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APPROXIMATION TO BAYES RISK IN SEQUENCES OF NON-
FINITE GAMES!

By DEnnis C. GILLILAND

Michigan State University

1. Introduction. This paper is concerned with the product of a game. The
main result is the demonstration of a sequence strategy for player II which
results in average risk across the first » plays approaching uniformly the Bayes
envelope evaluated at the empirical distribution of player I’s first n moves.

We consider a two-person game where player I chooses an e ¢ M and player II
chooses 6 ¢ N with loss L(e, 8) = 0. A compact notation is provided by defining
the set of loss functions N* = {L(-,8) | 5 ¢ N}. We let o denote a generic element
of N* and es denote o evaluated at e. This extends to operator notation we =
[ ecw(de) for measures w on M. The Bayes envelope is defined by

R(p) = inf {po|c e N¥}

where p is a probability measure on M (a mixed strategy for player I).

We suppose that this game occurs repeatedly, e; represents player I’s move at
the 7th stage, and Gy, the empirical distribution of ¢, - -, €;,1, is known to
player II before he makes his move at the sth stage, 7 = 2. In this paper we
let Go denote the zero measure and demonstrate sequence strategies
8 = (o1, 02, --+) for player II, where ¢; depends upon G;; and some artificial
randomization, such that n X 7 E(ew:) — R(G,) — 0 as n — oo uniformly
in e.

The notion of using the Bayes envelope as an asymptotic standard in a set of
statistical decision problems, with statistical information on G, replacing knowl-
edge of G': in the sequence case, is due to Robbins [11]. Since Robbins’ original
investigation, procedures which achieve the Bayes envelope asymptotically
have been demonstrated and rates of convergence investigated for sequences and
sets of a variety of statistical decision problem components, [3], [4], [5], [6],
[8], [9], [10], [12], [13], [14], [15], [16], [17] and [18]. However, this paper treats
the problem at a game theoretic level and is more closely related to the studies
[1], [2], and [7]. This paper depends heavily upon the notation and ideas of
Hannan [7], but an effort is made to keep the presentation self-contained.

2. The main result. We impose the following condition on the component
game:

(A1) N* is sequentially compact under pointwise convergence.
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Under (A1), an application of Fatou’s lemma shows that inf {ps|o e N*} is
attained for each probability measure p and we denote an infimizing ¢ by ¢ (p).
The domain of definition of ¢(-) can be extended to all finite measures w by
defining o(w) to be ¢(-) evaluated at the normalized w if w is not the zero
measure and arbitrary otherwise. This ensures that ¢ (- ) is positive homogeneous;
that is, e (kw) = o(w) for all k¥ > 0 and finite measures w.

Hannan [7], p. 129, investigates the natural procedure ¢* where o.* = o(Gi1),
7 = 1, and shows that

lim; o e(o(p) — o(p + te)) = 0 uniformly in ¢, p

is sufficient for n ' Y 7 e — R(G,) — 0 as n — o uniformly in e. Also the
inadequacy of ¢” is illustrated for certain finite and nonfinite component games.
One of the main results of the Hannan paper is the demonstration in the finite
M case of a procedure, which at the ¢th stage plays Bayes versus a random per-
turbation of G;_; , whose average risk achieves the Bayes envelope asymptotically.
We now extend this technique to a more general case.

To do this we impose a boundedness condition on the component game

(A2) sup {ec| eeM,ce N*} = B< =
and define the real valued function
(1) dle, €) = sup{[ea—e'o'llo'eN*}.

Clearly, (M, d) is a pseudo-metric space; and, if loss equivalent player I moves
are identified, it constitutes a metric space.
LetJ; = 1 be anon-decreasing integer valued sequence, A = {a1,az,---} C M,

and A= {a, ---, as,},7 = 1. Corresponding to each sequence ¢ is a sequence
¢ = (&, &, ---) where ¢ is an element of A; closest to ¢; in the metric d. We
let G denote the empirical distribution of &', ---, & and E; = 4G. The
artificial randomization will be provided by independent and identically dis-
tributed uniform [0, 1] random variables Z;, Z,, --- . Consider a procedure ¢
where ¢, is arbitrary and

(2) oi = 0(Bi + HiaZis), iz 2

Here H; > 01is a non-decreasing sequence of constants and Z; to be interpreted as
the measure placing mass Z;ona;,j = 1, - -+ ,J;. We first develop a bound for
> tew: — nR(G,) and then give some applications.

We make the decomposition

(3) Z]'.L €,0; — nR(Gn) = Bn + Cn + Dn

where

B, = Zi‘ eilai - ’ﬂR(GnI), Cn = ZI‘ (Eio'i - 5/”1')7
and Dn = n(R<GnI) - R(Gn))-
Clearly, C, £ 2.7 d(es, &) and n(R(G,) — R(G,)) = inf, D 7 &'c —
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inf, D Teo < Zf d(e:, eil) so that
(4) max {[C,], [Dal} £ 227 d(es, &),

The term B, can be treated using the following identity in e; e M, o, ¢ N* ((6.5)
of [7]):

(5) D ieoi = Buony + 2t Bia(o: — o) + D7 eilai — oit1),
where E; = iG;. It follows from (5) that
(6) By, = E)/(0un1 — o(E,)) + 21 B! (0 — 0i1a).
Since E(0; — oi1) = (B — (B + HZ))(0: — oin1),
ZIL Ei/(o'i - 0'i+1) = —21" Hizi<0'i - Ui+l)
= H.Zyony — HiZaoy — 25 (HZ; — HisZi 1)os.

Using the fact that H; and J; are non-decreasing we obtain

2B/ (o: — osn) = —BHJ, — X.p (Hi: — HinJia)B = —BH,J,.
Also, B, (6n11 — o(E,)) = 050 (6) yields
(7 B, > —BH,J,.

We note that B, (owp1 — 0(E.)) £ —H,Z(0nn — o(E,)); and, similarly,
Eii(o; — oi41) = —H;4Z; 1(0; — oi41). Application of these inequalities to
(5) followed by summation by parts leads to

(8) B, < BHJ, + 2.7 ¢/ (0: — oun).

We define S, = {¢|1 = ¢ = n,J; =J;1},Jo = 0, and note that the cardinality
of S, is at least n — J,, . Therefore, we can weaken (8) to

(9) B, £ BHJ, + BJ. + 2 s, ¢/ (0; — aip1).

The above results combine to give the useful inequality

(10) —BH.J, — 221 d(e, &) S Xiews — nR(G,) < BH.J, + BJ,
+ 22 Tdes, &) + Dos e (0i — ois).

The expectation of the last term in (10) can be bounded using a lemma due
to Hannan [7], p. 131. It implies that if w, w” are two measureson {a; , az, - - - , as}
and Z is uniform on [0, 1] then for eachj = 1, --- ,J,

|B(aj(o(w + Z) — o(w' + Z)))| < B2 |w; — w;|.

Setting w = H; 4B and w = H,'E; and requiring that ¢H; " is non-decreas-
ing in 4, we have that > 1|w; — w,/| £ 2H:™"; and, therefore,

(11) |B(X s, e/ (0: — 0in))| < 2B T H
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(The measurability problem ignored in stating (11) is taken up in Section 4.)
We summarize (10) and (11) in

TueoreM 1. If the component game satisfies (Al) and (A2), then the sequence
strategy ¢ with oy arbitrary and o; given by (2), ¢ = 2, with H; and tH" non-
decreasing, results in

—BH,J, — 2 Z? d(ei, &)
(12) < 21 E(ew:) — nR(Ga)
< B{HJn+Jn+ 22 tH™ + 22 1 d(ei, &)

where E can be interpreted as either the lower or upper integral.
The first application of the theorem is to establish the uniform O(n~ ’) con-
vergence in the finite M case which was proved previously by Hannan [7],

p- 134.
CoROLLARY 1. Under (Al) and (A2) with H; = & A = M findte,
(13) w3 E(eos) — R(Gy) = O(n™Y)  uniformly in e

An application in the non-finite case is provided by
CoroLLARY 2. Under (A1) and (A2) with (M, d) a totally bounded metric
space, there exist choices of H;,J i, and A such that

(14) n Y 7 E(ews) — R(G,) = o(1) wuniformly in  e.

Proor. Since (M, d) is totally bounded there exists a countable subset
A = {a1, @, -+ -} such that d(e, 4;) — 0 asJ; = uniformly in e. Therefore,
with this ch01ce of A and n ‘H,J, — 0,n ' > 1 H " — 0andJ,— © asn— o,
(14) follows from (12).

In practice, a rate of convergence can be obtained by balancing the terms
making up the bounds in (12) through choice of 4 and the sequences H; andJ;.

ExampLE. Consider the game of absolute dev1at10n on the unit square (see,
[7], p. 130, where it is shown that sup { Zl cioir — R(G,) |ec [0, 117} = 1).
Here d(e,€') = |e — el,andweletH =1, J;=[],% =1, where a, be (0, 1)
are yet to be spemﬁed For the set A = {al, az, -+ -} we take the points {3, %,
3 13 58 % ---};thatis, a; = by; where ¢ = N4 — 1, by = (25 — 1)275,
1 <7 =2 k = 1. With this choice d(e;, ¢;) < 27, " and (12) implies

n_l 21 E(ew‘i) - R(Gn) = (n"”‘”b -+ n° -+ n_b)
uniformly in e. The choice @ = b = % balances the bound yielding o).

3. Games with countable }/. In Corollary 2 we have given an application of
(12) to the case (M, d) is a totally bounded metric space. We now demonstrate
a sequence strategy achieving O(n~ }) uniformly in e in a case where
M = {1,2, ---} is countable and (M, d) is a bounded but not totally bounded

metric space.
The two conditions on the component game that we impose are (Al) and

(A3) sup {|lolli|ce N*} = B < =
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where || ||; denotes the 4 sequence norm. (It is sufficient for the set of loss funec-
tions N* to be a bounded, closed set in the ; space.) It follows from (Al) and
Fatou’s lemma that for all wem®, the set of bounded sequences with non-
negative components, inf {wo |o ¢ N*} is attained. As before, we let o(w) be a
positive homogeneous determination of the infimizer. With Z = (Zy, Z,, ---)
where the Z; are independent uniform [0, 1] random variables, we investigate the
randomized procedure é where oy is arbitrary and

(15) oy = 0'(E1;_1 + Hi_1Z), A g 2.

In (15) the sequence of constants H; = 1 is such that H; and ¢H, " are non-
decreasing and Z is interpreted as the measure that places mass Z; on 7, 7 ¢ M.

THEOREM 2. If the component game has countable M and satisfies (Al) and
(A3), then the procedure given by (15) results in

(16) —BH, < 2.} E(eir:) — nR(G,) < B{H, + 2>t H™.

Proor. We use the identity (5) and proceed as in the development of (7)
and (8) to obtain

(7 D 1eo; — nR(G,) = —BH,
and
(18) Zi‘ €0; — nR(G,,) é BH,, + Zf éi(O',' - U¢+1).

The expectation of the last term in (18) is bounded by a direct extension of
Lemma 2 [7]. Here we state and prove the needed specialization of that exten-

sion.
Lemma. Under the assumptions of Theorem 2,

(19) |E(e(o(e + Z) — o(w' + Z)))| < Bllw — o|ls
for all e e M and w, w’ e m*.
Proor. With & = [0, 1]° we write
Elec(w + Z)) = [geac(w + 2) du(z) = [rgea(w + ) dv(v)
where v = T is the measure induced by the transformation v = Tz = w' —
w + 2. Therefore,
E(e(o(w 4 2Z) —o(w' 4+ 2))) £ [aeo(w +2) du(z) — [xnraeo(w + v) dv(v)
and, since the restrictions of u and » to & n 7Y are equal,
(20) B(e(o(w + Z) — o(w' + 2))) = Bu(x — T2).
Since z ¢ X — T if and only if 2; ¢ [0, 1] for all f and z; — w;” + w; £[0, 1] for
some 7, it follows that
w( — TX) £ 2.30ulZ, < wi — wjor Z; > 1 + w/ — wj]
(21) < 20 {(w —w) + (w; — w)™

= [lw — w'l.
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The proof is completed by applying (21) to (20) and then interchanging the
roles of w and w’.

Returning to the proof of the theorem we apply the lemma with the specifica-
tion w = Hi4 Eiy, w = H'E;. Here |w — '], < 2H,™" so the proof is
complete.

The choice H; = ¢ in (15) yields a sequence strategy achieving o
uniformly in e.

4. Concluding remarks. Hannan ([7], Appendix) has related average risk
convergence to R(G,) and convergence to R(G) in the case where player I re-
peatedly uses the same mixed strategy G to generate a move e. If the ¢; are in-
dependent and identically distributed G and E denotes expectation with respect
to G, then for each o ¢ N* and each ¢, E(e.c) = R(G)- Therefore, with sequence
strategies and artificial randomization, R(G) = E[n™ D_7 E(ews:)], where the
joint measurability of eo; is assumed to allow the interchange of E and E.
Since quite generally E[R(G,)] = R(Q), for example, see [5], Remark 3, we have

(22) 0 £ E[n 2 7 E(ev)] — R(G) £ E[n " 2.7 E(eios) — R(Gn)).

Hence, a sequence strategy which conditional on € has average risk approaching
R(G,) uniformly in & has average risk approaching R(@) uniformly in G, and
the convergence of E[R(G,)] to R(G) follows as a corollary.

We conclude with a brief discussion of the hypotheses of Theorems 1 and 2.
In Section 2 the boundedness condition (A2) is necessary for uniform convergence
results. However, (A1) is not so essential; in fact, to derive (10) we need only
assume that inf {we | ¢ N*} is attained for each discrete measure w with finite
support. This is the case if N is a compact topological space and each section
L(e, -) is continuous. We have carried the stronger assumption (Al) because
under it, it is possible to demonstrate a determination of o(-) which makes
¢/ (0i — oin), €8, , measurable; and, therefore, E(e/(ci — oia)) of (11)
meaningful, while this has not been accomplished under weaker conditions. This
demonstration is given after the treatment of measurability in the countable M
case of Section 3.

If M is countable and the component game satisfies (Al) and (A3), it is
possible to demonstrate a determination of ¢(-) such that for each e e M, eo(w)
is a measurable function of w; that is, es(w) is a measurable function from the
infinite product of the non-negative reals (with Borel o-field) to the non-negative
reals. For this purpose it is convenient to use the notation . = es and define for
each w e m™

Bi(w) = {oc ¢ N*|c is Bayes versus w}

and m1(w) = min {1 | € B;(w)}.
Continuing we let
Bi(w) = {oe Bi(w)|o: = 1i(w), ¢ =1, -+, j}

and Tir1(w) = min {41 |U € Bija(w)}, J

1,2, -
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From (A1) it follows that N; B;(w) is non-empty so there exist ¢ ¢ N* such that
o; = 7i(w) forallj = 1,2, -+ . For each w ¢ m" we choose such a ¢ and call it
o(w). As defined ¢(-) is positive homogeneous on m" and has measurable co-
ordinates.

We can let 4; play the role of M in the preceding paragraph and proceed
sequentially to make a determination of o(-) which ensures that each
E(el(0i — 0ip1)), 268, , is meaningful. In case M is finite such a determination
results in the measurability of actual losses.
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