SOME FIRST PASSAGE PROBLEMS FOR $S_n/n^{\frac{1}{2}}$

BY R. A. OLSHEN AND D. O. SIEGMUND

Stanford University

1. Introduction and summary. Let x_1 , x_2 , \cdots be independent random variables with mean 0 and variance 1. Let $s_n = x_1 + \cdots + x_n$, $n \ge 1$, and for each c > 0 define

$$au_1 = au_1(c) = ext{first} \quad n \ge 1 \quad ext{for which} \quad s_n > c n^{\frac{1}{2}}$$

$$= \infty \quad ext{if} \quad s_n \le c n^{\frac{1}{2}} \quad ext{for all} \quad n,$$

and

$$au_2 = au_2(c) = ext{first} \quad n \ge 1 \quad ext{for which} \quad |s_n| > cn^{\frac{1}{2}}$$

$$= \infty \quad ext{if} \quad |s_n| \le cn^{\frac{1}{2}} \quad ext{for all} \quad n.$$

The stopping times τ_1 and τ_2 have received considerable attention recently (see, for example, [1], [2], [3], [6], and [8]), and naturally there has arisen the question as to whether $P\{\tau_k < \infty\} = 1$, k = 1, 2. One contribution of this note is (1) Theorem. If $s_n/n^{\frac{1}{2}}$ does not tend in probability to 0, then for each c > 0,

 $P\{\tau_2 < \infty\} = 1$. We show by examples that (1) is no longer true with τ_2 replaced by τ_1 . The final section contains two remarks bearing on the converse to (1).

2. Proof of (1). By hypothesis there exists a subsequence (n') of positive integers along which

(2)
$$P\{|S_{n'}/(n')^{\frac{1}{2}}| > \epsilon\} > \epsilon.$$

According to the Helly-Bray lemma there exists a further subsequence (n'') and a distribution function F for which

$$P\left\{s_{n''}/(n''')^{\frac{1}{2}} \leq x\right\} \rightarrow F(x) \text{ as } n'' \rightarrow \infty$$

at all continuity points x of F. From the fact that $E\{(s_n/n^{\frac{1}{2}})^2\}\equiv 1$ it follows that

(3) $(s_n/n^{\frac{1}{2}})$ is stochastically bounded, and hence F has total variation 1, and also that

$$(4)$$
 F has mean 0.

By a well-known characterization of limits in law of the row sums of triangular

Received 10 April 1968; revised 23 September 1968.

¹ Supported in part under contract Nonr-225(52). Reproduction in whole or in part is permitted for any purpose of the United States Government.

arrays, F is infinitely divisible. Hence

(5)
$$F(-y) + (1 - F(y)) > 0$$

for every real y, for if this were not the case we could conclude from the definition of infinite divisibility that F is degenerate, contradicting either (2) or (4).

(5) implies that for each positive c,

(6)
$$P\{\tau_2(c) < \infty\} \ge P\{\limsup |s_n|/n^{\frac{1}{2}} > 2c\}$$

= $\lim_{N \to \infty} P\{\sup_{n \ge N} |s_n|/n^{\frac{1}{2}} > 2c\} \ge \limsup P\{|s_n|/n^{\frac{1}{2}} > 2c\} > 0$

In view of the Kolmogorov 0-1 law, the second term of (6) is either 0 or 1; hence $P\{\tau_2(v) < \infty\} = 1$.

3. Two counterexamples in the one-sided case. The following example shows that (1) is no longer true with τ_2 replaced by τ_1 .

Let G be any infinitely divisible distribution function with mean 0, variance 1, and $G(c_0) = 1$ for some $\infty > c_0 > 0$. Assume k(n) is a sequence of positive integers for which

(7)
$$k(n)/(k(1) + \cdots + k(n)) \to 1 \text{ as } n \to \infty,$$

and set $\nu(n)=k(1)+\cdots+k(n)$ ($\nu(0)=k(0)=0$). Now suppose y_{nk} , $n=1,2,\cdots,k=1,2,\cdots,k(n)$, is an array of mutually independent random variables with the property that for $n=1,2,\cdots,y_{n1},y_{n2},\cdots,y_{nk(n)}$ have a common distribution, and

(8)
$$P\{y_{n1} + \dots + y_{nk(n)} \le x\} = G(x)$$
 for all real x .

Finally, define the sequence x_1 , x_2 , \cdots of independent random variables with mean 0 and variance 1 by

$$x_{\nu(n-1)+k} = (k(n))^{\frac{1}{2}}y_{nk}, \qquad n=1,2,\cdots, k=1,2,\cdots, k(n).$$

By (8), $P\{y_{nk} \le c_0/k(n)\} = 1$, and hence

(9)
$$P\{(k(n))^{\frac{1}{2}}(y_{n1}+\cdots+y_{nk})/k^{\frac{1}{2}} \leq (k/k(n))^{\frac{1}{2}}c_0\} = 1.$$

We write

$$(10) \quad s_{\nu(n-1)+k}/(\nu(n-1)+k)^{\frac{1}{2}}$$

$$= \left[\nu(n-1)/(\nu(n-1)+k)\right]^{\frac{1}{2}}\left[s_{\nu(n-1)}/(\nu(n-1))^{\frac{1}{2}}\right]$$

$$+ \left[k/(\nu(n-1)+k)\right]^{\frac{1}{2}}\left[(k(n))^{\frac{1}{2}}(y_{n1}+\cdots+y_{nk})/k^{\frac{1}{2}}\right]$$

for $n = 1, 2, \dots, k = 1, 2, \dots, k(n)$, where $s_0/0$ is taken to be 0. Putting k = k(n), it is easy to conclude from (7) and (8) that

$$P\left\{s_{\nu(n)}/(\nu(n))^{\frac{1}{2}} \leq x\right\} \to G(x)$$

at continuity points x of G. According to (9) and (10),

$$s_{\nu(n-1)+k}/(\nu(n-1)+k)^{\frac{1}{2}} \leq (s_{\nu(n-1)}/(\nu(n-1))^{\frac{1}{2}})^{+}+c_{0}.$$

Choose a sequence (c_n) of positive constants decreasing to c_0 as $n \to \infty$ satisfying

(11)
$$\sum_{n=1}^{\infty} P\left\{s_{\nu(n)}/(\nu(n))^{\frac{1}{2}} > c_n\right\} < \infty.$$

Then for each fixed $\epsilon > 0$ and $m = 1, 2, \dots$, letting $n^* = n^*(m)$ denote the largest integer n - 1 for which $\nu(n - 1) \leq m$, it follows from (11) that

$$P\left\{\sup_{j\geq m} s_{j}/j^{\frac{1}{2}} > 2c_{0} + \epsilon\right\} \leq \sum_{n=n^{*}}^{\infty} P\left\{\bigcup_{k=1}^{k(n)} \left\{s_{\nu(n-1)+k}/(\nu(n-1)+k)^{\frac{1}{2}}\right\}\right\}$$
$$> 2c_{0} + \epsilon\}$$
$$\leq \sum_{n=n^{*}}^{\infty} P\left\{s_{\nu(n-1)}/(\nu(n-1))^{\frac{1}{2}} > c_{0} + \epsilon\right\} \to 0$$
as $m \to \infty$.

Thus

$$P\{\limsup s_n/n^{\frac{1}{2}} \le 2c_0\} = 1,$$

and it follows that $P\{\tau_1(c) < \infty\} < 1$ for each $c > 2c_0$.

The point of the preceding example is that for any infinitely divisible distribution F with mean 0 and variance 1 there exist a sequence x_1, x_2, \cdots of independent random variables having mean 0 and variance 1 and a subsequence $(\nu(n))$ of positive integers such that $(\nu(n))^{-\frac{1}{2}} s_{\nu(n)}$ converges in law to F as $n \to \infty$. It seems natural to inquire whether in our problem, that is, whether under the additional constraint that $F(c_0) = 1$ for some $c_0 > 0$, it is possible to take $\nu(n) \equiv n$. The answer in general is no, since a minimal additional requirement of F is that it belongs to the class L (see [5], p. 145 or [4], p. 554 for a definition of the class L of distribution functions).

Now let F be any distribution function of the class L having mean 0 and variance 1, and let φ denote the characteristic function of F. For any $n=1, 2, \dots$ let $\psi_n(t) = \varphi(n^{\frac{1}{2}}t)/\varphi((n-1)^{\frac{1}{2}}t)$. A consequence of [4], p. 554 (see also [5], p. 152) is that each ψ_n is a characteristic function, and because $\psi_n(t)\varphi((n-1)^{\frac{1}{2}}t) = \varphi(n^{\frac{1}{2}}t)$, the distribution of which ψ_n is the characteristic function has mean 0 and variance 1. Also,

$$\varphi(n^{\frac{1}{2}}t) = \prod_{k=1}^n \psi_k(t).$$

So if X_1, X_2, \cdots are independent with X_k having the characteristic function ψ_k , then $n^{-\frac{1}{2}}$ ($\sum_{1}^{n} X_k$) has distribution function F for every $n = 1, 2, \cdots$. It remains to exhibit a member of the class L having mean 0, variance 1 and $F(c_0) = 1$ for some $c_0 > 0$ (or what is more convenient $F(c_0) = 0$ for some $c_0 < 0$). The following example is mentioned by Gnedenko and Kolmogorov ([5], p. 152) in a different context; we follow their notation. Suppose that F is the infinitely divisible distribution with finite variance and (in indicator func-

tion notation) Kolmogorov canonical measure $K(u) = u^2 I_{[0 < u < 1]}$, and also $\gamma = 0$. It is easy to see that F has mean 0 and variance 1. Moreover,

$$\log \varphi(t) = 2 \int_0^1 \{e^{itu} - u - itu\} u^{-1} du,$$

which it is convenient to rewrite as

(12)
$$\int_0^\infty [(e^{itu} - 1)/u] I_{[0 < u < 1]} du - 2it.$$

It follows from (12) and a theorem of Lévy and Baxter and Shapiro ([4], p. 539) that F is supported by the interval $[-2, +\infty)$. Consequently, if $x_n = -X_n$ $(n = 1, 2, \cdots)$, then $P\{s_n/n^{\frac{1}{2}} \leq 2\} = 1$ $(n = 1, 2, \cdots)$ and $\tau_1(c) = +\infty$ a.s. for every $c \geq 2$.

4. Remarks and acknowledgment. (a) The condition of the theorem (1) is not necessary. There are examples for which $s_n/n^{\frac{1}{2}}$ tends in probability to 0, but $P\{\tau_1(c) < \infty\} = 1$ for all c. One is as follows. Let y_n and z_n , $n = 1, 2, \cdots$, be a family of independent random variables with the following properties: the y_n are iid N(0,1); $E\{z_n\} \equiv 0$, $Var\{z_n\} \equiv 1$, $\sum P\{z_n \neq 0\} < \infty$. Suppose $\psi(n) \uparrow \infty$, $n - \psi(n) \uparrow \infty$ and that

$$\psi(n)/n \to 0$$
 and $\psi(n) \log \log \psi(n)/n \to \infty$ as $n \to \infty$.

Put

$$s_n = \sum_{j=1}^{\psi(n)} y_j + \sum_{k=1}^{n-\psi(n)} z_k$$
.

It is easy to infer from Borel-Cantelli and the law of the iterated logarithm that the required two conditions are indeed fulfilled by this s_n .

- (b) A partial converse to (1) is this: if $s_n/n^{\frac{1}{2}} \to 0$ a.s., then there exists a constant $d \geq 0$ with the property that for any c < d there exists an integer N(c) for which $P\{\tau_2(c) < N(c)\} = 1$; for any c > d, $\Pr\{\tau_2(c) = \infty\} > 0$. We conjecture, but have been unable to prove in complete generality, that $\tau_2(d)$ cannot be finite with probability one and unbounded.
- (c) Our proof of (1) uses the independence of the x's in a striking way, first to conclude that F is infinitely divisible, and second to invoke the Kolmogorov 0–1 law. Our use of the 0–1 law can be replaced by a lengthier argument which is valid under more general conditions. We do not know, however, if (1) remains true for, say, martingale differences x_k for which $E\{x_k^2\} < \infty$, $k \ge 1$, and $\lim \inf n^{-1} \sum_{k=1}^n E\{x_k^2 \mid x_1, \dots, x_{k-1}\} \ge \epsilon > 0$.
- (d) Straightforward but tedious calculations show that for the first example of Section 3

$$P(s_n/n^{\frac{1}{2}} > c_0) = 0 \quad \text{for each} \quad n,$$

from which it follows that $P\{\tau_1(c) < \infty\} = 0$ for any $c \ge c_0$.

(e) We thank Charles Stein for a suggestion which led to the first example of Section 3.

REFERENCES

- Blackwell, D. and Freedman, D. (1964). A remark on the coin-tossing game. Ann. Math. Statist. 35 1345-1347.
- [2] Chow, Y. S. and Robbins, H. (1965). On optimal stopping rules for S_n/n . Illinois J. Math. 9 444-454.
- [3] Chow, Y. S., Robbins, H. and Siegmund, D. O. (1968). *Great Expectations* (to appear). Houghton-Mifflin, Boston.
- [4] FELLER, W. (1966). An Introduction to Probability Theory and its Applications, 2. Wiley, New York.
- [5] GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge.
- [6] GUNDY, R. F. and SIEGMUND, D. (1967). On a stopping rule and the central limit theorem. Ann. Math. Statist. 38 1915-1917.
- [7] Olshen, R. A. (1967). Asymptotic properties of the periodogram of a discrete stationary process. J. Appl. Prob. 4 508-528.
- [8] Siegmund, D., Simons, G. and Feder, P. (1968). Existence of optimal stopping rules for rewards related to S_n/n . Ann. Math. Statist. 39 1228-1235.