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ON THE ADMISSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN
FOR THE PROBLEM OF A ONE WAY CLASSIFICATION'

By R. H. FARRELL

Cornell University

1. Introduction. The paper by Kiefer [2], this paper, and Farrell [1], have
resulted from a desire to begin giving a theoretical background to the choice of
experimental designs in the analysis of variance. Thus it has been our purpose to
formulate a decision theory meaning of admissibility for randomized designs and
to use this definition to evaluate various procedures.

The present paper, as well as Kiefer [2], deals with the question of obtaining
randomized designs having good power locally about the hypothesis. We show
that in the case of the one way classification a certain randomized design, fol-
lowed by use of the appropriate analysis of variance test, is an admissible pro-
cedure. The power function of this procedure locally about zero was investi-
gated by Kiefer, op. cit., who gave definitions of optimality (to be distinguished
from admissibility) and applied his definitions to the one-, two-, and three-way
classifications. It is the author’s conclusion, based on the contents of the papers
cited, that a partial theory of design can be developed from convexity consider-
ations provided one is willing to use randomized designs and base his choice
upon the partial ordering of power functions.

The present paper has a main non-mathematical conclusion. This is, the
practical statistician demands more than that his procedure have optimum power
locally about zero. When Kiefer’s paper, op. cit., was evaluated prior to publica-
tion he received criticism that no one would want to use such randomized pro-
cedures. The referee of the present paper writes ‘“Perhaps it would help if some
small effort was made . . . to give an example where one might conceivably want
to perform an experiment by taking all observations from one class.” Yet, in
spite of these objections the mathematics is quite clear (but hard), that locally,
good power is obtained using randomized designs as described.

We begin with a formulation of the admissibility concept. We suppose through-
out that N observations are to be taken. If there are I “factors” under consider-
ation then a design consists in part of specification of a vector n' = (ng, - ,ng)
of integers, the design vector, such thatif 1 < ¢ < I, then n; = 0 and n; observa-
tions are taken on the 7th factor. Therefore N = n; + ny 4+ -+« + n;. To each
design vector n we may form the set &, of all risk functions of tests which use the
observations taken according to the design vector n. ®,, is then a convex (usually
compact) set. The number of possible non-randomized designs is then the number
J of partitions of N into I non-negative integer summands. A randomized design
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RANDOMIZED SYMMETRICAL DESIGN FOR ONE WAY CLASSIFICATION 357

consists of specifying a probability vector p* = (p1, -+, ps) such that if
1 < j = J then the design vector n'” is used with probability p,. In order to
completely specify the randomized design we must state the test function ¢; that
will be used when observations are taken using the design vector n'”. The set ®
of all possible risk functions is then the convex hull of R,y U -+ U Ra> . We
shall say that a randomized procedure is admissible if and only if the correspond-
ing risk function in ® is an admissible point of ®. We shall say occasionally that
one risk point is as good as another meaning that as functions one function is
everywhere less than or equal to the other function.

We wish to apply these definitions to the example of a one way classification
with I classes. We assume that independently normally distributed random
variables are observed such that if the design vector n? = (ny, -+ -, n;) is used
and if 1 £ % < I then n; of the observations are normal (u; ,¢”) random variables.
In order to s1mphfy notatlons we will almost always speak in terms of the suﬁi-
cient statistic (m!Yy, -« -, niYy), (Z1, -+ , Z;) such that Yy, -+, nfY;,
Zy, -+ ,Lrare mutually independent random variables,if1 £ ¢ =<1 and n; >0
then n Y is normal (nd wi, o°) and Z;/o” is xi,...l, while if n; = 0 then
Y= Z,; = 0. This convention will allow us to always think of a test function ¢ as
a function of 2I variables. The normalization is so chosen that the normally dis-
tributed random variables always have variance o.

The hypothesis to be tested is w® 4+ -+ + pt = 0; the alternative is
pt 4+ -+ + u > 0. When observations are taken according to a design n
followed by use of the analysis of variance test based on the statistic
St (Y)Y i Z,, we shall let 8(A; @, n) denote the power of the test com-
puted at the parameter point X = % D7 nu’/o". The corresponding risk point
in ®, is the function which equals « if A = 0, which equals 1 — B(\; a, n) other-
wise. More generally if the test ¥(n Yy, -, ntYr, Zy, -+, Z1) has power
function B(nius, - - -, niur, o3 ) then the corresponding risk point in ®, is the
function equal 8(0, - -+ ,0,0;¢) if A\ = 0, and equal 1 — B(mp1, « - , Ngpr, o3 ¥)
otherwise.

TurorEM. Let ¢° = (g1, -+, qr) be a probability vector of I components.
Suppose the randomized design, use the vector (N, -, -+, 0) with probability g ,
use the vector (0, N, - - -, 0) with probability qz , - - - , use the vector (0,0, ---, N)
with probability qr , followed in each case by a use of the analysis of variance test, is
used.

Let n®, -+, 0, 01, -+, 00, 0" = (p1, -++, ps) be a randomized design
which is as good as the design described in the preceding paragmph. Then each of
n®, ... ,n(” isoneofthe designs (N, 0, --+,0), -+, (0,0, --- ,N). Let to = 0
and t; of n" , n'” be the deszgn takmg all observatwns wn the ith class,
l=sis 1 Let pi; = pto+ rimrh > 91 = topeti i » G0 R
1<i=<1,1=<j=t,and suppose the designs n'™*, ... | (‘“)* each take all
observations in the ith class, 1 < ¢ = I. Then if 1 5 1 I, Z;Ll p}kj = ¢,

TR pfjgofj is the UMP size a analysis of variance test (except on a set of
measure zero) of u; = 0 against p; 5% 0.
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Note. In the statement of the theorem and in the sequel we letJ = 1 be an
arbitrary integer rather than the number of partitions of N into I non-negative
summands. This will allow us to assume that if 1 < j < J then p; > 0.

2. Notation and lemmas. If a design vector n is used and the vector n has
j non zero components then the corresponding analysis of variance test has j
degrees of freedom in the numerator, N — j degrees of freedom in the denomi-
nator, and non-centrailty parameter A = (Lo 2 + -+ + npr). We will
write for the power function of the size a F'; x—;-test with non-centrality A,

(2.1) BN\ a,m) = a4 gjw—j(e)\ + hjn—i(e, \),

where g; »_;(a) is the right derivative at zero of 8(-; a, n) and h; x—; is the error
term. Then .

(2.2) SUPoca<e N g w—i(t, N) < .

The following lemma is proven in Kiefer [2].

Lemma 2.1. Suppose Ny < Ny, Ni' + Ny’ £ N; + N, with at least one strict
inequality. Then

gleNz(a) > gNl':Nz'(a)-

In addition we need the following lemmas.

Lemma 2.2. Letl £ <N —landleta, a1, - -+ , ax be numbers between 0 and
1, and let (p1, - -+ , Dx) be a probability vector such that o = piox + -+ + Drow .
Then Y a1 pigin—i(@;) = gin—i(e). Strict inequality holds unless a; % o implies
pi = 0, 15¢=2k

Proor. Let ; be the test function of the UMP one sided size a; F; x—; test for
a random variable Y having a F; y_; density. Then by (2.1) the power function
of Dt papiis
Dot pilas + giw—i(a)\ + hijx_j(ai, N))

= a+ (Xt pgiv-i(e))N + 2iaphiv_i(ai, N).

Therefore the randomized test pi1 + - -+ + pwe has size a. However there are
UMP one sided tests based on a F-statistic, so that

(23) @+ (XZiapgiw-i(a))\ + 2ic pihiwi(ai, \)

< a + giw—i(a)\ + hjn—i(a, N),
Subtract o from both sides, divide by X\ and let A — 0+. From this we obtain
S b pagiv—i(a:) = giw—i(e). I paps + -+ + pady is essentially different from

the analysis of variance test then strict inequality holds in (2.3) if X > 0. It
then follows by the argument used above that

Dt pigiw—i(a) < gin—i(e). 0

The first step of the proof in Section 3 replaces the given test functions by test
functions that are invariant under sign and scale changes. The justification for
this given in the next lemma.



RANDOMIZED SYMMETRICAL DESIGN FOR ONE WAY CLASSIFICATION 359

Lemma 2.3. Let design vectors n®, - -, n be specified with y1 , - -+ , ys the
associated test functions. Let p* = (p1, -+ -, ps) be the probability vector specifying
the probabilities with which n®, -, 0 will be selected. If 1 < j < J let
2T = (myy, -+, ng) and let the power function of n(’), ¥; be

1 1 2, )
ﬁ(nijﬂla )n;ﬂ"lyo')ai)nja"l/f)'

Let o = > i piat; . Suppose the power function Y 3= pB8(WAu , - -+, nbur, o
o, n?, ;) = B(\; a,n) (See (2.1)). Then there exist test functions Y.~ - - - , ¥, ™
which are tnvariant under sign and scale changes and such that

(2.4) (i) the randomized design n®, -+ , 0 u*, oo W (o1, oo+, ps) ds
size a, and for all parameter values, .
(11) B()‘7 «a, n) é Z§=l piﬁ(niiﬂl y "7 n;j"I ) (72; Qj, n(])) II/J*)

Proor. We make an application of the development of the Hunt-Stein theory
as presented in Lehmann [3].

(2.5) If n21 let v, = [nda/z.
Since analysis of variance tests are invariant under scale change, we find

(26)  B(\;a,n) = BEN12";a,n)

I

J 3 3 2 2, (€2}
= Zi=1 p]ﬂ(xniﬂ‘l PR (5 2115 P A - 7 I ‘l’]’)'

Integrate both sides of (2.6) by the probability density 1/(v.x), 1/n < z < n»
and, by change of the order of integration together with a change of variable, we
find

(2.7) B(A;a,n) £ D impiB(ndma, -+, ndwr, o5 a5, 0P, 0ny),
where
(28) if 1 £j=<J then (o, - ,zwn)
= (1/va) [imt 0 (t21, -, tan) dt.

The functions ¥.,; only take values between 0 and 1. Thus we may choose a subse-
quence {¥1;, = 1} such that
(2.9) weak limp.e Yn; = Y1;  exists, 1<j=sJ,

It follows from the discussion given by Lehmann, op. cit., Section 8.4, that
Y1; is an almost invariant function and that we may choose ¥1; to be a scale

invariant function. See Lehmann, op. cit., Section 6.5. Further, for every choice of
the parameters,
(2.10)  liMow B(mai'n, + -, nui'hir, o5 0y, 02, Por))

= B(nlj%NI P nlf%/"'l ) 0'2; Qj, n(l)’ \blf)'
Hence (2.4) holds for the tests a1, - - - , x1s . By averaging over the 2" possible
sign changes of the values of 1, - - - , z» , the tests a1, - - - , Y1, may be replaced

by sign and scale invariant tests y1*, - - - , ¥,* such that (2.4) holds. O
Lemma 2.4. Let Yy, -+, Y be independent normal (q, 7°) random variables.



360 R. H. FARRELL

Let ¢ be a sign and scale tnvariant function of yy, --- , ys . Then there exists a
measurable function ' of a real variable such that E, (Y1, ---, Y,) =
By ) (V)25 (Y; = V),V = (Yy + -+ + Y,)/J, holding for all choices of
the parameters.

Proor. (¥, D1=1 (Y; — ¥)?) is a sufficient statistic. Therefore a function ¢”
of two real variables exists such that if z > 0,if —0 < 9 < o, andif > 0,
then

B, (a7, 2" 2ia (Yi = V') = By (—a¥, & 2= (Vs — V)%)

Bt (¥, 254 (Yi — V)%

= By (Y1, -+, Yy) = E¢(Y1, -+, ¥y)
E, 4" (¥, 2i- (Y; = 1)%).

Since the sufficient statistic is complete it follows that for each z > 0 and e = =1,
with probability one,

¥ (@Y, 2’ 3a (Y, = 1)) = ¢"(¥, 25= (Y; = 7).

Therefore in the sense of Lehmann [2], Section 6.5, ¢” is an almost invariant
function. By Lehmann, op. cit., there exists an invariant measurable function
n”

Y" of two real variables such that if —o < 9 < o, if 7 > 0, then
Ey ' (Y, Xi= (Y; — 1)) = E, 0" (¥, 2= (Y5 — 1)),

The invariance of ¥ implies there is a measurable function ¢’ of a single real
variable such that ¢/ (2%/y) = ¢"(z,y), —© <z < o,y >0. [

LemMaA 2.5. Let the sign and scale invariant test function V' based on the design
vector m* = (my, -+ , mr) have power function

(2.11) o + (%) Dia > v M metumus + higher order terms.
If1 £1=1I,and m; > 0, then

(2.12) 8 < grvaa(a).

Proor. To prove this lemma, consider the test function Y asatestof u; = 0
against u; # 0 when the parameters are restricted to the subset of the parameter
space uy = +-+ = piq = Py = --+ = pr = 0. Then assuming m; > 0 we have
m: observations which are normal (u;, o°) and N — m; observations which are
normal (0, ¢%). It will be convenient to let these observations be X1, - -+ , Xum,
and X4, - - , X respectively. Define X=X+ -+ Xm‘.)/mf, S? =

™ (X: — X)/md)?, and T* = Xa.q + -++ + X»". The sufficient statistic
is (X, U) with U = (S* + 7", By taking conditional expectation relative to
the sufficient statistic we may replace ¢ by ¢, a measurable function of two-
variables such that

Eﬂ,'r‘l/,(Xl ) XN) = E,,,.,\P”(X, U)
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As in the proof of Lemma 2.4 we may suppose that if e = 1 and = > 0 then
V' (exy, zu) =¥ (y,u), —0 <y < o, u > 0. Thus there is a function ¢ of a
single real variable such that ¢” (v*/4”) = ¢” (y, u). The statistic (N - )XY/ U
is a (non- central) F1 n_1 statistic. The test 1//”(X2/ U?) is a size o test based on
the F-statistic X%/U® with parameter X = im.u;*/o". The slope of the power func-
tion at A = 0 is (compare with the UMP size a test) =< ¢1.5-1(e’) while from
(2.11) the slope is 8;; . Therefore (2.12) is proven. []

LEmMA 2.6. Let the sign and scale invariant function " based on the design vector
m" = (my, -+, my) have power function (2.11). Suppose m has k non-zero com-
PONENLs, say Mg, , = - , May, . Then

(2.13) k_l(auxax ©+ baa) = Ok, N—k(a ).

Proor. We apply a result due to Wald [4]. Suppose for simplicity that
my =0, e ,mg # 0, My = --- =my = 0.Letn; = mf"m,l < 1 £ I, s0 that
the parameters of the problem are the 1 X k vector 7, and . Write the power
function as B(n/o; a, m, ¥'). If U is an k X k orthogonal matrix, then Wald’s
result asserts that

(2.14) [ B(Un/o; &', m,¢) dU

<o + o giwi(d)(n’ + -+ + n’) + higher order terms-
If we write D = (6,,) as the k¥ X k matrix formed from &y, -« - , & , then
(2.15) [ UDU" dU = (k™ tr D) identity matrix.
Putting (2.11) with (2.14), using (2.15), we may write
(2.16) o +o (k7 trD)(m’ + -+ + w)

<o + o gew—(a)(n® + -+ + 7’) + higher order terms.
The assertion (2.13) now follows. []

3. Proof of the theorem. Let n®, - - 0@, o1, --+, o;, 0" = (D1, , DJ)
be a randomized design which is as good as the design described in the statement
of the theorem. The power function of the randomized design using the analysis
of variance tests is

(3.1) a + giv-1(@) 2ot (Ngi’/o®) + h(u, <+, 1, 0),
where
(3.2) R, - s e, 0) = 2 piuwaa(as; Nui'/o').
By Lemma 2.3 we may replace the test functions ¢y , « « + , s by test functions
o, or whlch are invariant under sign and scale changes such that if

1 < j £ J then ¢; has size a; . Then by Lemma 2.3 if @; has power function

(3.3) o+ 0D hy Dot 6,sn” ns] u-us + higher order terms,
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we obtain
(34) a+ grvala) 2ic (Ngwid/o™) + h(ps, -+, 11, 0)
= Z§=1 Do + P Z§=1 Z£=1 ZLI pﬁisn,fnsfurus + higher order terms.

Since the randomized design n®”, -+ , 0, @1, -+, @r, (p1, -+, Ds) is as good

as the design using the analysis of variance tests, we obtain from (3.4) that

(3.5) a = D 1D,

In (3.4) subtract « from both sides, set p3 = -+ = pea = pepp = --- = pur =0,
divide by w; and let u; — 0+. We obtain

(3.6) N Qiﬂi2g1,zv—1(a) = Z§=1 nimjuf&fi .
Using (2.12),
(3.7) Nqwigiv(e ) < Dimnipidgrv-a(e);

I

Ngivaa(a) Doics qiud S Dics D jmt Nispiti grv—1(e).
In (3.7) let ys = -++ = ur = p % 0. Then we obtain
(3.8) Ngiva(a) £ N D japigraa(ey) < Ngya(e).

We may suppose without loss of generality that if 1 < j £ J then p; # 0. By
Lemma 2.2 we must have strict inequality in (3.8) unless &1 =--+ =a; =a.
Further, if for some n;; = 0, 87; < g1,v—1(a), then strict inequality holds in (3.7)
and hence in (3.8). That cannot be.

On the other hand, if &%; = g1 N_l(a) 1<:¢=1,1Zj =£J, then,if k; is the
number of non-zero entries in n'”, by Lemma 2 6,
(3.9) ki Z(ilnijyéo} ol < gz k() = g1wa(a).

By Lemma 2.1, there must be strict inequality in (3.9) unlessk; = 1,
j =1,---,J. Since by hypothesis the left side of (3.9) equals g1 y—1 (), we have
shown that &y = --- = k; = 1 must hold.

We have shown that each test is a size « test and that each of the design vectors

n®, ... 1 specifies that all observations be taken in the same class. If 2 and

n? are the same then randomization between them is equivalent (as far as the
power function is concerned) to usmg a randormzed test function. Therefore we
may define I randomized tests et e, o1, as in the statement of the theorem,
such that all N observatlons are in class 7 with probability p;* when ¢;* is used,

1 < ¢ < I. Then the test ¢;* has power function
(3.10) B(N*u:, 0% o, 0.%).
It follows that
(311) & + grua(a) (Xl Ngwl/o®) 4+ Xia ¢dav-a(a; Nul/o")
< >ia pB(N*ui, o*; @, 0i¥).
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Take yg = +++ = pig = pia = -+ = uy = 0 and obtain
(3.12) a + ¢ *Nqiuig1.x-1(a) + higher order terms
< a(l — pi) + pB(Nu:, o5 o, 07).

As stated at the beginning of the section, ¢;* is 2 sign and scale invariant test
functlon By Lemma 2.4 we may replace @*, -+, of by test functions
e, -+, of such that when the F-statistic is inserted the same power function
results. Thus 8(N*u: , o*; a, ¢:*) is a function only of 7; = Ny, ?/6* and the deriva-
tive with respect to this variable evaluated at n; = 0 has a value =g y(a).
Thus from (3.12) we obtain

(3.13) q: = pi, 1
This implies g = p1, *++ ,qr = pr,sincel = D iy qi = D i=1 Pi.

I\

1 = I

s A

4. Proof of the theorem, continued. In order to establish the admissibility
statement of the theorem we will show the randomized symmetrical analysis of
variance test described in the theorem is a Bayes procedure relative to an abso-
lutely continuous prior measure on the alternative. We begin by considering the
Bayes character of tests based on an Fy y_; statistic.

LEmMA 4.1. Let n = 1 be an integer,c > 0 and — o < u < «. Suppose constant
o e[ Pexp (=[(x — u)® + 21/26") = f(z, 2, u, 0") is a probability density in
the two variables x, z. On the alternative let p = Ba'n and ot = a + n°. Conditional
on a, B let n have density functz'on (a + 7)™ exp (621,2/2(01 +)) = x(n, a, B).
Let a take values 1, %, %, 4, - - with probabilities %, %, %, 16, -+-, and let B have
density function constant e’ On the hypothesis u = 0. Let ¢ > = a + 1 have, con-
ditional on a, density (o + 7°) ™ = go(n, @). Let o be distributed as above. Then

(4.1) [aa2™ [ f(z, 2 B0/(a+ "), @ + 7')gi(n, 1/n, B) exp (—B°) dn dB
. [Z:=l 2 ff(x) 2 0, a + 772)90("7) l/n) d’?]-l = :ao 6_62(1_12/2@24‘22)) dg.

The proof of Lemma, 4.1 is an easy calculation which is left to the reader. It is
to be observed that (4.1) is a strictly increasing strictly convex function of
/(2 + 2.

For each a the map 8, n — Bo’n, (o + )= o preserves sets of zero
Lebesgue measure. From this it is easy to see that the map «, 8, 7 — u, ¢ induces
on u, ¢ an absolutely continuous probability measure which is positive on every
non-empty open set. We let g; be the density function of this measure, and, let
g» be the density function of ¢ induced by the map «, n — ¢ when u = 0 and 7 has
(conditional) density go(n, @). The conditional density gs(-, o) ([ gs(p, o) du)™"
= g4(+ /o) is thus everywhere positive.

On R;u we construct a probability density functions by, if 1 = ¢ = I,
- < < o,0 >0,

(4'2) h(:u'l 9 ", M1, 0') = (H§=1 g4(:u'i/a-)) f g3(/-‘) U) dp..
Let Y1, -+, ¥r be Borel measurable test functions of two variables N*Y, Z so
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that
(4.3) B(N', o ¥)
= [ [ constant ¢~ || Yi(x, 2) exp (—((z — Ni)? 4+ 25 /207 da de.

Using % as density over the alternative and g, as density over the hypohesis, with

respective weights » and 1 — », the Bayes risk of the randomized design

(N’O; 0)7 (O)N’ 70); Tt (O’O’ ;N)’ lpl; "pI;ql; ;QI)iS
v [ Dha qi(1 — B(Nui, o™ ))h(pa, -+ 5 e, 0) dpa -+ - dpr do

(44) + (1 = ») [ 2 ¢80, o"; ¥4)ga(o) do

=Dhaal [ [~ B(Nui , o5 ¥1))ge(i | 0)gs(p, o) du du: do
+ (1 = ») [ 80, ¢*; ¥:)9(o) do].
For the density »gs over the alternative and (1 — »)g, over the hypothesis the
essentially unique Bayes test is a F-test. We let its Bayes risk be K. We have
proven the following lemma.

LeMMA 4.2. The randomized symmetrical analysis of variance test of the theorem
has Bayes risk K relative to the densities vh over the alternative and (1 — v)gs over
the hypothesis and is a Bayes procedure within the subset ®" of ® consisting of risk
points having the functional form

(4.5) S p BN, o ).

Let no be the design vector ng © = (N, 0, - -+, 0). Suppose the F-test Bayes
relative to gz, gs has size . Then we may describe in the notation of (2.1) the
power function of the randomized symmetrical analysis of variance test of the
theorem as

(4.5) ZLl qiﬂ(Nniz/Gz; @, no).

The proof of Section 3 shows that if a randomized design is as good as the
randomized symmetrical analysis of variance test then the test functions

(4.6) if 12is1, o = ¢ X il

defined in the statement of the theorem must satisfy for all parameter values
(4.7) Z£=1 Qiﬁ(N*ﬂi Lo eit) 2 Dia gi8(Nui'/a"; a, mo)

andif yg = -+ = ur = 0 then

(48) 25080, 0% ") = 21 0i8(0; 0, M) = o

That is to say,
(4.9) SiapBmiu, - ntur,o’n?,0) = 2t aB(NPui, 0% 0%),

so that a risk point as good as that given in (4.5) must be a point of ®".
The expression given in (4.5) is Bayes relative to vh, (1 — »)gz so that integrat-
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ing the difference of the two sides of (4.7) gives
(4.10) 0 = [ 2o qi(B(Nhus, o*; @) — B(Nui/a"; a, mo))
h(u, -+, ur,0) du -+ dur do.

The integrand of (4.10) is a continuous non-negative function and % is every-
where positive. Therefore, for all parameter values

(4.11) S gB( N, 0% 0") = 21 qB(Nui’/o"; a, mo).

Let yy — ©, pg— o, -+, uy — . The right side of (4.11) tends to one in
value. This implies
(4.12) limy. B(N, o%; 0.*) = 1.
Fix the values p1, - -+, pic1, Mis1, -+ - , br and take two distinet values pa , wi -
From (4.11) we obtain
(4.13) B(N i, 0% 0iF) — B(Nuia, 0”5 0:)

= B(Nula/o®; a, no) — B(Npa/o"; o, Mo)"

Let pg — o and use (4.12) to obtain for alle > 0, —w < u < o,
(4.14) BN, 0% 0i*) = B(NW/o"; @, mo).

The test ;" has the same power function as that of a UMP size a F-test and
therefore ¢;* is essentially equal the essentially unique Bayes procedure.
The proof of the theorem has been completed.
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