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EXISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN’S
ERGODIC THEOREM!

By Micuer METIVIER

Cornell University and University of Rennes

0. Introduction. 7 being a Markovian positive operator acting on L;(\), and
prolongated to the space M*(\) of all \-equivalence classes of positive fune-
tions, we are looking for finite f ¢ M*(\) such that Tf = f. By using a very
skillful and deep construction due to Ornstein (cf. [8], Part III), we give an
existence theorem of such a T-invariant f, T belonging to a suitable class of con-
servative Markovian operators (Theorem 1), and we make clear a general
setting in which an ergodic theorem proved by D. Ornstein for random walks
([8]) can be stated. Namely, for any bounded function h with a suitably
“bounded” support and verifying [k d\ = 0, the function sup, | D i~ T°h| is
bounded by pf, p constant.

Beside this situation, which for our convenience we call “the abstract case”,
we are looking in Section 3 at the problem of finding a o-finite » such that » =
vP (ef. Definition in 1.7 through 1.9), where P is a Markov kernel, and state the
previous ergodic theorem in this situation which we call “concrete case.” We
prove in 3.2 that our hypotheses in the “concrete case” are essentially equivalent
to those of Harris’ theorem on invariant measures. (Cf. [2] and our Theorem 4.)
We give thus an alternate proof of the Harris theorem. Moreover, by introducing
natural topological hypothesis, when E is locally compact, we can state that the
invariant measure is a regular Borel measure, and we are allowed to use the
word “bounded” above in the usual topological sense (i.e. with compact closure.
Cf. Theorem 5).

The Part 4 is devoted to ratio limit theorems for Markov kernels, strengthen-
ing N. C. Jain’s result insofar as we prove that, in some cases, “almost every-
where’” can be replaced by “everywhere’ in Jain’s statements. In fact it is proved
in [5] that, if P is any Harris Markovian kernel, and if A is a P-invariant meas-
ure, for any A and B measurable with A(B) < + «,

liMn.e 2 i PX(2, 4)/ 20 P*(y, B) = M(4)/N(B)  for every z and y
outside a A-null set (depending on A and B). We prove in fact (Theorem 6 and
7) that, if A and B are “bounded sets” (Cf. Definition 4.1) the above limit
holds for every z and y.

The main statements of Part 4 were “strongly” suggested by D. Ornstein, to
whom we are much indebted for helpful discussions throughout the writing of

this paper.
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under contract No. GP-4867.
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1. Preliminaries.

A. The state-space.

1.1. E is a set and ® is a o-field of subsets of E. In some cases, which will be
specified, £ will be a locally compact topological space denumerable at infinity
(i.e. union of denumerably many compact subsets), and & will be the o-field of
Borel sets of E. In the latter case a regular Borel measure is a measure A defined
on ®, finite on compact subsets of £ and such that for every B e & A\(B) =
sup {MK):K compact, K C B}.

1.2. o’ (respectively 9mt) denotes the vector space (respectively the convex
cone) of bounded measures (respectively of positive measures).

1.3. &. (respectively £.1) is the vector space (respectively the convex cone)
of bounded ®-measurable real functions on E (respectively bounded positive
®-measurable).

14. Y is the convex cone of positive (finite or not) measurable real functions
on E. If v is any o-finite measure we call M *(») the convex cone of equivalence
classes of function in M for the equivalence relation: “equal » almost every-
where.”

B. Operators T and T*.

1.5. A being a o-finite measure on (E, ®) a positive-Markovian operator T is a
positive bounded operator on the space Li(A) such that [ Thdx = [ hdx for
every h e It ().
The adjoint mapping L, (A\) in L, () will be noted T*.

1.6. We recall the following (cf. [7], Chapter V): For every increasing sequence
(g») in Ly"()\) such that sup, g. = ¢ € Li"()\), we have sup, T¢g, = Tg. And
using a standard procedure T can be prolongated into a linear mapping of M *())
into M (\) still denoted by T, such that for every increasing sequence (g,) in
M™*()\) we have

T(sups gn) = supn T(gn).

C. Markovian transition kernel and associated Markovian operator.

1.7. A Markovian transition kernel P is a positive real function defined on
E x ®, such that for every x ¢ E P(z, -) is a probability on ®, and for every
Be® P(-, B) is a ®-measurable function.

1.8. As usual we denote by » = »P the positive-linear operator defined on oM’
and ot by:

vP(B) = [ »(dz)P(x, B)
and we denote by b = Ph the positive-linear operator defined on £. and ™" by
Ph(z) = [ h(y)P(z, dy).

1.9. If X\ is a o-finite measure on (E, &) such that AP is absolutely continuous



INVARIANT MEASURE AND ORNSTEIN’S ERGODIC THEOREM 81

with respect to A and ¢-finite, it is immediately seen from the Radon-Nikodym
theorem that for every g ¢ L'(\) the P-transform (g-A)P of the measure g-\
(measure defined by the density g with respect to A), is of the form ¢’ \ where
the class of g’ in L;()\) depends only on the class g in Ly(»). So that we can de-
fine an operator T in L;(\) such that

(Tg) N = (g-ME.

Tt is at once verified that T is Markovian and that T™ is such that if A & L.(\),
T*h = equivalence class in L,()\) of any Ph for k ¢ A.

T will be called the Markovian operator associated with the Markovian tran-
sition kernel P.
1.10. For our convenience, when dealing with a Markovian operator in L'()\),
we say that we are in the “abstract case,” while when dealing with the study of
the operator P on 9" and 9° we say that we are in the “concrete case.”

Conforming ourselves to a traditional abuse of language we call functions the
elements of L'(\) and write f = g A a.e. when f is a function belonging to the
equivalence class g £ L'()\).

2. T-invariant functions and Ornstein’s ergodic theorem (abstract case),
for some conservative-operators in L;(A). In this paragraph we deal with the ab-
stract case: T is a Markovian operator on L;()\), A being a o-finite measure on
(E, ®).

We are first looking for a T-invariant function, i.e.: an f ¢ MT()\) such that
Tf = f, f being finite A a.e.

We will use an hypothesis, namely (ii), the analogous of which in the concrete
case, will appear as an hypothesis on the “absolutely continuous part” of the
kernel. (Cf. 3.3 below).

2.1. TureoreM 1. Let us suppose that T is a positive Markovian operator on
Li(N\), verifying the hypothests:

(i) For every g € Li(\), g = 0 and N[jg > 0] > 0,

Do T = 4+ A ae.

(i.e. T 1is conservative and with only & and E as invariant sets cf. [7]).

(ii) For each measurable set A of finite measure and each real ¢ > 0, there exists
a measurable K C A with A\(A/K) < ¢, an inieger k and a real o > 0 such that
Sor every measurable J € K

o T 1,(z) 2 aN(J) N ae.on K.

Then, there exists a T-invariant finite f € MY (\). This f is strictly positive \ a.e.,
and f-\ is a o-finite measure on (E, ®). The only T-invariant functions in M *(\)
are the functions p-f where p is a positive constant.

Proor. 1°. We begin with constructing a sequence (B,) of sets of finite meas-
ure, such that AN(E/U,B,) = 0, for each B, exists an integer k, and a real
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an, > 0 such that for every measurable J C B,

(2.1.1) o T¥1,(x) = axM(J)  Ma.e. onB,
and
(2.1.2) Yn, m, k ess supyes,, T'ls,(y) < .

\ being o-finite we can, using (ii), construct an increasing sequence (K,) such
that \(E/U,K,) = 0 and for which the property (2.1.1) is true. There exists a
g € Ly(\) such that ¢ = 9,.-1k, for suitable real numbers 5, > 0.

In view of the integrability of g and T"g for every 4, there exists 4, < K, such
that AM(K,/A4,) < 1/n-2" and

(2.1.3) SUPyea, Dormo Tig(y) < + o0 A ae.
If we write
Bn = nkgnAk )

we see easily that (2.1.1) and (2.1.2) are true, with N(E/U,B,) = 0.

2°. Construction of f. Let u and v be two disjoint measurable sets of strictly
positive A\-measure included in some of the preceding B, . Let u and v be two
positive bounded functions null outside U and V respectively and such that

(2.14) Judy = [vadr
We denote by w a bounded function null outside B, and such that
(2.1.5) w = sup (u, v).

Such a system (U, V, u, v, w) always exists as a consequence of the hypothe-
sis and properties of (B,).
The following construction comes from [8]. We write

U = U, 7 =0,
(2.1.6) U = Tuy — s, 1?2 = inf (Tu, v),

tn = Ttins — Bny O = inf (T, v — S0 5;),
and

v =, % =0,
(2.1.7) :

inf (Ton_y,w — D371 ;).

;g, eee
I

Up = Tvn—l - an )
From the definition of %, and %, we get at once:
(2.1.8) Yn Dpad; S and drid; S u

and by recurrence on 7, it is immediately seen that u, and 7, are in I, *()).
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As T is Markovian we get from (2.1.6) and (2.1.7)

(2.1.9) Jundh = fud\ — [ Dt :d),
(2.1.10) Jondh = [vd\ — [ 27 ficd

The formula (2.1.6) gives too:
(2.1.11) Tt ws) = T w) + TS o).

Because of (2.1.8) and by recurrence on j, we get by using (2.1.11),
(21.12) T tw) £ DT N as.on Saps = [ us = 0]
We define
(2.1.13) f= D2 tu+ 0.

The sum being taken in the A a.e. sense, which is meaningful since the u; and
v; are =0.

3°. We prove now that f is N-integrable on each B, . Let B be any set of the se-
quence (B,) such that B D U u V. We assume first that ¥n A(B n S,) = 0.
Then, according to (2.1.12):

(2.1.14) Vn essinfycans,,: Dk o T (Xt wi)(y)
< eSS SUDycans, s 2im1 2= T'w(y).
If k, @ and K are as in (ii) for every g in MT(\) we have VJ measurable CK
Jr 250 Tigdh = [ g- (25— T*1,) d\ 2 aM(J) [x g AN
which proves that for every g ¢ MT()\)
(2.1.15) Dk Tg(z) = afxgd)\ A ae.on K.

If we apply this to B and g = >t us, we get the existence of an integer %,
and a real @ > 0 such that, under the assumption N(B n 8,) # 0 for every n

(2.1.16) Vn [5 D iauidh S oM,
where
(21.17)  ess infyenns, . 21 2oimo T'w(y)
< eSS SUpyes O i O ime T'w(y) = Mp < + .

Suppose now on the contrary that A(B n S,,) = 0 for some n,. According
to the definition (2.1.6) this means that on ¥V < B we have v < 2 1% #;
which, with (2.1.8), implies v = >_7% ¥; M a.e. So that, as a consequence
of (2.1.9) Uneex = 0 X ae. for all ¥ > 0, and

(2.1.18) [ 2 ui(@)A(dz) £ 208 [ wi(z)N(dz) S nof u(z)\(dx).

We do the same reasoning for ) 1 v; , and prove thus that in any case ) i~
(u; + v;).1s integrable on each B,, .
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The finiteness A almost everywhere of f and the o-finiteness of f-\ result from
this.

4°, We prove now that f = D oy (us + v;) is T-invariant. According to the
definition :

Tt (wi + ) = i w4 0o — (u+0) + 2080 (@ + ).

As T commutes with the increasing limits and as (u + v) — D i @ +
7; =2 0. We have
(2.1.19) Tf < f.

But, by the following standard argument we deduce that Tf = f.
As a consequence of hypothesis (i) we have either A[f — Tf > 0]) = 0 or

(2.1.20) [ (f = T) X T*15,dN = + 0.
But as this last equality is contradicted by
+o > [flp,d\ Z lim, [ (f — T7f) 15, d)
| — limg [ (f = TH (Dl T15,) d\ 2 0,

we have M([f — Tf > 0]) = 0.
5°. We prove that Nf = 0] = 0. For every B,, according to the reasoning
leading to formula (2.1.15),

(2121) @ [a, f()\(dz) S essinfycs, 2 5= TF(y) = ess infyes, k-f(y)

for some (e, k) depending only on B, , with & > 0.

As f = u the left member of the last inequality is never zero for sufficiently
great B, . So that for every = ess infy¢p, f(y) > 0.

6°. We prove the unicity of f up to a constant factor. Consider the T-invariant
function f just constructed, and let » be the measure f-A. As f is strictly positive
and finite \ a.e., we have M*(») = M*(\) and Lo(») = Lo()). We can define
a positive operator T'in M*(») by

(2.1.22) he M*(»)  Th =f7T(h-f).
If h e Li(v), that is f-h € L;(\) we have
(2.1.23) [Thdv = [ T(h-f)d\ = [h-fd\ = [ h- dv.

This proves that T restricted to Li(») is a Markovian operator. Moreover, from
[Th-gdv = [ T(h-f)-gd\ = [ h-f-T*gdn,

(2.1.24) YheM™(») [Th-gdv = [h-T*dy,

we deduce that

(2.1.25) ™ = 7%
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But if h ¢ L*(»)
Th = 7 T(|Bllw-f) = Al

which proves that T acts continuously on L®(»). Therefore 7* which acts on
L'(») (see for example (2.1.24) above) acts also continuously on L'(»). Inter-
changing the roles of 7™ and 7T, and noting that T™ is conservative with only an
invariant set, we deduce from a classical result that the only invariant functions
for T are the constants (cf. [7] Chapter V). But then the only invariant functions
for T' are, according to (2.1.22), of the form p-f where p is a constant.

2.2. TaroreEM 2. (Ornstein’s Ergodic Theorem—Abstract case.) Let T be a
positive Markovian operator on L'(\) for which the following hypotheses are true:

(i) For every geL'(\), g =0 and Afg > 0] > 0,

S0 Tfg = + oo A ae.

(ii) For every measurable set A of finite measure N(A) and every e > 0, there
exists a measurable K C A with M(A/K) < e, a real number & > 0 and an in-
teger k such that:

VY J measurable € K D %= T*1, = an(J) A ae.on K.

1°. Then, there exists an increasing sequence (By) of measurable sets of finite
measure such that N(E/U,B,) = 0 and such that for every g bounded null outside
some B, , with fgd)\ =0,

(2.2.1) SUDm | 2oma T < pf N aee.
where f e MT()\) is finite and T-invariant and p a constant.

2°. The inequality in (2.2.1) holds uniformly with the same p and f for all g
verifying [ gd\ = 0 and |g| < 15, .

Proor. 1°. We consider the sequence (B,) constructed at the beginning of
the proof of Theorem 1. Then we consider g null outside some B, . We call B
this B, . We suppose [ gd\ = 0 and write g = 9" —¢g,9  =u,g” =vand
denote by w a bounded function null outside B and greater than or equal to
| g |. We consider the functions u , #; , v;, ; as defined in the proof of Theorem 1
and write (2.1.6) in the following way:

T = T™u,
(2.2.2) T s = Ty — T" 0y,
u,.;l = T’Um ad 17,,.,.1 .

We get
(2.2.3) T'w = Un+1 + Zl?;ol Tkﬁ,,_k.'.]
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so that, just as in [8], we write
DTyt = 2 w4 Do Dotk Tl ,
STy = 2 e 4+ 2o Dot Totli

But as
Dt Sv=¢g and DlapfianSu=g"
we have
STt = iR w+ D po T and .
2T = 2 v+ D2 T
So that
(2.24) (2o T < D wi + v

where it is known from Theorem 1 that D = u + v; is necessary of the form
p-f where f is a constant and p a T-invariant finite function.

2°, If we go back to the definition of S, in (2.1.12) we see that A\(BnS,) = 0
would imply V < Uia[ux > 0] and then » = > %y 7; N a.e. According to
(2.1.9) this would give u, = 0 X a.e. and then S, = S,_; so that N(B n S,_1)
= 0. As A\(B n 8;) > 0 by hypothesis, we see by recurrence on n that AM(B n
S,) # 0 for every n. The inequality (2.1.16) shows that

(2.2.5) [o( 2w+ 0) dh < o 'Mp

where o depends only on B and My = ess supyes 2= T°15(y), k depending
only on B too. The T-invariant function p-f on the right side of (2.2.4) must
verify p [ fax < o'Mp . This proves that all the p’s corresponding to all the
considered functions g are smaller than oM/ _f S d\, which finishes up the
proof.
2.3. THEOREM 2.bis. Let us suppose that T is a positive Markovian operator on
L'(\) for which hypotheses (i) and (ii) of Theorem 2 are true.

1°. Then, there exists an increasing sequence (B,) of measurable sets of finite
measure \ such that N(E/U,B,) = 0 and such that for every g bounded null out-
side some By with [ g-fd\ = 0

(2.3.1) sup, |2 ma Tl = p N ae.

where p is a constant.

2°. k being fized, the inequality (2.3.1) holds uniformly with the same p, for all
g verifying [ g-fd\ = 0 and |g| < 15, .

Proor. Denote by f a T-invariant function in M+(\) and » = f-\, and T is
the operator on I;(») defined in the part 6° of the proof of Theorem 1.

We first note that we have the following equivalent conditions:

(2.3.2) VJe® JCK 2F0T,ZanJ) N ae.on K;
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(2.3.3) Yh and g measurable bounded null outside K
[k T*h)-gdn 2 af hd\- [ gdx;
(234) VJe® JCK DiaT1,ZarJ) M aeon K.

It is, in fact, easily seen that (2.3.3) is equivalent to (2.3.2) and in the same
way, as [ Q=0 T™h)-gd\ = [ h-(D = Tg)d), it is evident that (2.3.3)
is equivalent to (2.3.4). As T™ is a Markovian operator on L;(») such that
T = (T*)*, we see from this equivalence that if (ii) is true for (K, », T*) it is
equally true for (K, », T).

But f being finite N a.e., we can construct an increasing sequence (K,) of sets
of finite A-measure, such that A(E/K,) = 0 and such that on each K, , (i) is
true while f is bounded on K, . We then have

Vie®, JCK. 2T, 2 af,f dv = a'v(J) v ae on K,

where o' is another strictly positive constant.

The equivalence of (2.3.2) and (2.3.3) applied to the operator T* on L'(»)
(instead of T on L'()\)) proves that condition (ii) is true for T = (T™)* and ».
We can then apply Theorem 2.

3. Invariant measures and Ornstein’s ergodic theorem for Markovian ker-
nels (concrete case). In this paragraph we consider a Markovian kernel P(z, A)
defined on (E, ®) (cf. 1.7.), such that the successive iterates P’ of P can be
written

(3.1) Pi(z, 4) = [.d°(z, 1)Mdy) + s°(z, A).

\ being a o-finite measure on (E, ®), the d® being measurable on (E % E,
® ® ®), and for each x, the measure s (z, -) being singular with respect to A.

3.1. THEOREM 3. Let us suppose that \ is a o-finite measure such that \(4) <
+ oo implies NP(A) < + o and NP s absolutely continuous with respect to \.
We suppose moreover that

(j) VA measurable A\(A) > 0= Y 5 Pi(z, A) = + \ a.e.

(jj) For every A measurable of finite \-measure, there exists a measurable set
K c A, with M(A/K) < ¢, an integer k and a real number a > 0 such that

{y: Dm0 dP(x,y) > o} DK for N almostall zeK.

Then
1°. There exists a P-invariant o-finite measure f-\.
2°. There exists an increasing sequence (B,) of sets of finite measure A\
}uch that \(E/U,B,) = 0, and for every g & Lo(\) null outside some B with
gdax = 0:

(3.1.1) Sup, | 2i=1 (d/dN) (g MNP = pof A ae.

3°. k being kept fized, the inequality in (3.1.1) holds uniformly with the same p
for all g verifying [ gd\ = 0 and |g| < 15, .
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Proor. As NP is by hypothesis absolutely continuous with respect to \, we
can associate with P the Markovian operator T on L;(\) as defined in 1.9. As
(j) and (jj) imply trivially the conditions (i) and (ii) of Theorems 1 and 2
we deduce at once the actual theorem from the previous ones.

TrEOREM 3. bis. Under the assumptions of Theorem 3 ((j) and (jj)), for every g
bounded null outside some B; and for which f g fdn=0

(3.1.2) supa | 2iw [ 9Pz, dy) € p N ae

where p is a constant. k being kept fixed, the inequality in (3.1.2) holds uni-
formly with the same p for all g verifying [ g-fd\ = 0 and |g| £ 15, .

Proor. This is a trivial consequence of Theorem 2.bis.
3.2. Ergodic theorem for Harris’ case. We recall that in [2] Harris proved the
existence of a P-invariant o-finite measure in the concrete case, if there exists a
o-finite measure m such that (3.1) holds with m instead of A and if the following
assumption (c¢) is true.

(c) m(A) >0=VeeE Pl eola(X:) = +0] =1

where P, is the probability law of the Markov process (X,) associated with the
kernel P and starting from z.

It is clear that the same result is true if we replace (¢) by

(¢') there exists an B’ C E with m(E/E') = 0, Pz, E/E') = 0 for every
z e E and

m(A) >0=>Vre B Pl) i 1.4(X:) = +w]=1

we describe this situation [(3.1) and (¢)] as the “essential Harris’ case.”

It has been proved by Jain [4] (c.f. also [1] and [3]) that the “essential Harris’
case” is equivalent to the following: There exists a o-finite measure A such that
MA) < 4+ implies AP(4) < +», AP is absolutely continuous with re-
spect to A and the following two hypotheses hold:

(NS) (non singularity). (3.1) holds and there exists x and 7 such that
My:d'(z, y) > 0} > 0, (c2) = hypothesis (j) of Theorem 3.

We have then the following:

TuEOREM 4. The hypotheses of Theorem 3 are equivalent to the ‘“‘essential Harris’
case.”

Proor. It is trivial that hypotheses (j) and (jj) imply (NS) and (cz).

We have then only to prove that in the Harris’ case (jj) is true. Let A be a
set such that 0 < AM(4) < + . It is proved in [2], Lemma 2, that for every
€ > 0 one can find C C 4, § > 0, and an integer r such that, N(4/C) =
¢/4 and (writing a = A(C) > 0)

(3.2.1) VeeC My:D = d9z,y) > 8 = MNA) — ¢/4 = a — ¢/4
Let us denote
8 ={(x,9)i(z,y) eC x C, 2o d(z,y) > 8;
S ={y:(z,y) e 8); 8 ={x:(z,y) e 8}
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we then have

(32.2) A ®AS) = [¢MSHNdn) = [ A(SH)HNd(dE) = a(a — ¢/4).
From this and from \(S,”) < a we deduce

(32.3) (2¢/4) - Mn:N(S,") < 2¢/4) + a-Mn:N(S,) 2 2¢/4) = a(a — ¢/4)
so that

(3.2.4) Mnin(S,)) = 2¢/4) = a — 3¢/4.
We write B = {y:y € C, \(S,’) = 2¢/4}, we then have
(3.2.5) BcA and MB) 2 AN4A4) — e

As for every x ¢ B C C we have A(S,') = MC) — ¢/4, it comes from
the definitions of B and S:

(3.2.6) A8 nSS)) = e/4
so that, using (3.2.1) and (3.2.6), V(z,y) ¢ B x B
Vi 4P, y) 2 07 e dP (2, m)N(dn) L dP(n, p)
r fs,lns,,z Zi=1 d‘”(w-n)k(dn)ZH d(’)('ﬂ, Y)
r b’ /4.
1%, the last inequality and (3.2.5) prove that

[\1\Y l|V

If we write 2r = ka
(33) is true.

Remark. The proof of Theorem 1 gives then an alternate proof of Harris’
theorem on the existence of an invariant measure.

3.3. Topological case. We now state a theorem under some natural topological
assumptions. The measure N we are considering is supposed to be a regular Borel
measure on E (see 1.1) which is a locally compact topological space. To avoid
useless complications we assume E is denumerable at infinity. In this topo-
logical situation we will always assume that the Markovian kernel P on (E, &)
possesses the following properties:

For every z ¢ E, P(x, -) is a regular Borel measure in (E, B). This im-
plies that for each regular Borel measure u on (E, B) uP is regular Borel as
soon as it is finite on the compact subsets of E.

We assume (cf. 3.2 above for the generality of this assumption) that AP
is absolutely continuous with respect to A, and moreover that AP is finite on the
compacts. (Then it is regular Borel.)

TaEOREM 5. Let E be a locally compact topological space, and N and P as pre-
viously described. We suppose that

(j'y YA Borel measurable

MA) > 0= D5y Pl(z, A) = +oo.

(i'i’) The functions d®(z, y) of formula (3.1) are lower semicontinuous on
E x E and

VeeE Ufy: d¥(z,y) > 0} D support (A).
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(") For every compact K< E and any integer k, the density d(AP*)/d\ s
bounded on K.
Then
1°. There exists a P-invariant regular Borel measure v = f-\.
2°. If g is any bounded function, null outside some compact set K with f gdx =0,
then

(3:3.1) supa |(d/dN) 201w (9-MP| S p-f N ae.

3°. If g 7s any bounded function, null outside some compact set K, with fg-fdn =
0, then

(3.3.2) sup, | 271 Plg| < ¢

In these formulas p and c are constants, depending only on K and ||g||« .

Proor. Let T\ be the operator on L;(\) associated with P and \ (if 1.9). We
prove only that we can apply Theorem 1, 2 and 2 bis, as in the proof of Theorems
3 and 3 bis, and that we can moreover take for a sequence (B,) any increasing
sequence of compact sets (K,) such that A(E/U,K,) = 0. That is to say,
according to (2.1.1) and (2.1.2), for any compact K C Supp ()),

(33.3) dk and a>0 suchthat YJC K D ioP%(x,J) = an(J),
(3.34) Vi ess supg TW'lx < + .

This last inequality is a trivial consequence of ().

As to prove (3.3.3) we proceed as follows: According to the hypothesis
(]]) every compact K C Supp (M) can be covered by the open sets
{fy: 20 d® (2, y) > O} We can then find n(z) and @, > 0 such that

{y: 218 d9 (2, y) > ad}.

But, because of the lower semi-continuity of (', y) = 2.5 d? (2, y) we
see that, for every z’ in a suitable neighborhood of z,

Kc{y:2Md%@, y) > ad
so that by the compacity of K again, we can find a k and an « > 0 such that
(3.3.5) Kciy: 2 ted®(z,y) > a for every z ¢ K.

(8.3.3) is then an immediate consequence of (3.3.5). And this proves the theorem.
The proof of the theorem proves that
COROLLARY. In the statement of Theorem 5 we can replace (', i) by the following:

(j"i") There exist lower semi-continuous functions

8Pz, y) £ d”(x,y) such that
VeeE Uio{y:6®(z, y) > 0} D Supp A

3.4. ReMArk. The condition (j”j”) is in particular true for the following
convolution operators in B"

P(z,A) = [4d(y — z)dy + 8$(A — ) = u(A — )
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where 8 is a measure, singular with respect to the Lebesgue measure. We can
in fact take 6 (2, y) = p*“ ™ xd * d(y — z) and even 8 (z, y) = d*(y — z).

4. Further limit theorems in the concrete case. In this section we deal either
with the Harris’ case or with the more precise topological case described by the
hypothesis of Theorem 5. As AP is always supposed to be absolutely continuous
with respect to A, we denote by T the operator on L;(\) associated with P. For
convenience we introduce the following:

4.1. D=srINITION. A set B’ C E will be said “bounded” if it is included in a
measurable B such that

(4.1.1) Yk ess supyes TF1s(y) < +
and
(4.1.2) dk,a > 0 suchthat VJ c B

ess infrep D io T*1,(z) = an(J).

It has been proved that in the Harris’ case, E is \ a.e. the union of an increas-
ing sequence of bounded sets, and, in the topological case that, under the hy-
pothesis of Theorem 5, every compact subset of E is “bounded” in this sense.

Moreover, if A is invariant, the condition (4.1.1) is trivial for any set B,
because then T"15(y) < 1 \ a.e.

4.2. THEOREM 6. Let P a Markovian kernel, verifying the Harris’ hypotheses,
or the stronger topological hypothesis of Theorem 5, \ being supposed from now
on a P-invariant measure. Let u and u' be two finite measures supported
by “bounded” sets and with ||u| = [u’[|. Then, for any “bounded” set A

(4.2.1) lig e [ D5 wP*(4)/ 2ok WP (A)] = 1.

CoroLLARY. Let P be a Markovian kernel verifying the hypothesis of Theorem
6. Then, for every x ¢ E' and y ¢ E', where E is the union of “bounded” sets, and
any ‘“‘bounded” set A

(4.2.2) iMoo [ 251 Pr (2, A)/ 20 Py, A)] = 1.

Proor. The theorem and its corollary are an immediate consequence of the
following proposition.

ProrosiTioN 1. Let P be a Markovian kernel as in Theorem 6, and \ a P-in-
variant measure.

Let u and v two positive finite measures with the following properties:

(A") There exist 2 “bounded sets” U and V such that u(U) = »(V) = |ju| =
lI7[l.

(B') v = v\ where v & Lo(\) and (du/d\) & Lo(N), du/d\ is the Radon Niko-
dym derivative of the absolutely continuous part of u with respect to \. Then (4.2.1)
holds with " = ».

Proor..The proof of the proposition rests upon the following construction and
sequence of lemmas. Let us suppose that the conditions of Proposition 1 are ful-
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filled. We generalize the construction of 2° of the proof of Lemma 1 by reasoning
with the vector lattice 91°® instead of L;(\). We define, as in (2.1.6),

M= p = 0, 7 = inf (g, »),
(4.2.3) M2 = HIE - '172 5 172 = 1nf (p,l_B, vV — 51),
Mn = I-"n——l.l_) — Vg, ¥n = inf (,un—lf, vV — Z:n;ll 7:‘)-

We also write, because ¥, is necessarily absolutely continuous with re-
spect to A, #, = ¥,-\. The measures v, = v,-\ and fi, are defined in a similar
way.

We get immediately the following extensions of formulas (2.1.8) through
(2.1.10):

(4.2.4) Vn 2 ja;<v and 2 jag; S u;
(425) lall = Nl = 1l 2250 515

(4.2.6) A lall = floll = 11205 -

But as |[u]| = [|v]| and because of (4.2.4)

(4.2.5) loall = Ny = 223l = [0 — 2imw) d)s
(4.2.6) loall = Il — 220 il

LemMA 1. Under the previous conditions, for every B “bounded” and for every
integer |

2 mPY(B) < .
We have even the following:
(4.2.7) 71 uP'(B) = K-[vl

where the constant K depends only on B and I, not on pu.

Proor. We have only to extend to the present situation the part 3° of the
proof of Theorem 1. We prove first, that, for every n, there exists J, C V =
[v > 0] with A(J,.) > 0 and > 7 ui(J,) = 0. Suppose that for some n, ¥J C
V = > 0], \(J) > 0 would imply > 7 u:(J) > 0. This expresses that »,
and therefore all measures #;,7 = 1, --- ,n, and p;yP, ¢ = 1, -+, n, would
be absolutely continuous with respect to m = ZLI u; . We can then read the
equalities (4.2.3) replacing all py, -+, pn, %1, *++, ¥n by their densities and
deduce that for m almost all z ¢ V we have dv/dm = Y j— (d#;/dm). So that
y = D %;%;. But, according to (4.2.5") we would have |ju.]] = 0 and
St ui(J) = Drtawi(J) > 0 as soon as A\(J) > 0. Then, if there exists
Joa © V = [p > 0] with N(Jng) > 0 and D25 pi(Ja1) = O there exists
Jo C V = o> 0] with N(J,) > 0 and > 7 ui(Js) = 0. As, by hypothesis,
p(V) = 0 and A(V) > 0, we see, by recurrence on n, that the property is true
for all n.

So, let us write J, € V = [v > 0] with A\(J,) > 0 and D> 7 pi(Ja) = O.
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As in (2.1.12) we obtain that, on J,.;, we have the following inequality be-
tween measures:
(4.2.8) 2wk = 25 (X T ) g
Let k, a be such that
YJcCB DE Pz, J) = ar(J) Na.eon B.
Then
VJ C T 25550 2iawl’ () = [ 20 20 Bz, J)wE'(de)
2 aN(J) 2t uP'(B)
which proves that
a2t wiP'(B) < essinfueny, ;. (d/dN) (2255 208 piP?) ().
But (4.2.8) then gives
2ty wiPY(B) S o ess infaes,0,, 4 (d/dN) (20555 20000 vP) ()

and as »P" is absolutely continuous with density T"v with respect to A and as
A is P-invariant |70« = |[[v|| . So that

(4.2.9) 2t wiPY(B) £ o7+ k)Y[]lw .

This proves Lemma 1.
Lremma 2. Suppose that u and v are as in Proposition 1 except that possibly
llell 3 ||v|l. Then for every “bounded” A

(4.2.10) TuP(A) £ el P17k vPi(A) + K),

the constant K, being an increasing function of v, independent of p, and depending
only on a fized bounded set containing A.

Proor. Let us write &’ = [|7|| ||u|"». So that x” and » verify the hypothesis
of Proposition 1. We can then get inequalities analogous to those preceding
(2.2.4). In particular,

D PA) £ X ul(4) + X vPH4)
which gives, using Lemma 1,
2 uP(A) = ull P17 (220 vB (A) + ]l + 2w (4))
< Jlull P72 vPY(A) + 1ol + K- [olle),

K depending only on a bounded set B D A. This proves the lemma.
LemMma 3. Let us suppose that p and v are as in Proposition 1. Let us write
¥* = Xty ¥; . Then for every A “bounded”

lim,, [E-wP'(A)/(Zt-I #P'(A) + uP'(4)))] = 1 for each L.
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Proor. We have
2 7P Pt = 2000 5P 4 P,
so that
Dor (2= 5P+ wuPY) = D oie (2055 9P+ piaPY) + P — pina P
We deduce by recurrence on L
2 (2 5B 4 weP) = 2anP* + 255 (wB™ = wb).

And for each 4 € B bounded
(Xt 7P (A) + pP(A))/ 2 i wP'(A)

= 1 4+ (XS uwP"™(A) — wP(4))/ 25 P (A).

But the second term on the right hand of this equality tends to zero for each L
according to:

(CE P (A) — wP(A))/ Dt wP (A) < Liull/ X wP(A)

and the recurrence condition on P (condition (j)).
LemMA 4. Under hypothests of Proposition 1,

v = Z:'o=1 U; and Iimk_,w ”[.Lk” = 0.

Proor. Let D be the set [v > 1= 7], and let us denote by Pp the operator
on 9 defined by u = (1pc-u)P where D° is the complementary set of D. Be-
cause of the recurrence involved in the Harris condition,

iEAD) >0, [ul = XiouPs'(D).

Ason D we havev — D11 0; > U1 for every n, we have ¥,y = uP on D and
thus p,4a(D) = 0 for every n. We then deduce by recurrence on k

YJ D wm(J) £ uPp'(J).
So that
leall = 250 mPo’(D) < 25k Po’(D).
As the series on the right hand converges we have
i el = [0 — 280 8:) d\ = 0

which contradicts A(D) > 0 and proves that in any case the two relations in
the lemma are true.
As a consequence of Lemma 2 and of 3 < » for every L,

0= D oraumPY(A)/ 2 7PHA) < ) 577 (1 + Ko/ 2oi=1 7 PH(4)).
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As 7" is increasing and D pe #°P*(A) = 4+« we see that as a consequence of
Lemma 4

(4.2.11) i v [D it w2 P(A)/ Dt 5.P*(A)] = 0 uniformly in z.
In the same way, as limy.. ||y — 7°|| = limg.e ||uz]] = 0, we get from Lemma 2
(4.2.12)  limgow [Dfm #P*(A)/ 2 i1 vP*(4)] = 1 uniformly in 7.
If we next consider
2 i wPH(A)) 20 vP(A)
(42.13) = [ pP(A)/ 28 7P (A) + mP (4)]
(ke P (A) + ueP(A))/ 2ok 7P (A))]
[ P (A)/ 2ok vPH(A))],

as a consequence of (4.2.12) and (4.2.13), we can choose L. such that the two
last ratios, on the right hand side of (4.2.13), take their valuesin [1 — ¢, 1 4 €.

From Lemma 3 we can then find 7. such that for each n > n., the first ratio
on the right hand side of (4.2.12) takes its valuesin [1 — ¢, 1 4+ ¢]. As a conse-
quence:

Vi > ne  2iauP(A4)/ 204 vPHA) € [(1 = o° (1 + ol

The proof of Theorem 6 and its corollary are thus completed.

4.3. TuEOREM 7. Let P be a Markovian kernel verifying the Harris’ hypothests,
or the stronger topological hypothesis of Theorem 5. If \ is an invariant measure
for P, then for any ‘“bounded” sets A and B,

(4.3.1)  limpaw [2o5=1 P¥(x, 4)/ 28 PX(y, B)] = M4)/N(B)
Y(z,y) e B' x E.

Proor. It is sufficient to prove when A n B = J. Let v be any measure
-\ where [v-d\ = 1 and v < k-1c where k is a constant and C a “bounded”
set with 2 2 C and y £ C.

By applying Theorem 3-bis to the function ¢ = 14 — (A(4)/A(B))1z we
get immediately

sup, | 2i1 P*(z, A) — (MA)/NB))P*(2, B)| £ p  )ae.
and then
sup, | 2ok vP(A) — (MA)/N(B))»P*(B)| = plv| < =
so that
lim, [D =1 vP*(A)/ 2oims vP*(B)] = MA)/N(B).

Using now the Proposition 1 we get immediately (4.3.1).
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