. Invariant Bayes tests. Let {Ps";0 ¢ ®, m ¢ M} be a family of probability
densities wrt u; it is not assumed that p is invariant. The hypotheses to be
tested concern the value of the parameter 6, while the parameter m may be
thought of roughly as the sample size. In normal examples M is typically the
interval (p — 1, «) for which the density W ,.(z) defined on the positive definite
p X p matrices by

Walz) = ClZ|™% "7 D% exp {tr — 327%]}

is integrable. If m is an integer this is the usual central Wishart density.
AssumprioN 1. (i) For each m, {ps"; § ¢ O} is a G-invariant family and the
action on © of each g ¢ G, the induced group G of transformations, is the same
for all m.
(ii) pe™(x) has the form
(5) 00 (%) = hu(8) du(z) exp {67 (z)}
where T: X — E* is a measurable function into Euclidan k-dimensional space
and O is a subset of the linear functionals on E*.

For each m ¢ M let P, be the following statistical problem: Z is a random
variable with density pe". On the basis of observing Z test

Hy:060,C ® versus H,:060,C 0O

We assume that P,, remains invariant under G.
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Let P, be the problem obtained from P, after reduction by invariance.
That is, P,," is the problem of testing

Hy*: 0% ¢ ©," < ©F versus H,*:6%¢0,* c 0*

on the basis of observing Z*, the orbit of Z.

Let ® denote the set of all linear functionals on E* such that f ¢ 0, 6 ¢ 0, =
(6 +6)e®;forj =0, 1. For 8¢ 0 define W5: G X ® — 0 by Wi(g, v) =
6 + g 'v. Then Wi[G X ©,] € ©;. We shall find it convenient to construct
measures G X O and from these, by use of the map Wj3, to induce a priors
measures on the parameter set ©. We shall only require that the constructed
measures be finite and not necessarily normalized.

Also for ne M define L,: X X ©® — E' u {+»} by

La(z,v) = [aha(@'y) exp {(§77)T(2)} d(g).

Lemuma 1. Under Assumption 1, let £ = & + & be a probability measure on
O u Oy with &; supported on ©; for 7 = 0, 1. Suppose there exist§ ¢ © and n, m ¢ M
such that ‘

(6) Jo [aha(G)/hu(® + §'v) dN(g) dE(y) < oo.
Then for each K = 0
(7) {z| [, La(x, v) dir(v)/ [0, Lu(z, v) dia(vy) = K}

is a proper Bayes acceptance region for the problem P, .
Proor. Forj = 0, 1 let Q; be the measure on G X @; defined by

Qi(4) = [ [ xa(g, VIha(g %) /hn(8 + §v) dN(g) d&i(¥)-

Then Q; is a finite measure for j = 0, 1 by (6) and for the problem P,, the Bayes
acceptance region corresponding to the measure induced on ® from @ = Qo + @,
by W5 has the form

[ ax® Pirgam (x) dQu(g, ¥)/ [ exe Pwiwm () dQu(g, v) = K.

Substituting from (5) and the definitions of W3 and @Q;, the left hand side of
this last expression becomes

[fo Johm(8 + §'7) du(2) exp {(§ + 5 7) T(2) }hu(G7) /A8 + 5 '7) dN(g) dta(7)]
o fehn(B+5"7) du(a) exp {(8 + G 7) T(2)}ha(§7) /hn(B + ) AN(g) dEa(N)]™
= efoh(gy) exp (8 + §7)T ()} d\(g) da(v)]
o Jora(g™y) exp {(8 + g ¥)T(x)} dN\(g) déo(¥)]™
= [fe fehn(g‘l'x) exp {(77 )T (2)} d\(g) d&(v)]
Jefaha(g™v) exp {(§7v)T ()} dN(g) dbo(v)]™
= [oLa(z, v) d&r(v)/ [0 La(z, v) dko(y).
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The first equation is obtained from obvious cancellations. The second equa-
tion makes essential use of the exponential structure in the elimination of 8.
The final expression, obtained from the definition of L, , proves the lemma, since
all values of the critical constant K can be obtained by considering the measure
@@+ (1 — @)@ for0 = ¢ = 1.

Lemma 1 provides conditions under which the acceptance region (7) is
Bayes. We are interested in conditions which insure that the region (7) is in-
variant.

AssuMpTION 2. p is absolutely continuous wrt a o-finite invariant measure
T on 8.

Lemma 2. Under Assumptions 1 and 2 the acceptance region (7) 4s invariant.

Proor.

[fe La(goz, v) dx(v)1[[ 0 La(gez, ) dbo(¥)I™
= [fofoh(gv) exp {(§'v)(T(g2))} dN(g) dta(¥)]™
Jefehn(gy) exp {(F7¥)(T(goz))} dN(g) do(v)]™*
= [[e [ePi-14(gox) (du/d7) (gox) dN(g) d&x(7)
‘e [api-12(gox) (dp/dr) (gox) dN(g) dto(v)]
= [fo [ o PFo-13-14(z) (dp/dr) (x) dN(g) d&a(¥)]
‘e [aPh15-1v(z) (d/dr) (x) dN(g) dio(v)]™
= [fe [¢Ptin-1v(x) dN(ggo) dta(v)A(go )]
‘[fe [ oDl -1+(x) d\(ggo) dEa(v)Alge DI
= [fe [opi-1v(2) dAN(g) dix(M][f e [a P7-1v(z) dN(g) déo(7)]™"
= [fo Lu(z, v) da(V)][fo La(z, v) déo(¥)] .

In the first equation the definition of L, is written out. The second equation is
obtained by multiplying numerator and denominator by dx(gex) (du/dr)(gor).
The third equation follows from (4") (with w and p in (4") replaced by p and 7
respectively), which is valid because of Assumption 2. The remaining equations
are self-explanatory.

We summarize the results thus far in the following theorem:

TaEorREM 1. Under Assumptions 1 and 2 let £ = & + £ be a probability measure
with &; supported on ©; for j = 0, 1. If there exists 8 ¢ O and n, m e M such that
(6) holds, then (7) is an invariant proper Bayes acceptance region for the prob-
lem P, .

Although the method used in proving Theorem 1 was suggested by Stein’s
representation and especially by equation (3), the actual proof does not depend
on Stein’s representation. If, however, equation (3) is applicable then the test
(7) has an interesting interpretation.
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As in Section 2 let R < X contain exactly one representative of each orbit and
let F: X — R be defined by (F(z))* = z*.

AssumerioN 3. For all m e M and 6 ¢ O, fg» is given by equation (3).

Suppose z = goy and y ¢ R. Then it is easily verified (c¢f. the computations
used in the proof of Lemma 2) that

o Lu(z, v) dss(v)][fe La(z, v) dto(¥)I*
= fo [o Algo)p3-1,(x) (du/dr)(z) dN(g) dily)
[fe [aA(go)p7-14(2) (du/dr) (x) dN(g) dio(¥)]™

Using equation (3), this last expression becomes

[fep5+(y) daa(M[fep5+(y) dba(¥)]™

Hence the acceptance region (7) is identical to the region
(8)  zly = F(2); [fepy(y) da(Mlfep7(y) dbo(v)" < K}.

Forj = 0, 1 let £ be the measure induced from &; on ®* by the map v — v*.
Then (8) is precisely the inverse image under F of

(9) {ylyeR; [Jor pre(y) dta*(v*)[f 0+ P+ (y) d&* (v*)I* < K}

which explicitly shows that the image under F of the invariant region (7) is a
Bayes acceptance region for the reduced problem P,* corresponding to the a
prior: measure £ = 5% + 5"

Conversely, starting with a set of the form (9), by a measurable choice of
representatives V: ©* — © where (V(v*))* = v* one may induce measures
£; on ©; from &*. Then (8) is the inverse image under F of (9) and, under
Assumption 3, (7) and (8) are identical. If, in addition, Assumptions 1 and 2
hold and there exists 8 ¢ ® and m ¢ M such that (6) holds for ¢ = & + & (with
£; obtained from £;* by means of V) then the inverse image under F of the region
(9) (which is Bayes for P,*) is Bayes for P,,.

When £, is obtained from £,;* by means of V the condition (6) can be written as

9 Jeor falta(@V(¥Y)ha(B + gV (Y*)I ™ dA(g) dE* (v*) < .

(We remark, incidentally, that any method of “lifting” the measure £* to ©’
such that *: ©® — ©* gives £* back again, can be used in the preceding derivation. )

Again, we summarize:

TureoreM 2. Let £* = &* + &* be a measure on ©* and (9) the corresponding
Bayes acceptance region for the problem P,*. Let V: ®* — © be a measurable choice
of representatives. If under Assumptions 1,2 and 3 for m & M there exists 0 £ © such
that (9') holds, then the inverse image under F of the region (9) is an (invariant)
proper Bayes acceptance region for P, .

Since every Bayes acceptance region for P,* has the form (9) we have

CoROLLARY 1. If for some m ¢ M the assumptions of Theorem 2 are satisfied
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for every £, then every Bayes acceptance region for P, is mapped by F~' into a
Bayes acceptance region for P, .

In Schwartz (1966) it was shown that the conclusion of Corollary 1 applies,
for appropriate n and m, to the MANOV A problem and in Section 5 a comparable
result will be given for the problem of testing independence of sets of variates.

In the special case that @ acts transitively on ©, then, with 6y & @, (9) has
the form

(10) {ylyeR, [orpis(y)/pi(y) d&* (v*) £ K}.

Since the probability ratio does not depend on the choice of a maximal invariant
function, (10) may be rewritten as

(11) (" | [or (P3+/Dine) (z¥) d&* (v*) = K}.

Let & = &V " as before. If both equation (2), which is Stein’s representation
of the probability ratio, and Assumption (2) are valid, then according to equa-
tion (4), (11) is the image under the map * of

(12)  {z| for [ e pi-1vam (@) NI ¢ Pi-10,(2) AN dia(v) < KJ.

We conclude that if Assumption 3 is replaced by the assumption that G acts
transitively on ®, and that equation (2) is valid for all 6, 6; ¢ © then the con-
clusions of Theorem 2 and Corollary (1) still hold.

4. Further comments. We conclude the general discussion with some mis-
cellaneous comments which may aid in interpreting the results of Section 3.

(a) The generality in considering an arbitrary locally compact group may be
more apparent than real. Invariance of an exponential family may imply that
the induced group, G, is a group of linear-affine transformations (though @
need not be). Compare Lehmann and Stein (1953).

(b) In the MANOVA example and in testing independence M is typically
chosen to be the open interval (p — 1, =) corresponding to the range of values
of m in the density function

2P0 exp §—3 tr =7 s}

(If m is an integer this is the usual central Wishart density and we shall continue
to refer to m as the error degrees of freedom even when m is not an integer.)
Corollary 1 applies to these examples and its conclusion can be roughly restated
as follows: If a procedure is Bayes among invariant tests when the error degrees
of freedom is n then it is Bayes among all tests whenever the errors degrees of
freedom, m, is such that m — n > k (where k depends on p).

(¢) Inthe MANOVA example each positive definite p X p matrix corresponds
to a suitable choice of # in Lemma 1. In the problem of testing independence each
positive definite matrix belonging to the null hypothesis corresponds to a suitable
choice of 8. It should be noted that, for given ¢ = & + &, different choices of 8
(satisfying (6)) alter the a prior: distribution @, + @1 but do not affect the test
statistic in (7).
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(d) There is a traditional method (usually applied when G acts transitively
on both ® and ©,) of constructing invariant émproper Bayes tests by choosing
an invariant measure as the a prior: distribution. The method of Section 3 is
similar but involves the crucial modification of representing a parameter point
@by 6 = 6 + g 'y (in contradistinction to § = g 'y). This was illustrated ex-
plicitly for the MANOVA problem in Schwartz (1966).

(e) For the problems occurring in normal multivariate analysis the Bayes
test corresponding to a given a prior: distribution is essentially unique and
therefore admissible. Of course the traditional method of using improper a priors
distributions does not yield a proof of admissibility of the resulting test.

(f) It often happens that, for each m, {ps™; 6 ¢ ®} is an invariant family under
some larger group, G1 D G, of transformations on X but that &, and 0, are not
invariant under Gi . Assume that the measure = of Assumption 2 is Gy-invariant.
Let N denote (left) Haar measure on G and suppose that Migi |§i 0204} = 0
for all 6 ¢ ©,. Define L,": X X ©®; — E' u {+»} by

L (2, %) = [ ha(@ ) exp { (g ) T(2)} dha(gn)-

If in the proof of Lemma 1 we substitute, instead of the measure ¢, on G X 0,
the measure @, on Gy X 0, defined by

Q' (A) [ [xalgr, V(@ v)/An(® + 317'7) dM(g1) dia(y),

then the measure induced on © from Q," by the map (g1, v) — 8 + §i~' v assigns
all measure to ©; . Let Qo be the measure defined in Lemma 1. If Q,’ is finite the
measure on ® which is the sum of the measures induced by Q," and Q. is a proper
a priort distribution. The corresponding Bayes acceptance region has the form

7" {z| [o,Lu'(z, v) dtr(v)/ [0, Ln(z, v) da(v) = K}.

We note that if G acts transitively on ©, and G acts transitively on 0,
the family of regions (7') (for different K) is independent of £ = £ =+ & . This is
the case for both examples of the next chapter and in both instances the region
(7") turns out to be the likelihood ratio test. Of course, if (7') is a proper Bayes
test, it is a fortior: Bayes among invariant tests and when Corollary 1 applies it
can be obtained by a construction of the type used in Section 3 (but it may be
hard to guess directly the a prior: distribution of this type which yields (7')).

The situation M {g | §i0 £ ©1} = 0 for all 6 &€ ©; might be loosely described by
saying G almost leaves ©; invariant. In testing independence the hypothesis of
non-independence is almost invariant under all linear transformations. Similarly,
in the MANOVA problem the alternative hypothesis £Y £ 0 is almost invariant
under all linear-affine transformations.

6. Testing the independence of séts of variates. In this section the general
results of Section 3 are applied to the problem of testing independence. Some
further notation is required.

- If A is & square matrix, the determinant of 4, the trace of 4, the transpose of
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A and the exponential of the trace of A will be denoted by |4|, tr A, A" and etr 4
respectively. The p X p identity matrix will be denoted by I,.

The random matrices U(p X s) and Z(p X p) are independent and distributed
as follows: The columns of U are independent normal p-vectors with common
unknown covariance matrix Z and the expectation of U is unknown. Z has a
Lebesgue probability density W,.(z) on the positive definite p X p matrices
given by

(13) Wa(z) = CIZ[™e|™ """ etr {—2127"2)
where C is a normalizing constant and m > p — 1. (If m is an integer Z is the
usual central Wishart variable. Consideration of all real m > p — 1 will permit

a more unified statement of the results.)
The covariance matrix 2 is decomposed as

Szu 212 o Zu
!
s = 2‘12 2'22 s E‘2k
Do :
21k crr 2k
where Z;;is p: X p; with D+ p; = p. The hypotheses to be tested are

Hy:Z;;=0 foriv#j versus H, :2;; % 0 for some pair (¢, 7).

We have reduced the usual problem statement by sufficiency. In the usual
situation s = 1 and U is a multiple of the sample mean. However, for any s,
Lemma 3.1 of K-S (1965) will apply to all of the a prior¢ distributions constructed
below. The inport of this lemma is that any test which is Bayes wrt an a priors
distribution of appropriate form when s = 0 (i.e., U absent) is also Bayes for
all values of s. Henceforth we treat the case where U is absent; the general case
then follows from an application of the lemma.

Let GL(p) denote the full linear group of non-singular p X p matrices and let

S, = {p X p symetric matrices},
Pt

E* = Euclidean k-dimensional space.

{p X p positive definite symmetric matrices}

The problem remains invariant under the closed subgroup G of GL(p) con-
sisting of all matrices C of the form

A,
A, 0
(14) C = .
Ay
where A;e GL(p:). G is isomorphic to the direct product GL(p1) % -+- %
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GL(px), so that Haar measure on G is the corresponding product of the Haar
measures on GL(p:). The action of an element 4 £ G on z¢ P," is given by
AzA'.

We proceed now to investigate the validity of the assumptions made in prov-
ing Theorems 1 and 2 of Section 3. Letting I' = =™ and using T' to denote both a
parameter and the linear functional on S, defined by I'z = —3 tr I'z, it is readily
seen that (13) has the form (5) of Section 3 and that Assumption 1 is satisfied.

Letting dz denote Lebesgue measure on P,", it is well-known, e.g. Anderson
((1958), p. 162), that the measure |2| """’ dz is invariant under all transforma-
tions of the form z — CzC’ with C ¢ GL(p). Hence Assumption 2 of Section 3 is
valid.

G acts transitively on H,. Also it follows from Wijsman (1967) that the prob-
ability ratio of the maximal invariant under G is given by Stein’s representation
(equation 2). As noted in the final paragraph of Section 3, the transitivity of G
on Hy and the validity of equation 2 may be substituted for Assumption 3 in
Theorem 2 and Corollary 1.

Let £ = £ + & be a probability measure with £; supported on H, forj = 0, 1.
It remains to investigate the conditions under which (6) and (9") hold. Note
first that if T' belongs to H, (or its closure) then I' & H; implies I' + T ¢ H; for
j = 0, 1. (Clearly this would not be so for I' ¢ H;). We hereafter assume that
T'e H 0.

The specific form which the left hand side of (6) assumes in the present case is

(15)  Jet [olCTVYCTE 4 €y C7 T TTia 1A T dAs de(y)

where C is given by (14) and dA ; denotes Lebesgue measure on E” #* The measure
IT%1 14477 J1é=dA: is both left and right invariant and therefore inverse
invariant. It is also transpose invariant. Hence, the inner integral in (15) is
identical to

(16) felexC™IE + o' TT 1447 IT dd..
There is Cy ¢ G such
I,
(17) CovCy = J s Vol =0t (say)
1,

where ¢ is an array (non-rectangular for £ > 2) required to fill out the matrix.
The matrix Cy is not uniquely determined by (17), noris ~*;if H is any orthogonal
matrix belonging to G then HCyyCy'H' also has the form specified in (17). How-
ever |y*| is uniquely determined by (17). For our purposes any C, satisfying
(17) will do.

Since T' ¢ H, the substitution of T*CC, for C in (16) (where I is the positive
square root of T') transforms (16) into

(18) "™ [olCy* T, + Cy* e/ TTim |40 [Ti dAs.
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Lemma 3. If C & G and v* has the form (17), then
I + Cy*C'l 2 WL, + CC'| = [v*| T15a Lo + 4444,

Proor. We prove by induction on k. If # = 1 then p; = p and v* = I, so
that the result is immediate. Write

<Im V)
*

Y= ,
VU

where U is (p — p1) X (p — p1) and is of the form (17) so that the induction
hypothesis may be applied to U. Let C; be the lower right hand (p — p1) X
(p — p1) minor of C. We have

I, + A, 47 A4, vey
cv'ay I + CUC
= I, + 4141 || Ipp, + CLUCY|
Ay = (Ip, + AAS) AV (T, + CUC)CV'AY|

2 |, + AA) ||y, + CUCY||I,, — VUV'|

= |I,, + A4 ||y, + CCY||U| |, — VUV

= I, + A:4)| [Tpp, 4+ CLCY| 77|

= I, + CC'| |v¥|,

which completes the proof.
Lemma 4. If g;, 7 = 1, ---, k, are non-negative and Zqi = 1 then, for all
w > 0,

IIp + C’Y*C,I =

Lo + Co*C* 2 Thia Ly + A:/ )%,

Proor. It is easily checked that |I, + Cy*C’| = |I,, 4+ A:A/|, forall¢ = 1,
«++, k, from which the result follows immediately.
LemMA 5. Suppose n > max p; — 1. Let ¢ be a probability measure on P,"

and letb = sup {b' | |v*|""" is t-integrable}. Let by = min [b, m]. If
(19A) (m —bo) > 2 talpi— 1+ n — b

or

(19B) m=="by and m —n > maxp; — 1

then (13) s finite.
Proor. We first note that (19A) or (19B) is satisfied iff there exist ¢; = 0
with 2 Yq: = 1 such that

(19C) gi(m — bo) + bo — n > pi — 1, i=1---,k
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Since v is a correlation matrix |'y*| =< 1, so that by = n. Choose b; as follows:
If by = n then by = n;if by > n choose by such that n < by < boand ¢;(m — by) +
by —n) >pi— 1fore=1,--- k.

Using Lemmas 3 and 4 the integral of (18) is bounded above by
S eiee ™ Tha AL, + CC'P|L, + Cy*¢|" 2" [T d4s
< |y [ eC! M T o |47 dA.
My + COP TTia |y, 4 Acd {0
= l,y*l(n—bl)/Z H’E=1flA¢Ai'|("_p‘)/2[lI,,,. + Auiill(b1+q,-(m—bl))/2 1 A,

From (3.7) of K-S (1965) and corresponding considerations near |4:4:| = 0
the 7th factor in the last displayed expression is finite iff p; — 1 < n and b, +
gi(m — b)) — (n — pi) > 2p; — 1. Since n > max p; — 1 and (19C) holds each
factor is finite. Finally |y*|™*/? is ¢-integrable and therefore (15) is finite.

We remark on one special case of (19A). If b = by = n then (19A) becomes
m — n > p — k. Since by = n this shows that '

(20) maxp; — 1l <n<m-—p+k

is a sufficient condition for the finiteness of (15) for all &.

When n > max p; — 1 and either (19A) or (19B) is satisfied then (6) is
satisfied and Theorem 1 applies and yields

TueorEM 3. Let £ be a probability measure on Hou Hy and let n > max p; — 1.
Suppose either (19A) or (19B) 4s satisfied. Then, writing T = T + CVC7,
the a priori measure on G x P,* defined by

ICYCT T + Oy T A7 [T A dg(y)

18 finite and the corresponding Bayes test 1s tnvariant under G.

Similarly, Theorem 2 may be applied. For a maximal invariant in the parameter
space we may choose a function p(Z) whose range is contained in the set of
positive definite matrices having the form (17) and such that = and p(Z) belong
to the same orbit. If £* is a probability measure on the range of p let
b* = sup {b'||p|" "% is £*-integrable} . If for a given m, letting bo* = min [m, b*]
we have

(19%) Either (19A) or (19B) is satisfied with bo replaced by bo*,

then (9') of Section 3 is satisfied. We then have

THEOREM 4. Let £* be a probability measure on the range space of the mazximal
invariant p. Let n > p — 1 and let ¢ be the Bayes acceptance region corresponding
to £* for the reduced problem with n degrees of freedom. If for a given m, (19%)
18 satisfied then ¢ is a proper Bayes acceptance region for the original (unreduced)
problem with m degrees of freedom. In particular ¢ is a proper Bayes acceptance
region whenever m > n + p — k.

6. quarks on the problem of testing independence. (a) All of the Bayes
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tests constructed in Section 5 are essentially unique and therefore admissible.
For a fixed ¢ the resulting test statistic does not depend on the choice of T' ¢ H,
in the representation I' = I' 4+ C"yC™" although two different choices of I’
result in two different a prior: distributions.

(b) The problem of testing independence offers a second example for the
application of Remark (f) of Section 4.

Although GL(p) does not leave the independence problem invariant it almost
leaves H; invariant. If T' ¢ P," then the Haar measure of {g | g € GL(p), gTg’ 2 Hy}
is zero. Hence, under Hy we may write T' = I' + g "'yg" where ' ¢ Hy, vy ¢ P,"
and g € GL(p). Under Hy, v is restricted to Ho and g is restricted G.

Suppose GL(p) x P,' is assigned the a priori measure

(21) lgvg "I + gvg' |7 |gg' " dg dia(v)

where dg is Lebesgue measure on E” * and £ is a finite measure. Since GL(p) acts

transitively on P,', the measure on the parameter space induced from (21) by

(g,7) = T + ¢ Vyg " isindependent of £ and by the previous paragraph is sup-'

ported on H; . From (3.7) of K-S (1965) it is finiteif p — 1 <n < m +p — 1.
Similarly G x H, can be assigned the measure

(22) [CVyCMD + ¢y H’:-d |47 dA i d&(v)

where C is defined in (14) and £, is a finite measure on Hy. Again, since G acts
transitively on H,, the measure induced on the parameter space from (22) is
independent of & . It is supported on Hy and is finiteif p — 1 <n<m-+p —1
since it is finite even under the less restrictive condition maxp; — 1 < n < m +
max p; — 1.

The Bayes test corresponding to the sum of the measures induced from (21)
and (22) is the likelihood ratio test.

(¢) In the special case p = %, (19C) reduces to m — n > 0. Clearly this is
also a necessary condition for the finiteness of (15). For £ < p it is not known
whether (19C) (and therefore (19A) and (19B)) might be weakened, though it
appears somewhat doubtful.

7. Testing the equality of proportional covariance matrices. Let Z; and Z,
be independent Wishart matrices with parameters 2, and Z; = kZ; respectively
with =; ¢ P, unknown. The problem of testing k¥ = 1 vs. k % 1 remains invariant
under all linear transformations. The best invariant test is inadmissible. (See
K-S (1965), Section 7 (ii).) Therefore this test cannot be Bayes and it may be
of interest to determine which of the assumptions of Section 3 fail.

Writing Ty = 2,7, T» = k'Ty, the problem is to test k™ = 1. If T e P,"
then I' 4+ T is not proportional to I' + T's for all Ty of the form kT . In terms of
the notation used in Section 3 the set © consists only of the linear functional
which is identically zero.

All of the other assumptions are satisfied. Indeed, if Hy is enlarged (say) to
the hypothesis =; 2, , then the results of Section 3 can be applied.
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