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SOME FIRST PASSAGE PROBLEMS FOR 8,/n*"

By R. A. OusHEN AND D. O. SIEGMUND

Stanford University

1. Introduction and summary. Let 2, z., - - - be independent random varia-
bles with mean 0 and variance 1. Let s, = 2; + --- + ., n = 1, and for each
¢ > 0 define

1= 7i(¢c) = first n =1 for which s, > cnt

H

= o if s, <cn forall n,

and
7o = 7o(¢) = first m = 1 for which |s,| > en?

= o if |s] = cn® forall =

The stopping times 7, and 7, have received considerable attention recently (see,
for example, [1], [2], [3], [6], and [8]), and naturally there has arisen the question
as to whether P {r, < o} = 1,k = 1, 2. One contribution of this note is
(1) TuaworEM. If su/nt does not tend in probability to 0, then for each ¢ > 0,
P {‘7'2 < 00} = 1.

We show by examples that (1) is no longer true with 7, replaced by 1. The
final section contains two remarks bearing on the converse to (1).

2. Proof of (1). By hypothesis there exists a subsequence (n”) of positive in-
tegers along which

(2) P Snl/(’n/)%l > ¢ > e

According to the Helly-Bray lemma there exists a further subsequence (n”) and
a distribution function F for which

Plsu/(n") S 2} - F(z) as n” — o
at all continuity points z of F. From the fact that E { (s./ nt Y’} = 1 it follows that
(3)  (s./ n') is stochastically bounded, and hence F has total variation 1,
and also that
(4) F  has mean 0.

By a well-known characterization of limits in law of the row sums of triangular
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arrays, F is infinitely divisible. Hence
(5) F(—y)+ (1 —F(y)) >0

for every real y, for if this were not the case we could conclude from the definition
of infinite divisibility that F is degenerate, contradicting either (2) or (4).
(5) implies that for each positive c,

(6) P{r(c) < ©} = P {lim sup |s.|/n* > 2¢

= liMyo P {SUPnay [Sal/n} > 2¢} = lim sup P {[s,|/n! > 2¢} > 0,
In view of the Kolmogorov 0-1 law, the second term of (6) is either 0 or 1; hence
P {Tz(l)) < 00} = 1.

3. Two counterexamples in the one-sided case. The following example shows
that (1) is no longer true with 7, replaced by 7y .

Let G be any infinitely divisible distribution function with mean 0, variance
1, and G(¢y) = 1 for some = > ¢, > 0. Assume k(n) is a sequence of positive
integers for which

(7 kE(n)/(k(1) + +++ + k(n)) —>1 as n— o,
and set »(n) = k(1) + -+ + k(n) (»(0) = k£(0) = 0). Now suppose Y ,
n=12 ---,k=1,2 ---, k(n), is an array of mutually independent random

variables with the property that forn = 1,2, -+, yn1, Yn2, *** , Ynkny have a
common distribution, and

(8) Py + - + Yy = 2} = G(z) for all real =z.
Finally, define the sequence x;, zs, - -+ of independent random variables with
mean 0 and variance 1 by

Ty(n—1)+k = (k(n))%ynk ) n = 17 27 ) k= 17 27 ] k(n)

By (8), P {yw =< co/k(n)} = 1, and hence
(9) P{(k(n)) (ym + -+ + yu)/K = (k/k(n))e} = 1.
We write
(10)  Symepy4/(v(n — 1) + k)*
= (n —1)/(vy(n = 1) + E)ls.an/(»(n — 1))’
+ [6/(v(n — 1) 4+ E)I(k(n)) (g + -+ + yu)/K]

forn = 1,2, ---, k= 1,2, ---, k(n), where s/0 is taken to be 0. Putting
k = k(n), it is easy to conclude from (7) and (8) that

P {s8,0/(»(n))! < 2} — G()
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at continuity points z of G. According to (9) and (10),
Ssm—p4r/ (v(n — 1) + k) £ (ssun/(v(n — 1)) + ¢
Choose a sequence (¢, ) of positive constants decreasing to ¢, as n —  satisfying

(11) Yo P s,/ (v(n)) > e < .

Then for each fixed e > O and m = 1, 2, --- , letting n* = n*(m) denote the
largest integer n — 1 for which »(n — 1) =< m, it follows from (11) that

P {supsam si/i* > 260 4+ ¢ < Dmur P {UES {80/ (v(n — 1) + k)*
> 260 -+ e}}
Y rent P s/ (v(n = 1)) > e+ ¢ — 0

as m — ©.

lIA

Thus
P{lim sup s./n* < 2} = 1,

and it follows that P{71(¢) < «} < 1 for.eachc > 2¢ .

The point of the preceding example is that for any infinitely divisible distribu-
tion F with mean 0 and variance 1 there exist a sequence z;, 22, --- of inde-
pendent random variables having mean 0 and variance 1 and a subsequence
(v(n)) of positive integers such that (»(n))™ s,m converges in law to F as
n — . It seems natural to inquire whether in our problem, that is, whether
under the additional constraint that F(c,) = 1 for some ¢ > 0, it is possible
to take »(n) = m. The answer in general is no, since a minimal additional re-
quirement of F is that it belongs to the class L (see [5], p. 145 or [4], p. 554 for
a definition of the class L of distribution functions).

Now let F be any distribution function of the class L having mean 0 and
variance 1, and let ® denote the characteristic function of . For any n = 1, 2,

- let 1/zn(t) o(n} t)/¢((n — 1)%). A consequence of [4], p. 554 (see also [5],
p- 152) is that each ¥, is a characteristic function, and because ¥, (¢)e((n —
D) = o(nlt), the distribution of which ¢, is the characteristic function has

mean 0 and variance 1. Also,
o(nit) = JTi-1va(t).

So if X;, X,, --- are independent with X; having the characteristic function
¥, then nF (2_1 X;) has distribution function F for everyn = 1,2, --- . It
remains to exhibit a member of the class L having mean 0, variance 1 and
F(c) = 1 for some ¢ > 0 (or what is more convenient F(¢;) = 0 for some
¢ < 0). The following example is mentioned by Gnedenko and Kolmogorov
(5], p. 152) in a different context; we follow their notation. Suppose that F is
the infinitely divisible distribution with finite variance and (in indicator func-
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tion notation) Kolmogorov canonical measure K(u) = 'l lo<u<i] , and also
v = 0. It is easy to see that F has mean 0 and variance 1. Moreover,

logo(t) = 2f¢ (€™ — u — dtupu™ du,
which it is convenient to rewrite as

(12) fso [(e“u — 1)/ull p<ucr) du — 24t

It follows from (12) and a theorem of Lévy and Baxter and Shapiro ([4], p.
539) that F is supported by the interval [—2, 4+ ). Consequently, if 2, =
—X,(n=1,2,---),then P{s,/n* <2} =1 (n=1,2,---) and m(¢c) = +
a.s. for every ¢ = 2.

4. Remarks and acknowledgment. (a) The condition of the theorem (1) is not
necessary. There are examples for which s,/n’ tends in probability to 0, but
P{ri(c) < »} = 1for all c. One is as follows. Let y, and z, ,n = 1,2, --- | be
a family of independent random variables with the following properties: the
Yo areiid N(0, 1); E{z.} = 0, Var {2,} = 1, D P{z, # 0} < . Suppose ¢(n) 1
o, n —yY(n) T o« and that

Y(n)/m—0 and y¢(n)loglogy(n)/n — « as n — o,
Put
$a= 2 8Py + 247 M.

It is easy to infer from Borel-Cantelli and the law of the iterated logarithm that
the required two conditions are indeed fulfilled by this s, .

(b) A partial converse to (1) is this: if s,/n' — 0 a.s., then there exists a
constant d = 0 with the property that for any ¢ < d there exists an integer N (c)
for which P{ry(c) < N(c)} = 1;forany ¢ > d, Pr{r(c) = «} > 0. We con-
jecture, but have been unable to prove in complete generality, that 7»(d) cannot
be finite with probability one and unbounded.

(¢) Our proof of (1) uses the independence of the z’s in a striking way, first
to conclude that F is infinitely divisible, and second to invoke the Kolmogorov
0-1 law. Our use of the 0-1 law can be replaced by a lengthier argument which
is valid under more general conditions. We do not know, however, if (1) remains
true for, say, martingale differences z; for which E{x} < o, & = 1,
and lim inf ™ D py B{m® |21, -+, 2} = € > 0.

(d) Straightforward but tedious calculations show that for the first example
of Section 3

P(sa/n} > ¢) = 0 for each n,

from which it follows that P{ri(¢) < «} = Oforanyc = ¢ .
(e) We thank Charles Stein for a suggestion which led to the first example
of Section 3.
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